New environmental factors related to diabetes risk in humans: Systematic review and meta-analysis of emerging bisphenols used in the synthesis of plastics

Moreno-Gómez-Toledano R et al New emerging bisphenols related to diabetes

Rafael Moreno-Gómez-Toledano, María Delgado-Marín, Alberto Cook-Calvete, Claudia González-Cucharero, Nunzio Alcharrán, Beatriz Jiménez-Guirado, Ignacio Hernandez, Rafael Ramírez-Carracedo, Laura Tesoro, Laura Botana, Sandra Sánchez-Esteban, Javier Diez-Mata, Jose Luis Zamorano, Ricardo J Bosch, Carlos Zaragoza, Marta Saura
Abstract

BACKGROUND

Diabetes mellitus (DM) is one of the largest global health emergencies of the 21st century. In recent years, its connection with environmental pollutants, such as bisphenol A (BPA), has been evidenced; consequently, new structurally similar molecules are used to replace BPA in the plastics industry (BPS, BPF, and BPAF).

AIM

To carry out a systematic review of the academic literature that allows a coherent evaluation of the state of the art. Subsequently, a meta-analysis will be developed to unify the existing quantitative data.

METHODS

Firstly, a systematic review was carried out, using the terms “(bisphenol) AND (Diabetes OR Hyperglycemia)”, to maximize the number of results. Subsequently, three authors analyzed the set of academic articles. Finally, a meta-analysis was performed for each bisphenol, using the RevMan software. In addition, funnel plots were developed to study publication bias.

RESULTS

The systematic analysis of the literature revealed 13 recent academic articles (2017-2023) related to the study paradigm. The qualitative analysis showed interesting data linking diabetes to the three most widely used substitute bisphenols in the industry: BPS, BPF and BPAF. Finally, the meta-analysis determined a positive relationship with BPS, BPF and BPAF, which has only been statistically significant with BPS.

CONCLUSION
The results suggest the need of apply the precautionary principle, regulating the use of new bisphenols. Therefore, replacing BPA with molecules such as BPS, BPF, or BPAF is unlikely to protect the population from potential health risks, such as diabetes.

Key Words: Bisphenol S; Bisphenol F; Bisphenol AF; Diabetes mellitus; Systematic review; Meta-analysis

Core Tip: The present work aims to analyze the potential new dangers that society faces with the replacement of bisphenol A by new bisphenols. Thus, using PRISMA methodologies, a systematic review and meta-analysis of the relationship between new bisphenols and diabetes in humans was carried out. The results showed a positive trend between bisphenol S (BPS), BPF, and BPAF with diabetes, and statistically significant only with BPS. Consequently, new bisphenols could represent a health risk equivalent to BPA.

INTRODUCTION

Diabetes mellitus (DM) is one of the largest global health emergencies of the 21st century[1]. The prevalence of DM in recent decades has increased substantially. In 1980, the number of people affected was around 108 million adults aged 20-79; currently, the prevalence reaches 10.5% of the world population (536 million people affected), and it is estimated that could increase to 12.2% in 2045 (783.2 million)[2]. DM risk factors include numerous environmental and/or genetic factors, including covariates such as age,
weight, diet, or smoking, among others3. Therefore, the idea that environmental pollutants could play a role in the development or progression of the disease is coherent; in the academic literature there is evidence that suggests a possible relationship between DM and environmental pollutants4.

Plastics are one of the main environmental pollutants that modern society faces. Thanks to its multiplicity of uses and low cost, have become one of the main axes of modern industry. And the central element of plastics equation is bisphenol A (BPA), a monomer of epoxy resins and polycarbonates used as additive and improper of physical properties of different polymers5. In the mid-1970s, BPA was part, directly or indirectly, of all major American industries6. Currently, the production volume of plastics has increased from 2 million tons (in 1950) to 368 million tons in 20197. Economic studies estimate that plastic production will double in the next 20 years8.

In recent years the scientific community has highlighted the potential health risks associated with BPA exposure, related with numerous pathologies, such as hormonal alterations9,10, diabetes11, obesity12, hypertension13, chronic kidney disease/diabetic nephropathy14,15 or even with disorders of embryonic development16,17. For this reason, the new emerging regulations limit the use of BPA in various contexts, such as baby products18,19, thermal paper (used in purchase receipts)20, or containers21. Consequently, industries are replacing BPA with substitute molecules with similar structure and molecular weight. The three most important molecules in the plastic industry are bisphenol S, F and AF (BPS, BPF, and BPAF, respectively)22-24. In terms of European legislation, BPA is the only monomer that has a harmonized EU classification as toxic to reproduction 1B, H360F (may damage fertility). However, BPS is self-classified under REACH (EU chemicals legislation) as toxic to reproduction 2 (H361f), and BPAF is self-classified as toxic to reproduction 1B (H360F)25. BPF has not been classified, but it also has the potential to induce reproductive toxicity25, showing a hormonal activity as active as BPA or BPS22. Despite the small number of publications exploring the possible effects of these new molecules on human health, their presence has already been detected in air, water, and food of many parts of the world24,26-28.

\[\text{Equation} \]
For this reason, the present work will carry out a systematic review of the academic literature that allows a coherent evaluation of the state of the art. Subsequently, a meta-analysis will be developed to unify the existing quantitative data. The primary outcome measures were serum/plasma or urinary BPs (except BPA) in diabetic context. The analysis was limited to humans and English language, but no restriction was applied in the academic search engines.

