EDITORIAL

4116 Is it time to put traditional cold therapy in rehabilitation of soft-tissue injuries out to pasture?
Wang ZR, Ni GX

MINIREVIEWS

4123 Health-related quality of life after gastric cancer treatment in Brazil: Narrative review and reflections
Pinheiro RN, Mucci S, Zanatto RM, Picanço Junior OM, Oliveira AF, Lopes Filho GJ

4133 Nonalcoholic fatty liver disease and COVID-19: An epidemic that begets pandemic
Ahmed M, Ahmed MH

ORIGINAL ARTICLE

Retrospective Study

4143 Why MUC16 mutations lead to a better prognosis: A study based on The Cancer Genome Atlas gastric cancer cohort
Huang YJ, Cao ZF, Wang J, Yang J, Wei YJ, Tang YC, Cheng YX, Zhou J, Zhang ZX

4159 Design and development of a new type of phimosis dilatation retractor for children
Yue YW, Chen YW, Deng LP, Zhu HL, Feng JH

4166 Primary needle-knife fistulotomy for preventing post-endoscopic retrograde cholangiopancreatography pancreatitis: Importance of the endoscopist’s expertise level
Han SY, Baek DH, Kim DU, Park CJ, Park YJ, Lee MW, Song GA

Observational Study

4178 Patients with functional bowel disorder have disaccharidase deficiency: A single-center study from Russia

4188 Self-perceived burden and influencing factors in patients with cervical cancer administered with radiotherapy
Luo T, Xie RZ, Huang YX, Gong XL, Qin HY, Wu YX

SYSTEMATIC REVIEWS

4199 COVID-19 in gastroenterology and hepatology: Lessons learned and questions to be answered
Liu S, Tang MM, Du J, Gong ZC, Sun SS
META-ANALYSIS

4210 Efficacy of topical vs intravenous tranexamic acid in reducing blood loss and promoting wound healing in bone surgery: A systematic review and meta-analysis

Xu JW, Qiang H, Li TL, Wang Y, Wei XX, Li F

CASE REPORT

4221 Ex vivo liver resection followed by autotransplantation in radical resection of gastric cancer liver metastases: A case report

Wang H, Zhang CC, Ou YJ, Zhang LD

4230 Bone marrow inhibition induced by azathioprine in a patient without mutation in the thiopurine S-methyltransferase pathogenic site: A case report

Zhou XS, Lu YY, Gao YF, Shao W, Yao J

4238 Eosinophilic gastroenteritis with abdominal pain and ascites: A case report

Tian XQ, Chen X, Chen SL

4244 Tunica vaginalis testis metastasis as the first clinical manifestation of pancreatic adenocarcinoma: A case report

Zhang YR, Ma DK, Gao BS, An W, Guo KM

4253 “AFGP” bundles for an extremely preterm infant who underwent difficult removal of a peripherally inserted central catheter: A case report

