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Abstract
In this editorial, we comment on the article published in the recent issue of the 
World Journal of Gastroenterology. Acute liver failure (ALF) is a fatal disease that 
causes uncontrolled massive hepatocyte death and rapid loss of liver function. 
Ferroptosis and pyroptosis, cell death forms that can be initiated or blocked 
concurrently, can play significant roles in developing inflammation and various 
malignancies. However, their roles in ALF remain unclear. The article discovered 
the positive feedback between ferroptosis and pyroptosis in the progression of 
ALF, and revealed that the silent information regulator sirtuin 1 (SIRT1) inhibits 
both pathways through p53, dramatically reducing inflammation and protecting 
hepatocytes. This suggests the potential use of SIRT1 and its downstream 
molecules as therapeutics for ALF. Thus, we will discuss the role of ferroptosis 
and pyroptosis in ALF and the crosstalk between these cell death mechanisms. 
Additionally, we address potential treatments that could alleviate ALF by simul-
taneously inhibiting both cell death pathways, as well as examples of SIRT1 
activators being used as disease treatment strategies, providing new insights into 
the therapy of ALF.

Key Words: Acute liver failure; Ferroptosis; Pyroptosis; Crosstalk; Silent information 
regulator sirtuin 1; P53; Glutathione peroxidase 4; Gasdermin D; Treatment
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Core Tip: Acute liver failure (ALF) is a life-threatening disease characterized by uncontrolled death of hepatocytes. 
Ferroptosis and pyroptosis are two recently discovered types of cell death that can occur simultaneously. However, their 
roles in ALF remain unclear. The findings show that these two cell death pathways work together to advance ALF and 
suggest that silent information regulator sirtuin 1 (SIRT1) and its downstream molecules could be potential therapeutics for 
ALF. Therefore, we will discuss the roles and crosstalk of ferroptosis and pyroptosis in ALF. Activation of SIRT1 and 
suppression of both cell death pathways may offer new insights into therapeutic targets for ALF.

Citation: Xing ZY, Zhang CJ, Liu LJ. Targeting both ferroptosis and pyroptosis may represent potential therapies for acute liver 
failure. World J Gastroenterol 2024; 30(33): 3791-3798
URL: https://www.wjgnet.com/1007-9327/full/v30/i33/3791.htm
DOI: https://dx.doi.org/10.3748/wjg.v30.i33.3791

INTRODUCTION
Acute liver failure (ALF) is an acute clinical syndrome that occurs in patients without a history of liver disease and is life-
threatening[1]. In developed countries, there are approximately 1–6 cases per million individuals. Although the incidence 
is rare, ALF causes a mortality rate as high as 30%[2,3]. The most prevalent causes of ALF are hepatic toxicity induced by 
medications or poisons, acute viral hepatitis, autoimmune and metabolic disorders, and unexplained cryptogenic liver 
failure[1,3]. ALF can lead to severe complications, including coagulopathy, elevated transaminases, hepatic enceph-
alopathy, and multi-organ failure. This is often attributed to a series of severe proinflammatory states triggered by 
extensive hepatocyte damage, resulting in DNA damage, oxidative stress, and an accompanying inflammatory factor 
storm[4-6].

The main event in ALF is the excessive and uncontrolled death of hepatocytes by apoptosis, necroptosis, and necrosis
[5,7,8]. Further study has found that various types of cell death are related to liver diseases such as ALF, including 
ferroptosis and pyroptosis[9]. These cell death pathways can coexist in a pathological environment, and several shared 
overlapping mechanisms can be used as “backup” death strategies to maintain biological balance within the organism 
when the death induction threshold is reached, mediating various immune effects and inflammatory responses[10].

FERROPTOSIS IN ALF
Dixon et al[11] originally described ferroptosis, an iron-dependent regulated cell death, in 2012. It is characterized by iron 
metabolism disorder and an accumulation of excessive intracellular lipid peroxides, which lead to redox imbalance and 
ultimately cell death[12].

