LETTER TO THE EDITOR

Endoscopic ultrasonography-related diagnostic accuracy and clinical significance on small rectal neuroendocrine neoplasms

Jun Weng, Yu-Fan Chen, Shu-Han Li, Yan-Hua Lv, Ruo-Bing Chen, Guo-Liang Xu, Shi-Yong Lin, Kun-Hao Bai

Abstract
This research aimed to examine the diagnostic accuracy and clinical significance of endoscopic ultrasonography (EUS) in the context of small rectal neuroendocrine neoplasms (NENs). A total of 108 patients with rectal subepithelial lesions (SELs) with a diameter of < 20 mm were included in the analysis. The diagnosis and depth assessment of EUS was compared to the histology findings. The prevalence of NENs in rectal SELs was 78.7% (85/108). The sensitivity of EUS in detecting rectal NENs was 98.9% (84/85), while the specificity was 52.2% (12/23). Overall, the diagnostic accuracy of EUS in identifying rectal NENs was 88.9% (96/108). The overall accuracy rate for EUS in assessing the depth of invasion in rectal NENs was 92.9% (78/84). Therefore, EUS demonstrates reasonable diagnostic accuracy in detecting small rectal NENs, with good sensitivity but inferior specificity. EUS may also assist physicians in assessing the depth of invasion in small rectal NENs before endoscopic excision.

Key Words: Rectal neuroendocrine neoplasms; Endoscopic ultrasonography; Diagnosis; Depth of invasion

©The Author(s) 2024. Published by Baishideng Publishing Group Inc. All rights reserved.
Core Tip: The diagnostic efficacy and clinical significance of endoscopic ultrasonography (EUS) on rectal neuroendocrine neoplasms (NENs) have not been well demonstrated. In this manuscript, we compared the results of EUS with histology findings among a total of 108 patients with rectal subepithelial lesions with a diameter of < 20 mm. We found that EUS demonstrates reasonable diagnostic accuracy in detecting small rectal NENs with good sensitivity but inferior specificity. EUS may also assist physicians in assessing the depth of invasion in small rectal NENs before endoscopic excision.

TO THE EDITOR

Rectal neuroendocrine neoplasms (NENs) are diminutive but potentially malignant neoplasms. The management of NENs is contingent upon the dimensions of the tumor and the depth of its invasion. According to current consensus recommendations pertaining to the therapy of rectal NENs[1], it is recommended that endoscopic excision be considered as a viable approach for the treatment of small tumors (< 2 cm) that are limited to the mucosa or submucosa, since these tumors have a low propensity for metastatic dissemination. While the predominant kind of rectal subepithelial lesions (SELs) consists of NENs, there exists a diverse array of other types, including small gastrointestinal tumors (GISTs), lymphangiomas, and neurilemmomas. Additionally, non-tumor diseases such as endometriosis, duplication cysts, and inflammatory lesions may also be seen in this context. Differentiating NENs from SELs is of paramount significance for the proper implementation of treatment interventions. Preoperative endoscopic ultrasonography (EUS) has been demonstrated in identifying and assessing invasion depth in rectal NENs, a critical factor in choosing the most suitable treatment approach. Nevertheless, the diagnostic efficacy and clinical significance of EUS have not been well demonstrated owing to the infrequency of these particular disorders[2-8]. In this study, we investigated the diagnostic precision and clinical significance of EUS in relation to rectal NENs with a diameter of less than 20 mm.

A retrospective assessment was conducted on 108 cases of rectal SELs with a diameter of less than 20 mm, which were treated at Sun Yat-Sen University Cancer Center from January 2010 to June 2021, after getting approval from the Ethics Committee of the Institutional Review Board. All of the lesions were removed using an endoscopic procedure and then subjected to histological examination. The criteria for inclusion were: (1) The lesion was in the rectum, at a distance of less than 15 cm from the anus; (2) the lesion had a diameter of less than 20 mm; and (3) prior to the endoscopic excision, EUS and radiography did not reveal any evidence of local lymph node involvement or distant metastases. The exclusion criteria were: (1) Epithelial lesions, such as malignancy and adenoma, were eliminated from consideration in this study; and (2) no histological diagnosis. Prior to performing endoscopic excision, all patients underwent assessment via EUS to establish an EUS diagnosis and measure the depth of invasion. A blinded expert in EUS, who was blinded of the histology data, conducted a review of the ultrasonic pictures. The EUS expert then made a single diagnosis and evaluated the depth of invasion, which was then documented. The diagnosis and depth assessment of EUS was compared to the histology findings. Then diagnostic tests were used to determine the diagnostic accuracy of EUS. Prior to undergoing EUS and endoscopic excision procedures, all patients were duly informed about the possible risks and advantages associated with the interventions. Furthermore, they were required to submit written informed consent as a prerequisite for their participation. The techniques conducted in this study adhere to the guidelines outlined in the 1964 Helsinki Declaration and subsequent ethics that are pertinent to the research.

Table 1 presents a comprehensive overview of the clinical data analyses conducted on a cohort of 84 patients with rectal NENs. The mean ages of the participants in the study were 44.6 ± 13.4 years, while the average size of the lesions was 7.9 ± 3.2 mm (range, 3-20 mm). A total of 11 patients had positive vertical margins, leading to a R0 resection rate of 86.9%, with only one case in which total resection (R0) was achieved with vascular infiltration. Based on the mitoses and Ki-67 proliferation index categorization, it was determined that 89.3% (75/84) were categorized as G1, whereas 10.7% (9/84) were categorized as G2. In 7.1% (6/84) of cases, the lesions were limited to the mucosal layer, whereas in 92.9% (78/84), the lesions extended into the submucosal layer.