Chen Q, Hu YL, Su SY, Huang X, Li YX

4262 Dynamic magnetic resonance imaging features of cavernous hemangioma in the manubrium: A case report

Lin TT, Hsu HH, Lee SC, Peng YJ, Ko KH

4268 Diagnosis and treatment of pediatric anaplastic lymphoma kinase-positive large B-cell lymphoma: A case report

4279 Stevens-Johnson syndrome and concurrent hand foot syndrome during treatment with capecitabine: A case report

Ahn HR, Lee SK, Youn HJ, Yun SK, Lee IJ

4285 Rosai-Dorfman disease with lung involvement in a 10-year-old patient: A case report

Wu GJ, Li BB, Zhu RL, Yang CJ, Chen WY

4294 Acute myocardial infarction in twin pregnancy after assisted reproduction: A case report

4303 Complete recovery of herpes zoster radiculopathy based on electrodiagnostic study: A case report

Kim HS, Jung JW, Jung YJ, Ro YS, Park SB, Lee KH
<table>
<thead>
<tr>
<th>Page</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>4310</td>
<td>Acute liver failure with thrombotic microangiopathy due to sodium valproate toxicity: A case report</td>
<td>Mei X, Wu HC, Ruan M, Cai LR</td>
</tr>
<tr>
<td>4318</td>
<td>Lateral epicondyle osteotomy approach for coronal shear fractures of the distal humerus: Report of three cases and review of the literature</td>
<td>Li J, Martin VT, Su ZW, Li DT, Zhai QY, Yu B</td>
</tr>
<tr>
<td>4327</td>
<td>Pancreatic neuroendocrine carcinoma in a pregnant woman: A case report and review of the literature</td>
<td>Gao LP, Kong GX, Wang X, Ma HM, Ding FF, Li TD</td>
</tr>
<tr>
<td>4336</td>
<td>Primary primitive neuroectodermal tumor in the pericardium—a focus on imaging findings: A case report</td>
<td>Xu SM, Bai J, Cai JH</td>
</tr>
<tr>
<td>4342</td>
<td>Minimally invasive surgery for glycogen storage disease combined with inflammatory bowel disease: A case report</td>
<td>Wan J, Zhang ZC, Yang MQ, Sun XM, Yin L, Chen CQ</td>
</tr>
<tr>
<td>4348</td>
<td>Coronary sinus endocarditis in a hemodialysis patient: A case report and review of literature</td>
<td>Hwang HJ, Kang SW</td>
</tr>
<tr>
<td>4357</td>
<td>Clostridium perfringens bloodstream infection secondary to acute pancreatitis: A case report</td>
<td>Li M, Li N</td>
</tr>
<tr>
<td>4373</td>
<td>Pelvic lipomatosis with cystitis glandularis managed with cyclooxygenase-2 inhibitor: A case report</td>
<td>Mo LC, Piao SZ, Zheng HH, Hong T, Feng Q, Ke M</td>
</tr>
<tr>
<td>4381</td>
<td>Prone position combined with high-flow nasal oxygen could benefit spontaneously breathing, severe COVID-19 patients: A case report</td>
<td>Xu DW, Li GL, Zhang JH, He F</td>
</tr>
<tr>
<td>4388</td>
<td>Primary intratracheal schwannoma misdiagnosed as severe asthma in an adolescent: A case report</td>
<td>Huang HR, Li PQ, Wan YX</td>
</tr>
<tr>
<td>4395</td>
<td>Prenatal diagnosis of cor triatriatum sinister associated with early pericardial effusion: A case report</td>
<td>Cánovas E, Cazorla E, Alonso MC, Jara R, Álvarez L, Beric D</td>
</tr>
<tr>
<td>4400</td>
<td>Pulmonary alveolar proteinosis complicated with tuberculosis: A case report</td>
<td>Bai H, Meng ZR, Ying BW, Chen XR</td>
</tr>
<tr>
<td>4408</td>
<td>Surgical treatment of four segment lumbar spondylolisthesis: A case report</td>
<td>Li DM, Peng BG</td>
</tr>
<tr>
<td>Page</td>
<td>Title</td>
<td>Authors</td>
</tr>
<tr>
<td>------</td>
<td>--</td>
<td>---</td>
</tr>
<tr>
<td>4415</td>
<td>Efficacy of artificial liver support system in severe immune-associated hepatitis caused by camrelizumab: A case report and review of the literature</td>
<td>Tan YW, Chen L, Zhou XB</td>
</tr>
<tr>
<td>4433</td>
<td>Intraneural ganglion cyst of the lumbosacral plexus mimicking L5 radiculopathy: A case report</td>
<td>Lee JG, Peo H, Cho JH, Kim DH</td>
</tr>
</tbody>
</table>
ABOUT COVER
Editorial Board Member of World Journal of Clinical Cases, Pietro Scicchitano, MD, Professor, Research Scientist, Department of Emergency and Organ Transplantation, School of Medicine, University of Bari, Bari 70124, Italy. piero.sc@hotmail.it

AIMS AND SCOPE
The primary aim of World Journal of Clinical Cases (WJCC, World J Clin Cases) is to provide scholars and readers from various fields of clinical medicine with a platform to publish high-quality clinical research articles and communicate their research findings online.

WJCC mainly publishes articles reporting research results and findings obtained in the field of clinical medicine and covering a wide range of topics, including case control studies, retrospective cohort studies, retrospective studies, clinical trials studies, observational studies, prospective studies, randomized controlled trials, randomized clinical trials, systematic reviews, meta-analysis, and case reports.