MATERIALS AND METHODS

Selection of studies

The study was conducted using the PRISMA guidelines\cite{29,30} as a methodological basis. The main objective of the study was to identify and analyze the state of the art of the “new bisphenols-diabetes” paradigm. In recent years, the number of evidence related to BPA has increased; however, the new BPA substitute molecules continue to be relegated to the background in the academic literature, with a small amount of available evidence. For this reason, all those original studies that studied the possible implications of any BP (except for BPA), in the context of human populations, were selected. From the set of publications selected for the qualitative analysis, manuscripts with logistic regression analyzes were selected to quantitative analysis.

Strategies and search criteria

The search for academic articles of interest was performed in December 2022, using the reference academic search engines PubMed (PubMed.ncbi.nlm.nih.gov, accessed on 20 December 2022) and Web of Science (webofscience.com/wos/alldb/basic-search, accessed on 20 December 2022). To maximize the results and avoid losing potential articles of interest, a strategy focused on the generic terms was used. The terms “(Bisphenol) AND (Diabetes OR Hyperglycemia)” were used, without adding any restrictions in academic search engines. The search was carried out by 3 researchers independently (RMGT, MDM, and ACC) and their decisions in each of the bibliographic search and evaluation steps were determined by consensus.
After removal of duplicate articles using the Mendeley bibliography manager (Mendeley Ltd., Elsevier, London, United Kingdom), the articles were evaluated by title/abstract. All those articles that were not original (such as reviews), in vitro or in vivo research models, exclusively BPA study models, or compounds that were not BPs (such as phthalates), and all those articles that did not study diabetes, were excluded (Table 1). Subsequently, the full text of the manuscripts was analyzed and evaluated.

Selection of articles for qualitative and quantitative analysis

After the full text study process, a descriptive analysis of the selected articles was performed. In addition, relevant data to the qualitative study and subsequent quantitative analysis were extracted. From them, all those studies that provided the [odds ratio (OR), 95% confidence interval (95%CI)] were selected. Studies that performed correlations, linear regressions, or multivariate analyzes were only included in the descriptive analysis. Discrepancies between independent reviews were resolved by consensus.

RMGT, MDM, ACC, CGC, NA, BJG, IH, RRC, LT, and LB extracted Tables 2 and 3 data: First author, year of publication, country, population group, number of individuals included, age, study period, type of study (Table 2), BP, biologic fluid analyzed, analysis method, detection frequency, and metabolite concentration determined (Table 3).

Meta-analysis

Review Manager software (RevMan 5.3, Cochrane, London, United Kingdom) was used to perform the inverse variance method. An analysis was performed for each type of BP present in the academic literature (BPS, BPF, and BPAF). Heterogeneity between studies was calculated by applying the Chi² and I² tests. The I² statistic was calculated as a percentage, and the results were interpreted as low, medium, or high heterogeneity, reaching 25%, 50%, and 75%, respectively[31]. The fixed-effect model was used when no heterogeneity was detected among studies, while the random-effect model was
preferred when variance existed. The P value < 0.05 was considered statistically significant for all the analyses performed.

Risk of bias
The individual quality of the articles was evaluated considering the use of urinary creatinine or urine gravity as a normalization factor for glomerular filtration rate, and the use of covariates related to diabetes in the development of binomial and multinomial logistic regression models. For the evaluation of publication bias in the meta-analysis, funnel plots were used to identify symmetry or asymmetry in the distribution of results.

RESULTS
Selection of academic articles
The initial search identified 472 articles in PubMed and 816 in Web of Science. After exporting the set of references to the Mendeley desktop application and removing duplicates, a total of 928 items were obtained. The first analysis carried out based on the title and abstract eliminated 884 articles that did not meet the selection criteria, obtaining a total of 44 articles. From them, 13 manuscripts that met the search criteria were selected for qualitative analysis, and 6 were finally included in the quantitative analysis. As can be seen in Figure 1, the rest of the academic papers corresponded to reviews or project reports (12), studies of BPA or compounds not related to BPs (12), pathologies other than diabetes (6) and an in vitro study. Interestingly, the degree of novelty of the topic is reflected in the temporality of the 13 selected articles, published from 2017 to 2022.