When iron metabolism is disrupted, excess iron can be released from iron storage proteins into the cytoplasm or other 
organelles. Free iron can react with intracellular hydrogen peroxide or other oxidants to cause lipid peroxidation of 
polyunsaturated fatty acids in the cell membrane via the Fenton reaction, which produces a variety of reactive oxygen 
species (ROS) and lipid peroxidation radicals[13,14]. System Xc

- is a key regulatory component of ferroptosis, consisting of 
solute carrier family 7 member 11 (SLC7A11) and solute carrier family 3 member 2[15], whose antioxidant system 
typically protects cells from oxidative stress[16]. However, during ferroptosis, the antioxidant system may fail to 
efficiently neutralize the produced ROS, resulting in the cell’s incapacity to withstand lipid peroxidation[17].

The p53 gene is essential in the cellular response to a variety of stressors, including DNA damage, hypoxia, nutrient 
starvation, and oncogene activation[18]. P53 can also regulate ferroptosis by directly acting on the SLC7A11 promoter to 
reduce its expression, thereby reducing extracellular cystine intake, decreasing glutathione synthesis, lowering 
glutathione peroxidase 4 (GPX4) activity, increasing lipid peroxide levels, and ultimately leading to ferroptosis[19]. P53 
can also recruit the deubiquitinase ubiquitin-specific peptidase 7 to the histone H2B monoubiquitination modification 
(H2Bub1) in the promoter region of SLC7A11, reducing H2Bub1 on the SLC7A11 gene, resulting in lower SLC7A11 
protein levels and ferroptosis[20]. However, in addition to promoting ferroptosis, p53 may also inhibit it by regulating the 
localization and activity of dipeptidyl peptidase 4 and other pathways, thereby promoting cell survival[21]. Therefore, 
p53 may exhibit a “dual role” in the regulation of ferroptosis.

Ferroptosis is thought to play a substantial role in hepatocyte death in ALF[22-24]. One study reported that the 
ferroptosis inhibitor ferrostatin-1 significantly prevented hepatotoxicity and lipid peroxidation in mice with aceta-
minophen (APAP) induced ALF, lowering the mortality rate[25]. Another study revealed similar outcomes[26]. The iron 
inhibitor UAMC3203 and the iron chelator deferoxamine both protected against APAP-induced liver damage by reducing 
ferroptosis[26-28]. Moreover, various medicines or biological extracts, such as sulforaphane[29], (+)-clausenamide[30], 
nitroflurbiprofen[31], avicularin[32], and glycyrrhizin[33], have been demonstrated to reduce liver damage by ferroptosis 
inhibition. These studies highlight the importance of ferroptosis in ALF, suggesting that blocking the ferroptosis pathway 
could be a viable strategy for ALF treatment. According to the study by Zhou et al[34], histone deacetylases silent 
information regulator sirtuin 1 (SIRT1) regulates ferroptosis through the p53 pathway, offering a prospective therapeutic 
option.

https://www.wjgnet.com/1007-9327/full/v30/i33/3791.htm
https://dx.doi.org/10.3748/wjg.v30.i33.3791
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PYROPTOSIS IN ALF
Pyroptosis is a type of immunogenic cell death mediated by caspases during microbial infections[35]. It helps the body 
eliminate invading pathogens. The gasdermin D (GSDMD) protein is the central driver of pyroptosis. When a cell 
receives signals such as pathogen-associated molecular patterns, damage-associated molecular patterns, and lipopolysac-
charide (LPS) via classical or non-classical pathways, caspases-1 and caspases-4/5/11 are recruited and activated. The 
activated caspases perform proteolytic activity, leading to the formation of the active N-terminal fragment of GSDMD 
(GSDMD-N)[35]. It also promotes the cleavage of interleukin-1beta precursor and interleukin-18 precursor to produce 
mature cytokines[36,37]. Subsequently, GSDMD-N binds to acidic phospholipids on the cell membrane, forming 
oligomerized death-inducing pores and increasing intracellular osmotic pressure, leading to cell swelling and rupture[38-
40]. It leads to the release of interleukin-1beta (IL-1β), interleukin (IL)-18, tumor necrosis factor-alpha (TNFα), ATP, and 
other substances into the extracellular space, attracting immune cells to the injury site and mediating the inflammatory 
immune response[37,41,42].