INDEXING/ABSTRACTING
The WJCC is now indexed in Science Citation Index Expanded (also known as SciSearch®), Journal Citation Reports/Science Edition, Scopus, PubMed, and PubMed Central. The 2020 Edition of Journal Citation Reports® cites the 2019 impact factor (IF) for WJCC as 1.013; IF without journal self cites: 0.991; Ranking: 120 among 165 journals in medicine, general and internal; and Quartile category: Q3. The WJCC’s CiteScore for 2019 is 0.3 and Scopus CiteScore rank 2019: General Medicine is 394/529.

RESPONSIBLE EDITORS FOR THIS ISSUE
Production Editor: Jia-Hui Li; Production Department Director: Yu-Jie Ma; Editorial Office Director: Jin-Lei Wang.

NAME OF JOURNAL
World Journal of Clinical Cases

ISSN
ISSN 2307-8960 (online)

LAUNCH DATE
April 16, 2013

FREQUENCY
Thrice Monthly

EDITORS-IN-CHIEF
Dennis A Bloomfield, Sandro Vento, Bao-Gan Peng

EDITORIAL BOARD MEMBERS
https://www.wjgnet.com/2307-8960/editorialboard.htm

PUBLICATION DATE
June 16, 2021

COPYRIGHT
© 2021 Baishideng Publishing Group Inc

INSTRUCTIONS TO AUTHORS
https://www.wjgnet.com/bpg/gerinfo/204

GUIDELINES FOR ETHICS DOCUMENTS
https://www.wjgnet.com/bpg/gerinfo/287

GUIDELINES FOR NON-NATIVE SPEAKERS OF ENGLISH
https://www.wjgnet.com/bpg/gerinfo/240

PUBLICATION ETHICS
https://www.wjgnet.com/bpg/gerinfo/288

PUBLICATION MISCONDUCT
https://www.wjgnet.com/bpg/gerinfo/208

ARTICLE PROCESSING CHARGE
https://www.wjgnet.com/bpg/gerinfo/242

STEPS FOR SUBMITTING MANUSCRIPTS
https://www.wjgnet.com/bpg/gerinfo/239

ONLINE SUBMISSION
https://www.f6publishing.com

© 2021 Baishideng Publishing Group Inc. All rights reserved. 7041 Koll Center Parkway, Suite 160, Pleasanton, CA 94566, USA
E-mail: bpgoffice@wjgnet.com https://www.wjgnet.com
CASE REPORT

Clostridium perfringens bloodstream infection secondary to acute pancreatitis: A case report

Ming Li, Ning Li

ORCID number: Ming Li 0000-0002-7957-444X; Ning Li 0000-0001-9433-1350.

Author contributions: Li M carried out the studies, participated in collecting the data, and drafted the manuscript; Li M performed the statistical analysis and participated in its design; Li N helped to draft the manuscript; all authors read and approved the final manuscript.

Informed consent statement: Consent was obtained from relatives of the patient for publication of this report and any accompanying images.

Conflict-of-interest statement: The authors declare that they have no conflicts of interest to report.

CARE Checklist (2016) statement: The authors have read the CARE Checklist (2016), and the manuscript was prepared and revised according to the CARE Checklist (2016).

Open-Access: This article is an open-access article that was selected by an in-house editor and fully peer-reviewed by external reviewers. It is distributed in accordance with the Creative Commons Attribution NonCommercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build

C. perfringens infection may be secondary to acute pancreatitis. Rapid recognition and aggressive early management are critical for the survival of patients with C. perfringens infection.

Key Words: Clostridium perfringens; Septicemia; Pancreatitis; Acute; Case report

©The Author(s) 2021. Published by Baishideng Publishing Group Inc. All rights reserved.
Core Tip: Clostridium perfringens (C. perfringens) is an opportunistic pathogen. This patient had a C. perfringens infection with no underlying diabetes, malignancy, or liver cirrhosis. C. perfringens infection may be secondary to acute pancreatitis and cause quick death of the patient. Rapid recognition and aggressive early management are critical for the survival of patients with C. perfringens infection.