Qualitative analysis-genealogy of the paradigm
From a chronological point of view, the first work of interest corresponds to Kataria et al.[32], published in 2017 (see Table 2 for qualitative manuscript details). The authors study urinary BPs (BPA, BPS, and BPF), and blood glucose and insulin levels in a small
cohort of 10-13 years old children. Subsequently, multivariate regression analysis of
overweight, body mass index (BMI), insulin resistance, and albumin to creatinine ratio
(ACR) showed only significant differences between BPS and ACR. In conclusion, the
authors state that BPS exposure was associated with renal function, but neither BPS nor
BPF were related to diabetes.

In 2018, the first significant evidence between the new substitutes for BPA and
diabetes in human populations appeared: Li et al[33] and Duan et al[34] works. Li et al[33]
observed a significant relationship between BPF and diabetes risk in an adult human
cohort from Saudi Arabia. In the multinomial logistic regression model performed
between quartile 4 (Q4) vs Q1 of BPF, corrected for creatinine, using age, gender,
nationality, smoking status, and occupation as covariates, an OR (95%CI) of 8.02 (1.68-
38.3) was observed. Due to the low presence of BPS and BPAF, they did not develop
statistical association models with the BPA derivatives (Table 3). Interestingly, in Duan
et al[34], the authors only observed statistically significant results in urinary BPS and
BPAF. They performed binomial logistic regression analyzes for diabetes in a cohort of
251 diabetic vs 251 controls. After correcting for urinary creatinine and including the
covariates sex, age, body mass index, smoking and alcohol-drinking status, exercising
status, education level, family history of diabetes, and blood pressure, an OR (95%CI) of
1.73 (1.37, 2.18) for BPS and 4.95 (3.15, 7.79) for BPAF was obtained.

In 2019, three articles relevant to the context of this manuscript were published:
Zhang et al[35], Lee et al[36], and Rancière et al[37]. The studies were conducted in pregnant
women, premenopausal adult women, and in general population, respectively. Zhang
et al[35] observed a significant association between BPAF values and the risk of
gestational diabetes (GDM) in pregnant women with healthy BMI, determining an OR
(95%CI) of 1.70 (1.03-2.72). The authors normalized the values of urinary metabolites
correcting with specific gravity. Additionally, the logistic regression models performed
in women with normal or high BMI, were corrected with the covariates maternal age,
pre-pregnancy BMI, educational levels, parity, passive smoking and fetal sex. In the
manuscript of Lee et al[36], the authors performed multi-pollutant models. The results
showed a significant relationship between urinary BPS and the homeostasis model assessment for insulin resistance (HOMA-IR), reaffirming the possible relationship between BPS and diabetes. Finally, Rancière et al.[37], in a 9-year longitudinal study carried out in the DESIR cohort, the authors associated the glucuronidated form of BPS (BPS-G) with an increased risk of diabetes. Due to the small number of samples with the presence of BPS-G, they subdivided the population between the presence or absence of BPS-G, obtaining a hazard ratio value (95% CI) of 2.81 (1.74-4.53).

In 2021 five articles relevant to the analysis were published: van der Meer et al.[38], Tang et al.[39], Lee et al.[40], Duan et al.[41], and An et al.[42]. van der Meer et al.[38] analyzed the presence of endocrine disrupting chemicals metabolites in the urine of subjects with impaired fasting glucose levels (6.1 to 7.0 mmol/L). The authors collected two samples per individual in two different times (first sample 2009-2013; second sample 2014-2015) and investigated the BPs metabolite excretion over time both within and between individuals. Interestingly, while BPA median concentrations decreased (50% reduction), BPF levels remained stable within individuals and over time. On the other hand, BPS was detected only in 18% of the samples, so it was excluded from subsequent analysis. In Tang et al.[39] manuscript, the authors performed a case-control study in pregnant women with and without GDM. Multinomial logistic regression models performed with serum BPS and BPF, corrected for pregnancy BMI, area of residence, passive smoking during pregnancy, gravity, parity, and exercise regularly, showed positive but non-significant results, with OR (95% CI) of 1.68 (0.95, 2.99) for highest levels of BPS, and 1.18 (0.68, 2.05) for BPF. Lee et al.[40] analyzed urinary BPF in a longitudinal study with 1299 non-diabetic women (45-56 years) and were followed 3 years later. Individual phenols were examined using Cox regression, and the overall joint effects using quantile-based g-computation. The results showed no statistical associations between BPF and diabetes in middle-aged women. Duan et al.[41] published a new case-control study in 60 type 2 DM and 60 control, matched by age, sex, and BMI. They analyzed 19 serum metabolic biomarkers using multiple linear regression models, and observed a significant association between BPS, BPAF (but no BPF) with several serum metabolites.
(Pyridoxal, L-histidine, and L-citrulline) which could be related to DM (and other pathologies related to endothelial dysfunction). Finally, An et al[62] used a different methodological approach: Published datasets related to the genes, proteins, and metabolites disturbed by BPS were investigated through omics methods. An interesting conclusion revealed by this analysis is that high concentrations of BPS tended to downregulate biomolecules, while low BPS concentrations trends to enhance metabolic reactions. Furthermore, the authors found evidence of diabetes-related metabolic disturbances influenced by BPS exposure, such as vitamin or glutathione metabolism.