Previous studies have indicated that pyroptosis plays a crucial role in liver diseases. ALF patients’ liver tissue exhibits 
elevated levels of molecules associated with pyroptosis, including GSDMD-N, caspases-1/4, IL-1β, IL-18, and TNFα. In 
vitro research has shown that reducing GSDMD can lower MCP1/CCR2 protein levels, thereby decreasing neutrophil-
mediated immune injury in the liver. In mouse models, deletion of the GSDMD gene effectively reduces liver inflam-
matory injury and increases survival rates in mice with D-Galn/LPS-induced ALF[43]. Moreover, several studies have 
shown that the use of pyroptosis inhibitors such as VX-765[44], GSDMD inhibitor necrosulfonamide[45], GSK3β inhibitor 
TDZD-8[46], limonin[47], 3,4-dihydroxyphenylethanol glycoside (DAG)[48], and tyrosine-alanine (YA)[49], can alleviate 
liver cell pyroptosis, reduce oxidative stress and inflammation, and improve liver injury. However, the regulatory 
mechanisms remain unclear. Additionally, p53-induced pyroptosis has been reported in several studies[50-53], but it is 
rarely reported in the liver.

CROSSTALK BETWEEN FERROPTOSIS AND PYROPTOSIS IN ALF
Given that pyroptosis and ferroptosis are often simultaneously inhibited or encouraged in tissue injury or cancers[54-56], 
researchers have explored their relationship. Some studies have demonstrated a mutual regulatory link between 
ferroptosis and pyroptosis. For example, a deficiency of GPX4 in bone marrow cells might increase GSDMD production 
via caspase-1/11, resulting in pyroptosis[57]. In the diabetic retinopathy model, the ferroptosis inhibitor Ferr-1 can reduce 
GSDMD expression, thereby inhibiting pyroptosis and improving retinal tissue damage[58]. Chlorpyrifos promotes 
GSDMD cleavage and increases intracellular ROS levels, which in turn enhances p53-mediated ferroptosis[59]. The Stat3/
p53/nuclear factor-E2-related factor 2 axis regulates both ferroptosis and pyroptosis in colorectal cancer cells[60]. These 
findings indicate that there may be crosstalk between ferroptosis and pyroptosis in diseases.

ALF is characterized by excessive death of hepatocytes. Therefore, crosstalk and co-activation of multiple death 
pathways are likely important mechanisms. However, there is currently little research on the combined role of ferroptosis 
and pyroptosis in ALF. A report revealed that treatment with YA and DAG can simultaneously reduce ferroptosis and 
pyroptosis in an ALF mouse model, thereby protecting the liver from damage and reducing mouse mortality[48,49]. Zhou 
et al[34] found that both ferroptosis and pyroptosis are triggered in the liver tissue of ALF patients. Inhibiting ferroptosis 
or pyroptosis protected mice from LPS/D-GalN-induced ALF. Furthermore, in the LPS/D-GalN-induced ALF mouse 
model, inhibiting GPX4 promoted ferroptosis and increased the expression of the pyroptosis marker GSDMD. Supple-
mentation with GPX4 inhibited both ferroptosis and pyroptosis. It was found that the absence of GSDMD reduces not 
only pyroptosis but also ferroptosis in GSDMD knockout mice[34]. As a result, ferroptosis has a positive feedback 
regulatory effect on pyroptosis (Figure 1). Further identification of critical molecules or drugs that target the ferroptosis 
and pyroptosis processes may reveal potential strategies for ALF prevention and treatment.

SIRT1 SERVES AS A THERAPEUTIC TO ALLEVIATE ALF VIA INHIBITING BOTH FERROPTOSIS AND 
PYROPTOSIS
SIRT1 is a class of nicotinamide adenine dinucleotide (+)-dependent histone deacetylases that regulate the deacetylation 
of histones and other proteins. The targets include p53, forkhead box class O1/3/4, heat shock factor1, hypoxia-inducible 
factor 1alpha, nuclear factor kappa B[61,62]. SIRT1 regulates a variety of activities associated with anti-aging and 
oxidative stress, including apoptosis, autophagy, mitochondrial function, DNA damage repair, metabolism, and inflam-
mation[62,63]. SIRT1 down-regulation correlates with cell aging and increased inflammatory factors, such as IL6, IL8, and 
IL1B/IL-1β[64]. A recent study found that activating SIRT1 could inhibit ferroptosis induced by excessive iron through 
autophagy in foam cells, providing a new therapeutic target for atherosclerosis[65].