INTRODUCTION

Clostridial toxic shock syndrome is a life-threatening, toxin-mediated systemic illness caused by infection with either Clostridium sordellii (C. sordellii) or Clostridium perfringens (C. perfringens)[1-3]. Most cases occur post-partum or following spontaneous or therapeutic abortion. Initial symptoms arise about 2-7 d after birth or abortion and may include lethargy, nausea, vomiting, and diarrhea[1-3]. Fever is notably absent. Within 48-72 h of infection, a marked systemic response and multiorgan failure ensue[1-3]. Not all infections or bacteremias due to C. sordellii or C. perfringens lead to toxic shock syndrome, but when this complication arises, mortality is near 100%[1-3]. Besides abortion, patients with C. perfringens infection usually have an underlying condition such as diabetes, malignancy, liver cirrhosis, or an immunosuppressive state[1-3].

Here, we report a patient with C. perfringens infection secondary to acute pancreatitis, with no underlying diabetes, malignancy, or liver cirrhosis.

CASE PRESENTATION

Chief complaints

A 62-year-old Han Chinese woman presented to the emergency room of Tianjin Hospital of ITCWM Nankai Hospital on January 8, 2020 because of epigastric abdominal pain.

History of present illness

The patient’s symptoms started 2 d ago without nausea, vomiting, jaundice, fever, or chill.

History of past illness

The patient had a history of hyperthyroidism (she had radiotherapy and the subsequent hypothyroidism was treated with long-term levothyroxine) and hyperlipemia, but no medical history of hypertension, diabetes mellitus, or malignancy. The patient had acute pancreatitis 3 mo ago and was cured by anti-pancreatitis treatment.

Personal and family history

The patient was born in Tianjin and lived there since birth. She had no history of smoking and alcohol consumption. Her family had no history of genetic disease.

Physical examination

Physical examination revealed normal temperature, heart rate, blood pressure, and oxygen saturation (OS), no jaundice, dry mucous membranes, lungs clear to auscultation, abdomen soft but tender in the upper abdomen, and no rash.

Laboratory examinations

Urine amylase was 10403 U/L (reference: 47-458) and blood amylase was 1006 U/L (reference: < 100). Urobilinogen and urobilirubin were negative. Total cholesterol was
6.84 mmol/L (reference: < 5.2). Low density lipoprotein was 4.54 mmol/L (reference: < 3.12).

Imaging examinations

Abdominal computed tomography (CT) showed pancreatic edema and peripancreatic exudation but no cholecystitis or cholangiactasis (Figure 1). Abdominal ultrasound showed no cholelithiasis, choledocholithiasis, cholecystitis, or cholangiactasis.

FINAL DIAGNOSIS

The possible diagnoses might be acute pancreatitis, acute cholecystitis, acute gastritis, acute appendicitis, and gastrointestinal perforation. Examinations were performed to rule out diagnoses. CT and abdominal ultrasound had excluded the others, and acute pancreatitis was finally confirmed, the severity of which was graded as mild[4]. The cause of acute pancreatitis might be hyperlipidemic or idiopathic.

TREATMENT

The patient refused hospitalization and was given etimicin 300 mg/d IV for empiric antibiotic therapy, lansoprazole 30 mg/d IV for acid suppression, octreotide 0.3 g SC injection for inhibiting pancreas secretion, alprostadil 10 mg IV into Murphy’s dropper for improving microcirculation of the pancreas, deoxocine 5 mg IM and ketochrometritol 30 mg/d IV for analgesia, glucose sodium chloride 5%, and potassium chloride 10 mL/d IV for keeping water electrolyte balance. She left the hospital after the symptoms were relieved a little.