Finally, Moreno-Gómez-Toledano et al[63], and Zhu et al[64] published two retrospective cohort studies, in general population and pregnant women, respectively. In Moreno-Gómez-Toledano et al[63] study, urinary BPS and BPF, corrected with creatinine, were analyzed using binomial and multinomial logistic regression models, corrected by age, sex, BMI, smoking, hypertension, and diabetes. For the urinary BPS, the results were 1.099 (1.016-1.188), OR (95%CI) in the binomial, and 1.28 (0.99-1.67) in the multinomial analysis. Urinary BPF showed OR of 0.991 (0.928-1.059) and 0.92 (0.70-1.20) respectively. Interestingly, Zhu et al[64] not developed BPF analysis because the proportion of results below limit of detection (LOD) was too high to provide a valid result. On the other hand, urinary BPS was analyzed through multinomial logistic regression models, adjusted for urinary creatinine levels, age, pre-pregnancy body mass index, and race/ethnicity (White, black, Hispanic, and other). The results showed an OR (95%CI) in Asian/Pacific Islander (A/PI) of 2.12 (1.0-4.5) and 4.60 (1.55-13.7) in non-A/PI.

Meta-analysis

As previously detailed, the “BPA substitutes-Diabetes” paradigm comprises a small number of heterogeneous but potentially significant publications.

BPS
For the BPS meta-analysis, the works of Duan et al[34], Zhang et al[35], Tang et al[39], Zhu et al[44], and Moreno-Gómez-Toledano et al[43], were used. For the combined analysis, binomial and multinomial logistic regression analyzes of the different population groups analyzed were selected, including a total of 8 elements in the meta-analysis. In the work of Zhu et al[44], the population was subdivided into two differentiated groups: Asian/Pacific Islander (A/PI) and non-A/PIs. In Zhang et al[35] manuscript, pregnant women with normal pre-pregnancy BMI (18.5-23.0) and high pre-pregnancy BMI (23-28) were included. Finally, in the work of Moreno-Gómez-Toledano et al[43], binomial and multinomial logistic regression model analysis were performed with a multiethnic American cohort of adult individuals.

The results of the combined analysis, as can be seen in Figure 2, showed a moderate heterogeneity, ($I^2 = 59\%$). The combined odds ratio was 1.35 (1.08-1.70), with a highly significant p-value ($P = 0.008$). The positive and significant results increase the strength of the evidence that BPS could be an environmental factor that could be related to diabetes.

BPF

Articles with relevant data for qualitative analysis were Zhang et al[35], Tang et al[39], Moreno-Gómez-Toledano et al[43], and Li et al[33]. The same subgroups used in the quantitative analysis of the BPS were included, in addition to the multinomial logistic regression performed in the case-control study by Li et al[33]. The results did not show a significant combined result, although they showed a positive trend with diabetes (Figure 3). Except for the work of Li et al[33], none of the other study models showed a significant relationship between BPF and diabetes, which is coherent with the result of the combined model. The I^2 of 51\% and combined odds ratio of 1.10 (0.85-1.41), with a p-value of 0.47, show the moderate heterogeneity of the studies and confirm that there is no evidence enough to connect BPF with DM.

BPAF
Finally, the third most widely used BP is the one with the least amount of evidence in the academic literature. As can be seen in Figure 4, three population groups from two academic papers, Duan et al\cite{34}, and Zhang et al\cite{35}, were included. In this case, I^2 showed a high degree of heterogeneity (89%). The combined result, 2.06 (0.83-5.15) showed a positive trend with diabetes, but due to the small number of evidence and the absence of a significant result, lead to the conclusion that it is necessary to increase the number of studies that explore the possible implications of BPAF on the risk of development or progression of diabetes.

Publication bias

Despite the moderate degree of heterogeneity of the studies included in the quantitative analyzes of BPS and BPF, the funnel plots showed symmetry, as can be seen in Figures 2 and 3; in the case of the BPAF, there is not enough evidence. As can be seen in Figure 4, it is essential to increase the number of studies related to the “BPAF-Diabetes” paradigm.