SIRT1 also plays a role in ALF (Table 1)[66-73]. Several studies have shown that the SIRT1 signal in ALF reduces 
cellular oxidative stress and inhibits hepatocyte death[66-68,74,75]. Further studies revealed that the p53 signaling 
pathway is involved in the process[69,70,76]. SIRT1 can deacetylate p53, promote autophagy, inhibit oxidative stress, and 
reduce inflammatory responses[70].

Zhou et al[34] discovered that SIRT1 expression was reduced in human ALF liver tissue. Using SIRT1 activators or 
overexpressing SIRT1 could inhibit both ferroptosis events (reduced iron deposition and ROS activity, decreased 
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Table 1 Current studies on the role of silent information regulator sirtuin 1 in acute liver failure

Article title Core tips Ref.

Sirtuin 1 attenuates ALF by reducing reactive oxygen species via 
hypoxia-inducible factor 1α

Resveratrol, a SIRT1 activator, deacetylates hypoxia-inducible factor 
1alpha and inhibits its activity, reducing ALF caused by hypoxia, 
reactive oxygen species, and apoptosis

Cao et al
[66]

Short-term fasting attenuates lipopolysaccharide/D-galactosamine-
induced ALF through SIRT1-autophagy signaling in mice

Short-term dietary restriction activates the SIRT1 signaling pathway, 
regulates autophagy, and reduces hepatocytes apoptosis in ALF

Long et 
al[67]

Fusobacterium nucleatum promotes the development of ALF by 
inhibiting the NAD+ salvage metabolic pathway

Fusobacterium nucleatum suppresses NAD+ and the SIRT1/adenosine 
monophosphate activated protein kinase signaling pathway, causing 
liver damage in ALF

Cao et al
[68]

Hepato-protective effect of resveratrol against acetaminophen-
induced liver injury is associated with inhibition of CYP-mediated 
bioactivation and regulation of SIRT1-p53 signaling pathways

Resveratrol helps to heal liver impairment caused by APAP by 
blocking CYP-mediated APAP bioactivation and regulating SIRT1, p53, 
cyclin D1, and proliferating cell nuclear antigen

Wang et 
al[69]

Apigenin prevents acetaminophen-induced liver injury by activating 
the SIRT1 pathway

Apigenin prevents acetaminophen-induced liver injury by regulating 
the SIRT1-p53 axis, which promotes autophagy and reduces the inflam-
matory response and oxidative stress caused by acetaminophen

Zhao et 
al[70]

Sirtuin-activating compounds alleviate D-galactosamine/lipopoly-
saccharide-induced hepatotoxicity in rats: Involvement of sirtuin 1 
and heme oxygenase 1

Quercetin and SRT1720 can activate SIRT1 protein and inhibit HO-1 
expression, reducing liver damage caused by D-
galactosamine/lipopolysaccharide in rats

Kemelo 
et al[71]

The sirtuin 1 activator SRT1720 alleviated endotoxin-induced 
fulminant hepatitis in mice

SRT1720, a SIRT1 activator, reduces fulminant hepatitis caused by 
lipopolysaccharide/D-Gal, potentially through inhibiting tumor 
necrosis factor-alpha production and activating the apoptotic cascade

Zhou et 
al[72]

Evaluation of the reparative effect of SIN in an acetaminophen-
induced liver injury model

SIN successfully treats acetaminophen-induced liver injury by restoring 
SIRT1 levels, lowering oxidative stress, and repairing cell damage

Kayalı et 
al[73]

ALF: Acute liver failure; APAP: Acetaminophen; CYP: Cytochrome; NAD+: Nicotinamide adenine dinucleotide; SIN: Sinomenine; SIRT1: Silent 
information regulator sirtuin 1.

expression of Acyl-CoA synthetase long-chain family 4, and increased expression of SLC7A11 and GPX4) and the 
expression of the pyroptosis marker GSDMD, thereby alleviating acute liver injury. In LPS/D-GalN-induced in vitro and 
in vivo models, the deactivation of SIRT1 increased ferroptosis and pyroptosis, exacerbating liver injury. Further research 
revealed that the inhibition of ferroptosis and pyroptosis by SIRT1 may depend on p53 deacetylation[34]. These results 
suggest that SIRT1 may serve as a molecular target to suppress multiple death processes and as a potential treatment for 
ALF.