The patient presented to the emergency room again the next day (January 9) because of similar symptoms and was admitted to the hepatopancreatobiliary surgery ward immediately. She walked into the ward by herself with normal temperature, heart rate, blood pressure, and OS. Two hours later, she went to the lavatory and urinated, and the urine color was like soy sauce. After going back to bed, OS decreased to 77%, and she developed consciousness disturbance. Mask oxygen inhalation was given. Routine blood tests, serum electrolytes, blood coagulation function, biochemical markers of myocardial injury, renal function, liver function, and arterial blood gas analysis were assessed (Tables 1-3). Consciousness recovered a little, and OS recovered to around 90% before trachea cannula. Blood pressure was 130/90 mmHg, and heart rate was 130 bpm. The clinical laboratory of our hospital reported that the patient’s blood was abnormal and could not be analyzed properly. Arterial blood gas analysis showed Hb 6.6 g/dL and PO2 54.705 mmHg. The patient was admitted to the medical intensive care unit. She had a chest and abdominal CT scan, which revealed liver abscess and bilateral pneumonia (Figure 2). Because of progressive respiratory distress and hypoxia, the patient was treated by mechanical ventilation along with trachea cannula, central venous catheterization, urethral catheterization, electrocardiogram monitoring, fluid resuscitation, epinephrine to maintain blood pressure, and sodium bicarbonate solution to improve acidosis. After 8 h in the hospital, she had a high fever of 40 °C, blood was drawn for culture, and 3 g IV of cefoperazone/sulbactam was administered.

OUTCOME AND FOLLOW-UP

About 12 h after walking into the ward by herself, she had a cardiac arrest and died shortly thereafter. About 2 d after her death, blood culture confirmed a *C. perfringens* infection. Table 4 summarizes the clinical events.

DISCUSSION

C. perfringens is an anaerobic Gram-positive rod bacterium. It can be found in the soil and the human gastrointestinal and urogenital tracts. *C. perfringens* is an opportunistic pathogen. It can cause infection when the body displays underlying conditions, including poorly controlled diabetes mellitus, underlying malignancy, chemotherapy,
Table 1 Comparison of blood tests between the two admissions

<table>
<thead>
<tr>
<th></th>
<th>Second admission</th>
<th>First admission</th>
<th>Normal range</th>
</tr>
</thead>
<tbody>
<tr>
<td>White blood cells (10⁹/L)</td>
<td>29.50</td>
<td>15.83</td>
<td>4-10</td>
</tr>
<tr>
<td>Red blood cells (10¹²/L)</td>
<td>1.88</td>
<td>4.28</td>
<td>3.5-5.5</td>
</tr>
<tr>
<td>Hemoglobin (g/L)</td>
<td>64</td>
<td>132</td>
<td>110-160</td>
</tr>
<tr>
<td>Hematocrit (%)</td>
<td>13.5</td>
<td>38.4</td>
<td>37-49</td>
</tr>
<tr>
<td>Mean corpuscular volume (fL)</td>
<td>71.8</td>
<td>89.7</td>
<td>80-100</td>
</tr>
<tr>
<td>Mean corpuscular hemoglobin (pg)</td>
<td>34</td>
<td>30.9</td>
<td>27-32</td>
</tr>
<tr>
<td>Mean corpuscular hemoglobin concentration (g/L)</td>
<td>474</td>
<td>344</td>
<td>320-360</td>
</tr>
<tr>
<td>Platelets (10⁹/L)</td>
<td>95</td>
<td>181</td>
<td>100-300</td>
</tr>
</tbody>
</table>

Table 2 Liver function at the second admission

<table>
<thead>
<tr>
<th></th>
<th>Second admission</th>
<th>Normal range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total protein (g/L)</td>
<td>118.6</td>
<td>60-80</td>
</tr>
<tr>
<td>Albumin (g/L)</td>
<td>56.1</td>
<td>35-55</td>
</tr>
<tr>
<td>Prealbumin (mg/L)</td>
<td>96</td>
<td>200-400</td>
</tr>
<tr>
<td>Total bilirubin (µmol/L)</td>
<td>128.3</td>
<td>5.1-20.4</td>
</tr>
<tr>
<td>Direct bilirubin (µmol/L)</td>
<td>86.3</td>
<td>1.7-6.8</td>
</tr>
<tr>
<td>Total bile acid (µmol/L)</td>
<td>30.9</td>
<td>1-7</td>
</tr>
<tr>
<td>Alkaline phosphatase (U/L)</td>
<td>430</td>
<td>34-114</td>
</tr>
<tr>
<td>γ-glutaryl transferase (U/L)</td>
<td>481</td>
<td>11-50</td>
</tr>
<tr>
<td>Alanine transaminase (U/L)</td>
<td>310</td>
<td>5-40</td>
</tr>
</tbody>
</table>