DISCUSSION

The present manuscript, for the first time, has developed a systematic review and meta-analysis of the “New Emerging Bisphenols-Diabetes” paradigm. The systematic analysis of the academic literature has identified 13 studies with interesting evidence for the context of the study, in human populations. The detailed analysis of the genealogy of the paradigm has provided interesting qualitative and quantitative data, which has used to the subsequent development of a meta-analysis for each of the three most widely used BPA substitute BPs in the plastic industry.

It is interesting to note that the new BPA substitute molecules retain a similar structure, with the presence of two phenolic rings. The monomers only differ in their interphenolic linker, characterized by the presence of sulfur in BPS, fluorine in BPAF, and the absence of methyl groups (CH3) in BPF\cite{25,45}. Possibly due to their structural homology, there is evidence that suggests similarities in the hormonal activity of the
new BPs[22]. In wild type mice, Marroqui \textit{et al}[46] observed that treatment with BPS and BPF rapidly increased insulin release and decreased ATP-sensitive K+ channel activity. On the other hand, treatment in beta estrogen receptor knockout (BERKO) mice did not cause diabetes-related changes. In BPAF context, Wei \textit{et al}[47] demonstrated an important relationship with the development of diabetes in zebrafish (Danio rerio) exposed to environmentally relevant concentrations of the phenolic molecule. Animals exposed to μg/L doses suffered a significant increase in fasting blood glucose levels, hepatic glycogen contents and hepatosomatic indexes and decreased muscular glycogen contents. In addition, they observed alterations in insulin regulation, and qPCR analysis revealed the alteration of genes involved in glycometabolic networks, which might promote hepatic gluconecogenesis and inhibit glycogenesis and glycolysis in the muscle and/or liver.

The quantitative results of the meta-analysis have shown that the evidence analyzed in the academic literature related to BPS and diabetes presents a positive and significant relationship. The moderate degree of heterogeneity between studies and the relatively symmetrical pattern observed in the funnel plot add robustness to the combined analysis. The OR (95%CI) of 1.35 (1.08-1.70), with a \textit{P} value of 0.008 confirms the qualitative evidence described in the qualitative analysis. However, BPF showed a positive trend, but did not show a statistically significant result. Similarly, in the case of the BPAF, probably due to the small amount of evidence available, a statistically significant result (although markedly positive) was not obtained either.

There are two examples in the literature that point to BPS as a potentially more dangerous monomer than BPA, because there is alarming evidence related to the pharmacokinetics and biodegradability of BPS. Gayrand \textit{et al}[48] observed that the bioavailability of BPS was 250 times greater than BPA in a porcine study model, and Danzl \textit{et al}[49] demonstrated that BPA and BPF could biodegrade in the marine environment, a phenomenon that does not occur with BPS.

Interestingly, Duan \textit{et al}[41] (described in the qualitative analysis), observed metabolome alterations in a cohort of 60 patients with DM and 60 control subjects.
Cohort analysis revealed a significant association (linear regression models) between BPS and pyridoxal 5'-phosphate (PLP). PLP deregulation has been linked to diabetes and blood glucose regulation. In addition, PLP may improve insulin sensitivity by controlling expression of the gene related to adipogenesis[41]. Metabolome analysis also revealed a significant association between BPAF and Pyridoxal, L-histidine, and L-citrulline. Histidine supplementation has been shown to be effective on insulin resistance, plasma lipid levels, and inflammatory markers, and delays the development of atherosclerosis in several rodent models of diabetes and metabolic syndrome[50]. Furthermore, citrulline is involved in the production of nitric oxide by nitric-oxide synthase, and it plays a crucial role not only in diabetes[31], since it is a strong vasodilatory and anti-inflammatory signaling molecule that plays diverse roles in maintaining vascular homeostasis[52].

CONCLUSION
The body of evidence analyzed in this manuscript has revealed interesting relationships between the new BPA substitute molecules and diabetes. The quantitative results have determined a positive relationship with BPS, BPF, and BPAF, which has only been statistically significant with BPS. The present work has revealed the small number of scientific evidence related to the paradigm in the human context, as well as the need to deepen the study of the emerging BPA substitute molecules. In any case, the results observed in this manuscript suggest the need of apply the precautionary principle, regulating the use of new BPs. In conclusion, replacing BPA with molecules such as BPS, BPF, or BPAF is unlikely to protect the population from potential health risks, such as diabetes.

ARTICLE HIGHLIGHTS
Research background
Diabetes mellitus (DM) is one of the largest global health emergencies of the 21st century. The prevalence of DM has increased substantially, from 108 million adults in
1980 to 536 million. In parallel, the consumption of plastic products has increased substantially in recent decades, which implies chronic exposure to monomers, such as bisphenol A (BPA), or its new substitute molecules, BPS, BPF, and BPAF, respectively.