Classical SIRT1 activators have been discovered, including natural ones like resveratrol, and synthetic compounds 
derived from the core structure of imidazole (1,2-b) thiazole, such as SRT1720 and SRT2104[77]. There have been no 
known clinical investigations on ALF treatment using SIRT1 activators. However, SIRT1 activators have shown an 
excellent safety profile and positive therapeutic effects on several diseases. Clinical trial results indicate that the natural 
SIRT1 activator resveratrol is effective in treating Alzheimer’s disease[78], obesity and metabolic disorders[79], and 
polycystic ovary syndrome[80]. The synthetic SIRT1 activator SRT2104 has been demonstrated to ameliorate sepsis[81], 
psoriasis[82], and blood lipid profiles in older adults[83]. Although natural drugs have some cytotoxicity, synthetic SIRT1 
activators address these concerns. However, current medication development remains challenging, and clinical investig-
ations have shown that orally administered SRT2104 has an absolute bioavailability of only 14% (NCT00937872), which is 
inadequate. Therefore, it may be necessary to develop appropriate drug delivery techniques, modify pharmacochemical 
structures, or use combination therapy. Kemelo et al[71] reported that quercetin (a natural polyphenol) and SRT1720 
showed the ability to improve disease in a rat ALF model, providing evidence that combination therapy may be effective 
in ALF treatment. In addition, further clinical research will advance the application of SIRT1 activators in ALF treatment.

CONCLUSION
Various forms of cell death, such as apoptosis, necroptosis, necrosis, ferroptosis, and pyroptosis, have been implicated in 
ALF. However, the crosstalk between them remains unclear. Zhou et al[34] proved that the positive feedback between 
ferroptosis and pyroptosis plays an important role in hepatocyte mortality in ALF. Mutual stimulation of these cell death 
pathways may significantly reduce the survival rates of ALF patients. Thus, identifying targets that control the activation 
of these cell death pathways, as well as medicines that directly suppress these cell death pathways, may provide novel 
therapeutic strategies to treat ALF. SIRT1 could act as a treatment for ALF, influencing both ferroptosis and pyroptosis. 
However, it is unclear if SIRT1 can influence other death pathways, such as apoptosis, necroptosis, and necrosis, all of 
which play essential roles in ALF. Molecular targets capable of effectively controlling multiple cell death pathways have 
not been reported either. In addition, the efficacy of SIRT1 activation in the clinical treatment of ALF has not been 
reported. Therefore, addressing these concerns may provide therapeutic targets for treating ALF.
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Figure 1 The positive feedback loop between ferroptosis and pyroptosis in acute liver failure, as well as possible treatments that target 
ferroptosis and pyroptosis. Glutathione peroxidase 4 (GPX4) reduces the expression of gasdermin D (GSDMD), a pyroptosis marker. In turn, GSDMD can 
reduce the level of GPX4. Silent information regulator sirtuin 1 can inhibit GSDMD expression while elevating System Xc

- via p53, hence targeting ferroptosis and 
pyroptosis. Acute liver failure mice treated with tyrosine-alanine or 3,4-dihydroxyphenylethanol glycoside (DAG) show a similar role in suppressing both cell death 
pathways. GSDMD-N: N-terminal fragment of gasdermin D; GSSG: Oxidized glutathione; IL-1β: Interleukin-1beta; IL-18: Interleukin-18; LPCAT3: 
Lysophosphatidylcholine acyltransferase 3; LPS: Lipopolysaccharide; PUFAs: Polyunsaturated fatty acids; ROS: Reactive oxygen species; SIRT1: Silent information 
regulator sirtuin 1; SLC7A11: Solute carrier family 7 member 11; SLC3A2: Solute carrier family 3 member 2; TLR: Toll-like receptors; TNFα: Tumor necrosis factor-
alpha; YA: Tyrosine-alanine.
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