Table 3 Serum electrolytes

<table>
<thead>
<tr>
<th></th>
<th>Second admission</th>
<th>Normal range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sodium (mmol/L)</td>
<td>135.6</td>
<td>135-145</td>
</tr>
<tr>
<td>Potassium (mmol/L)</td>
<td>3.95</td>
<td>3.6-5.5</td>
</tr>
<tr>
<td>Chlorinum (mmol/L)</td>
<td>102.1</td>
<td>96-106</td>
</tr>
</tbody>
</table>

and radiation therapy[5]. Chen et al[6] reported that among the patients with C. perfringens infection, diabetes mellitus and liver cirrhosis were the most common underlying diseases in Tainan (China). Fujita et al[7] reported that eight of 18 patients with C. perfringens had diseases of the hepatobiliary tract system. Pancreatic infection by this agent can occur by three means: Migration by direct contact with a vulnerable colon, by retrograde duodenal infection, or through the biliary tree. Nevertheless, C. perfringens secondary to acute pancreatitis is very rare. A case of C. perfringens was reported to be secondary to acute necrotizing pancreatitis[8], which is a very severe condition, while the patient reported here had mild acute pancreatitis.

In the case reported here, the patient had no immunosuppressive conditions such as chemotherapy, current radiation treatments, and treatment with steroids and no medical history of diabetes mellitus, malignancy, or liver cirrhosis. Nevertheless, acute pancreatitis may have a “trigger effect”. During the early stage of acute pancreatitis, massive amounts of cytokines induced by local pancreatic inflammation enter the bloodstream, leading to damage to the intestinal barrier function and an increase of mucous permeability. The intestinal bacteria gain access to the lymphatic or portal system, and finally, reach every part of the body. The translocated bacteria are mainly composed of opportunistic pathogens from the gut, including Escherichia coli, Shigella flexneri, enteric Bacilli, Acinetobacter, Bacillus coagulans, and enterococcus, among others[9]. Li et al[10] detected bacterial DNA from peripheral blood in 68.8% of
Table 4 Summary of the clinical course

<table>
<thead>
<tr>
<th>Time</th>
<th>Event</th>
</tr>
</thead>
<tbody>
<tr>
<td>January 8</td>
<td>16:30 First admission to the emergency room</td>
</tr>
<tr>
<td></td>
<td>17:00-18:00 Urine amylase at 10403 U/L (normal: 47-458), first CT, first blood routine test, blood amylase at 1006 U/L (normal: < 100)</td>
</tr>
<tr>
<td></td>
<td>The end Refused hospitalization, anti-pancreatitis treatment in the emergency room</td>
</tr>
<tr>
<td>January 9</td>
<td>11:00 Second admission to the emergency room</td>
</tr>
<tr>
<td></td>
<td>12:00 Hospitalization, walked into the general ward</td>
</tr>
<tr>
<td></td>
<td>13:45 Consciousness disturbance, oxygen saturation 77%</td>
</tr>
<tr>
<td></td>
<td>14:30 Consciousness recovered a little, oxygen saturation 90%</td>
</tr>
<tr>
<td></td>
<td>16:00 Second CT on the way to the ICU</td>
</tr>
<tr>
<td></td>
<td>17:12 Second blood routine test, liver function</td>
</tr>
<tr>
<td></td>
<td>21:42 High fever of 40 °C, blood culture</td>
</tr>
<tr>
<td></td>
<td>22:18 Cefoperazone/sulbactam was administered</td>
</tr>
<tr>
<td>January 10</td>
<td>00:30 Cardiac arrest</td>
</tr>
<tr>
<td></td>
<td>01:30 Death</td>
</tr>
<tr>
<td>January 13</td>
<td>10:40 The result of the blood culture confirmed Clostridium perfringens infection</td>
</tr>
</tbody>
</table>

CT: Computed tomography; ICU: Intensive care unit.

Figure 1 Abdominal computed tomography (first admission) showing pancreatic edema and peripancreatic exudation, which are characteristic findings of acute pancreatitis. A: Edema and peripancreatic exudation in head and body of the pancreas; B: Swelling in body and tail of the pancreas.

patients with acute pancreatitis. As it is found in the guts, C. perfringens can also translocate to the circulatory system. Since there are no other sources of C. perfringens in blood, translocation of intestinal bacteria according to acute pancreatitis may be the only way.