Research motivation
In recent years, the relationship between BPA and DM has been demonstrated. Interestingly, the new substitute molecules present a high structural homology with BPA, as well as similarities in their hormonal activity. Therefore, the study of new BPs is potentially linked to population health.

Research objectives
The present work will carry out a systematic review of the academic literature that allows a coherent evaluation of the state of the art of the “new bisphenols-diabetes” paradigm. Subsequently, a meta-analysis will be developed to unify the existing quantitative data in human cohorts.

Research methods
Using the PRISMA guidelines as a reference, a systematic review of the literature was carried out. Using the qualitative data, a chronological review was developed, and all quantitative data of interest to the study were identified. Subsequently, a meta-analysis was performed for each BP identified using the RevMan software, and a funnel plot was also performed for risk of bias.

Research results
Qualitative analysis identified 13 recently published articles (2017-2022) that contextualized the new evidence between emerging BPs and diabetes. On the other hand, the subsequent meta-analysis showed positive results with the three BPs, but only statistically significant in BPS.
Research conclusions
The present manuscript, for the first time, has developed a systematic review and meta-analysis of the new BPA-substitute molecules and diabetes. The results support the possible positive relationship between the new BPs and the risk of diabetes, especially with BPS. Consequently, the substitution of BPA may not imply an improvement for population health, and government institutions should consider applying the precautionary principle.

Research perspectives
The results support the need to deepen the paradigm, increasing the evidence in basic and translational research, to determine the real risk to which the human population is exposed.

ACKNOWLEDGEMENTS
We want to thank Rosalía Gómez-Toledano (philologist and English teacher for 37 years) for proofreading the manuscript.

REFERENCES

50 Holeček M. Histidine in Health and Disease: Metabolism, Physiological Importance, and Use as a Supplement. *Nutrients* 2020; 12 [PMID: 32235743 DOI: 10.3390/nu12030848]

Figure Legends

Figure 1 Schematic representation of the methodology used based on The PRISMA Statement. BPA: Bisphenol A.

Figure 2 Meta-analysis. A and B: Meta-analysis (inverse variance method) of the publications that study bisphenol S and diabetes in humans (A), and funnel plot (for publication bias) (B). 95%CI: 95% confidence interval; BMI: Body mass index.

Figure 3 Meta-analysis. A and B: Meta-analysis (inverse variance method) of the publications that study bisphenol F and diabetes in humans (A), and funnel plot (for publication bias) (B). 95%CI: 95% confidence interval; BMI: Body mass index.

Figure 4 Meta-analysis. A and B: Meta-analysis (inverse variance method) of the publications that study bisphenol AF and diabetes in humans (A), and funnel plot (for publication bias) (B). 95%CI: 95% confidence interval; BMI: Body mass index.
<table>
<thead>
<tr>
<th>Criteria</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inclusion criteria</td>
<td>Studies published in peer-reviewed journals</td>
</tr>
<tr>
<td></td>
<td>Studies published as original article accepted and published</td>
</tr>
<tr>
<td></td>
<td>Studies conducted in human populations, regardless of the population subgroup</td>
</tr>
<tr>
<td></td>
<td>Studies focused on bisphenols, except BPA</td>
</tr>
<tr>
<td>Exclusion criteria</td>
<td>Reviews, hypotheses, project reports, letters or comments</td>
</tr>
<tr>
<td></td>
<td>In vitro or in vivo study models</td>
</tr>
<tr>
<td></td>
<td>Studies performed only on BPA, or on compounds other than bisphenols</td>
</tr>
<tr>
<td></td>
<td>Studies not developed in diabetes</td>
</tr>
</tbody>
</table>

BPA: Bisphenol A.
<table>
<thead>
<tr>
<th>Ref.</th>
<th>Country</th>
<th>Population group</th>
<th>N</th>
<th>Age</th>
<th>Study period</th>
<th>Type of study</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kataria et al[31], 2017</td>
<td>United States</td>
<td>Healthy children</td>
<td>41</td>
<td>(19 males; 22 females)</td>
<td>2013-2014</td>
<td>Cross-sectional</td>
</tr>
<tr>
<td>Li et al[33], 2018</td>
<td>Saudi Arabia</td>
<td>Diabetic vs</td>
<td>54</td>
<td>(28 males and 26 females)</td>
<td>2015-2016</td>
<td>Cross-sectional (case-control)</td>
</tr>
<tr>
<td></td>
<td>Control</td>
<td>vs</td>
<td>47</td>
<td>(20 males and 27 females)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Duan et al[34], 2018</td>
<td>China</td>
<td>Diabetic vs</td>
<td>251</td>
<td>D: 58 ± 10; C: 51 ± 10</td>
<td>2016-2017</td>
<td>Cross-sectional (case-control)</td>
</tr>
<tr>
<td></td>
<td>Control</td>
<td>vs</td>
<td>251</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zhang et al[38], 2019</td>
<td>China</td>
<td>Pregnant women</td>
<td>1841</td>
<td>167 GDM: 30.07 ± 4.11; Non-GDM: 28.44 ± 3.14</td>
<td>2013-2015</td>
<td>Prospective study</td>
</tr>
<tr>
<td></td>
<td></td>
<td>GDM and 167 Non-GDM</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lee et al[39], 2019</td>
<td>Korea</td>
<td>Premenopausal adult women</td>
<td>459</td>
<td>20-48</td>
<td>2015-2016</td>
<td>Cross-sectional</td>
</tr>
<tr>
<td>Rancière et al[37], 2019</td>
<td>France</td>
<td>Diabetic vs</td>
<td>201</td>
<td>30-65</td>
<td>1994-1996+</td>
<td>Longitudinal study</td>
</tr>
<tr>
<td></td>
<td>Control</td>
<td>vs</td>
<td>584</td>
<td></td>
<td>3, 6</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>and 9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Study</td>
<td>Country</td>
<td>Type</td>
<td>Sample Size</td>
<td>Age</td>
<td>Status</td>
<td>Duration</td>
</tr>
<tr>
<td>-------</td>
<td>---------</td>
<td>------</td>
<td>-------------</td>
<td>-----</td>
<td>--------</td>
<td>----------</td>
</tr>
<tr>
<td>van der Meer et al. (2013)</td>
<td>Netherlands</td>
<td>Subjects with impaired fasting males</td>
<td>500 (299 males, 201 females)</td>
<td>53.4 ± 10.3 years</td>
<td>2009-2014</td>
<td>Longitudinal study</td>
</tr>
<tr>
<td>Tang et al. (2015)</td>
<td>China</td>
<td>GDM vs non-pregnant women</td>
<td>100 vs 400</td>
<td>30.62 ± 6.46 years</td>
<td>2015</td>
<td>Cross-sectional (case-control)</td>
</tr>
<tr>
<td>Lee et al. (2021)</td>
<td>United States</td>
<td>Diabetes-free women</td>
<td>1299</td>
<td>45-56 years</td>
<td>1999-2000, 2002-2003</td>
<td>Longitudinal study</td>
</tr>
<tr>
<td>Duan et al. (2017)</td>
<td>China</td>
<td>Diabetic vs control</td>
<td>60 vs 60</td>
<td>56 ± 7 years</td>
<td>2016-2017</td>
<td>Cross-sectional (case-control)</td>
</tr>
<tr>
<td>Moreno-Gómez-Toledano et al. (2016)</td>
<td>United States</td>
<td>General population diabetic</td>
<td>3658 (641 diabetic)</td>
<td>41.11 years</td>
<td>2013-2016</td>
<td>Cross-sectional</td>
</tr>
<tr>
<td>Zhu et al. (2022)</td>
<td>United States</td>
<td>GDM vs non-pregnant women</td>
<td>333</td>
<td>31.2 ± 4.6 years</td>
<td></td>
<td>Cross-sectional (case-control)</td>
</tr>
</tbody>
</table>

D: Diabetes; C: Control; GDM: Gestational diabetes mellitus.
Table 3 Quantitative data of bisphenols analyzed