There are five serotypes of C. perfringens (A, B, C, D, and E), and they can produce four toxins (α, β, ε, and ι). The α-toxin, mostly in C. perfringens type A, is regarded as a key pathogenic factor in the destruction of soft tissue and the development of gangrene and gas-forming abscesses. It can disrupt the membrane of the erythrocytes due to phospholipase C activity, which leads to hemolysis. In addition, bilirubin, potassium, and lactate dehydrogenase (LDH) levels can be elevated[11]. Acute massive intravascular hemolysis only occurs in 7%-15% of C. perfringens bacteremia cases, but it is typically the most severe complication, with a mortality rate of 70%-100%[12]. In the patient reported here, the clinical course was very aggressive. The patient had a severe O2 decrease and consciousness disturbance after 2 h of admission and was dead about 10 h later. According to the subsequent blood test and CT scan,
Li M et al. C. perfringens septicemia after acute pancreatitis

Figure 2 Computed tomography findings. There were about 22 h between the two scans. A: Abdominal computed tomography (second admission) showing a cavity with gas in the liver; B: Abdominal computed tomography (first admission) showing no abnormal findings in the liver; C: Chest computed tomography (second admission) showing exudation of the two lungs; D: Chest computed tomography (first admission) showing no exudation.

the patient had acute massive intravascular hemolysis because of C. perfringens bacteremia, which also caused the gas-forming liver abscess and bilateral pneumonia.

Infection with C. perfringens often progresses rapidly to death, and rapid recognition is critical for patient survival[1-3,13]. The key to patient rescue is how fast the appropriate treatments are started. The diagnosis and management of the patient reported here were clearly inadequate. The liver abscess was found only 9 h before the patient’s death, and no drainage was performed. The specimen from the abscess can be immediately used for Gram staining. C. perfringens is a Gram-positive bacillus and has a distinctive form and we suspect a C. perfringens infection. Actually, even until death, the actual condition was not recognized, and no proper action was taken. We gave antibiotics only when the patient had a high fever but not as soon as the gas-forming liver abscess and bilateral pneumonia were found, and we did not know whether the appropriate antibiotic was given. Finally, a peripheral blood smear was not prepared, missing the opportunity to observe the typically abnormal blood cell. Blood smear is not useful for diagnosis of C. perfringens because of the small amount of inclusive bacteria, but anaerobic culturing of blood might be useful even though several days are needed. We believe that a lack of proper knowledge about C. perfringens infection was the main reason for the diagnostic and management failure.

For a patient with sepsis and intravascular hemolysis, the possibility of C. perfringens infection must remain[14]. For the early diagnosis of C. perfringens infection, Gram staining of the blood or drainage sample is important. The early signs of hemolysis are elevated LDH, total or indirect bilirubin, and potassium. Spherocytes or ghost cells may be found in the blood smears. A red serum or hemoglobinuria may be observed after substantial hemolysis[15].

When C. perfringens septicemia is suspected, aggressive management is warranted as early as possible[1-3]. The management includes timely debridement or drainage of the abscess, initiation of appropriate antibiotics without delay, and circulatory support...
with a multidisciplinary team approach[15]. When surgical debridement is difficult, hyperbaric oxygen therapy is worth and may reduce mortality; the suggested regimen is 2-3 atm oxygen for 60-120 min per session with 2-3 sessions per day up to 6 d[16]. The appropriate antibiotic is intravenously administrated high-dose penicillin (10-24 million U daily). Shah et al[17] classified antibiotics into “appropriate” and “insufficient”. The most commonly used “appropriate” antibiotics for *C. perfringens* are penicillin G, clindamycin, metronidazole, and piperacillin/tazobactam. Patients treated with “insufficient” antibiotics had a significantly higher 2-d mortality rate (75%) compared with patients treated with “appropriate” antibiotics (12.5%). *In vivo* studies showed that the combination of penicillin and clindamycin has better efficacy than penicillin alone in the suppression of toxin synthesis[16].

CONCLUSION

The translocated bacteria in patients with acute pancreatitis can include *C. perfringens*, which has a very poor prognosis, regardless of the patient’s condition. Once a *C. perfringens* infection is suspected, aggressive management should be started as soon as possible.

REFERENCES