<table>
<thead>
<tr>
<th>Ref.</th>
<th>Biologic fluid</th>
<th>Bisphenol analyzed</th>
<th>Analysis method</th>
<th>Detection frequency (%)</th>
<th>GM (95%CI)/median (IQR)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kataria et al[31], 2017</td>
<td>Urine</td>
<td>BPS/BPF</td>
<td>HPLC-MS/MS</td>
<td>-</td>
<td>2.06 (1.56-2.69)/0.141 (0.141-0.141)</td>
</tr>
<tr>
<td>Li et al[33], 2018</td>
<td>Urine</td>
<td>BPF/BPS/BPAP</td>
<td>HPLC-MS/MS</td>
<td>D: 81.5/15.9/0.0; C: 48.9/0.0/17.0</td>
<td>D: 3.6/0.10/0.05 C: 0.88/0.05/0.06</td>
</tr>
<tr>
<td>Duan et al[34], 2018</td>
<td>Urine</td>
<td>BPS/BPAF/BPF</td>
<td>HPLC-MS/MS</td>
<td>D: 68.1/57.4/26.3; C: 47.8/39.4/37.1</td>
<td>D: 0.199 (ND-0.56)/0.093 (ND-0.84)/ND (ND-0.12); C: ND (ND-0.25)/ND (ND-0.05)/ND (ND-0.23)</td>
</tr>
<tr>
<td>Zhang et al[38], 2019</td>
<td>Urine</td>
<td>BPS/BPAF/BPF</td>
<td>UHPLC-TQMS</td>
<td>90.06/42.59/94.72</td>
<td>0.36 (0.33, 0.38)/0.030 (0.028, 0.031)/2.01 (1.75, 2.32)</td>
</tr>
<tr>
<td>Lee et al[40], 2021</td>
<td>Urine</td>
<td>BPS/BPF/BPB/BPAP</td>
<td>HPLC-MS/MS</td>
<td>83.7/3.7/1.3/4.8</td>
<td>0.08 (0.03-0.24)/-/-/-</td>
</tr>
<tr>
<td>Rancière et al[31], 2019</td>
<td>Urine</td>
<td>BPS-glucuronide</td>
<td>HPLC-MS/MS</td>
<td>Baseline: 14; year 3:9</td>
<td>< LOD (< LOD-< LOD)</td>
</tr>
<tr>
<td>van der Meer et al[38], 2021</td>
<td>Urine</td>
<td>BPS/BPF</td>
<td>LC-MS/MS</td>
<td>Baseline: 13/55; follow-up: 18/53</td>
<td>Baseline: < LOD (< LOD-0.29 < LOD; 0.81)</td>
</tr>
<tr>
<td>Study</td>
<td>Type</td>
<td>Method</td>
<td>Concentration</td>
<td>Follow-up</td>
<td></td>
</tr>
<tr>
<td>------------------</td>
<td>--------</td>
<td>-------------------------</td>
<td>-----------------</td>
<td>-------------------------</td>
<td></td>
</tr>
<tr>
<td>Tang et al</td>
<td>Serum</td>
<td>BPS/BPF/BPB UPLC-MS</td>
<td>82.2/67.2/88.8</td>
<td>0.097 (0.050, 0.107)/0.605 (0.236)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(< LOD/LOD; < LOD)/0.25</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(< LOD; 0.77)</td>
<td></td>
</tr>
<tr>
<td>Lee et al</td>
<td>Urine</td>
<td>BPF HPLC-MS/MS Baseline</td>
<td>73.7;</td>
<td>0.99 (2.86); follow-up:</td>
<td></td>
</tr>
<tr>
<td>2021</td>
<td></td>
<td></td>
<td>follow-up: 80.6</td>
<td>1.11 (2.64)</td>
<td></td>
</tr>
<tr>
<td>Duan et al</td>
<td>Urine</td>
<td>BPS/BPF/BPAF HPLC-MS/MS</td>
<td>D: 66.7/31.7/45.0; C: 40.0/40.0/41.7</td>
<td>D: 0.21 (ND-0.35)/ND (ND-0.23)/ND (ND-0.15); C: ND (ND-0.23)/ND (ND-0.31)/ND (ND-0.05)</td>
<td></td>
</tr>
<tr>
<td>2021</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Moreno-Gómez-Toledano et al</td>
<td>Urine</td>
<td>BPS/BPF HPLC-MS/MS</td>
<td>88.4/57.1</td>
<td>D: 0.59 (0.53-0.64)/0.43 (0.38-0.48); C: 0.50 (0.48-0.52)/0.41 (0.39-0.43)</td>
<td></td>
</tr>
<tr>
<td>2022</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zhu et al</td>
<td>Urine</td>
<td>BPS/BPF HPLC-MS/MS</td>
<td>75.1-90.0/-</td>
<td>0.497 (0.436-0.559)/not calculated*</td>
<td></td>
</tr>
</tbody>
</table>

*Not calculated because the proportion of results below limit of detection was too high to provide a valid result.

BPS: Bisphenol S; BPF: Bisphenol F; BPAF: Bisphenol AF; BPAP: Bisphenol AP; BPB: Bisphenol B; HPLC-MS/MS: High-performance liquid chromatography and tandem
mass spectroscopy; UHPLC-TQMS: Ultra-high-performance liquid chromatography with triple quadrupole mass spectrometry; LC-MS/MS: Offline isotope dilution liquid chromatography tandem mass spectrometry; D: Diabetes; C: Control; ND: Not Detectable; LOD: Limit of detection.
PRIMARY SOURCES	URL	Title	Pages	Similarity
1	www.mdpi.com	Internet	123 words — 3%	9%
2	www.researchgate.net	Internet	89 words — 2%	9%
3	Rafael Moreno-Gómez-Toledano. "Relationship between emergent BPA-substitutes and renal and cardiovascular diseases in adult population", Environmental Pollution, 2022	Crossref	59 words — 1%	9%
4	journals.lww.com	Internet	59 words — 1%	9%
5	Yishuang Duan, Yiming Yao, Bin Wang, Liping Han, Lei Wang, Hongwen Sun, Liming Chen. "Association of urinary concentrations of bisphenols with type 2 diabetes mellitus: A case-control study", Environmental Pollution, 2018	Crossref	21 words — < 1%	9%