Table 2 displays the diagnostic outcomes of rectal SELs in 108 patients, as determined by EUS and histology. The prevalence of NENs in rectal SELs was 78.7% (85/108). The sensitivity of EUS in detecting rectal NENs was 98.9% (84/85), while the specificity was 52.2% (12/23). The positive predictive value was 88.4% (84/95), and the negative predictive value was 92.3% (12/13). The positive and negative likelihood ratios were 2.07 and 0.02, the overall diagnostic accuracy value was 92.9% (78/84), the lesions extended into the submucosal layer.

Table 3 presents a comparison of invasion depth for rectal NENs as evaluated by EUS and histology. Out of the total of 10 rectal NENs cases infiltrating the second layer (mucosa), as determined by EUS, five cases were limited to the mucosa, while the other 5 cases demonstrated invasion into the submucosa. Out of the total of 74 rectal NENs cases infiltrating the third layer (submucosa), as determined by EUS, only one case was limited to the mucosa, while the other 73 cases demonstrated invasion into the submucosa. The overall accuracy of EUS in assessing the invasion depth of rectal NENs was 92.9% (78/84).
The current investigation revealed that EUS demonstrates a notable level of sensitivity, but accompanied by a comparatively lower level of specificity, when used for diagnosing rectal NENs. EUS accurately detected 98.9% (84/85) of rectal NENs, with just one case being misinterpreted as GIST. Out of the 23 additional rectal SELs, twelve cases (52.2%) were accurately identified and categorized as non-NENs. Moreover, eleven cases of non-NENs were inaccurately identified as NENs, including ten cases of inflammatory lesions and one case of neurilemmoma. Hence, the presence of inflammatory nodules localized into the second or third layer may potentially lead to misdiagnosis as NENs due to their comparable acoustic symptoms. Additionally, our study revealed that EUS has reasonable accuracy in assessing the depth of invasion in rectal NENs. Nevertheless, in cases where the rectal NENs were assessed by EUS and found to be limited to the mucosa, there was a significant likelihood of inaccurate determination of the depth of invasion, indicating a shallower depth. According to the findings of our research, a significant proportion (92.9%) of rectal NENs demonstrated invasion into the submucosal layer. Therefore, in cases where rectal NENs are determined to be limited to the mucosa using EUS assessment, it is still necessary to do submucosal dissection to obtain a complete resection.

This study has limitations that should be taken into consideration. Since magnetic resonance imaging (MRI) and EUS are widely used in the diagnosis and evaluation of rectal NENs, it is meaningful to compare the results between MRI and EUS. However, it is with regret that rectal NENs included in our study were all less than 2 cm and the vast majority of
them were not examined by MRI. Besides, artificial intelligence-assisted endoscopic diagnosis has been research hotspot. Therefore, it is suggested that future research can introduce artificial intelligence to further improve the diagnostic value of EUS on rectal NENs.

In summary, EUS demonstrates acceptable diagnostic precision in identifying rectal NENs, exhibiting a commendable level of sensitivity. However, it displays a less desirable level of specificity, which poses difficulties in distinguishing NENs from other SELs, particularly inflammatory nodules. EUS may provide valuable assistance in assessing the depth of invasion for rectal NETs prior to endoscopic excision.

FOOTNOTES

Co-first authors: Jun Weng and Yu-Fan Chen.

Co-corresponding authors: Kun-Hao Bai and Shi-Yong Lin.

Author contributions: Bai KH, Lin SY, Xu GL designed the research; Li SH, Lv YH and Chen RB collected the data; Weng J, Chen YF, Li SH did the analysis; Weng J, Chen YF, Bai KH and Lin SY prepared the manuscript draft; Bai KH and Li SH provided research support and revised the manuscript. All authors read and approved the final manuscript. Weng J and Chen YF contributed equally to this work as co-first authors. Bai KH and Lin SY contributed equally to this work as co-corresponding authors. The reasons are as follows. First, the research was performed as a collaborative effort, and the designation of co-first authors and co-corresponding authors authorship accurately reflects the distribution of responsibilities and burdens associated with the time and effort required to complete the study and the resultant paper. Second, Weng J and Chen YF contributed efforts of equal substance for the data analysis and preparing manuscript draft. Bai KH and Lin SY contributed efforts of equal substance for designing the research, preparing manuscript draft, providing research support and revising the manuscript. In summary, we believe that both designating Weng J and Chen YF as co-first authors and designating Bai KH and Lin SY as co-corresponding authors are fitting for our manuscript as it accurately reflects our team's collaborative spirit, equal contributions, and diversity.

Supported by Basic and Applied Basic Research Foundation of Guangzhou, No. 202201011331; National Natural Science Foundation of China, No. 82373118; and National Natural Science Foundation of Guangdong Province, No.2023A1515010828.

Conflict-of-interest statement: There is no conflict of interest associated with any of the senior author or other coauthors contributed their efforts in this manuscript.

Open-Access: This article is an open-access article that was selected by an in-house editor and fully peer-reviewed by external reviewers. It is distributed in accordance with the Creative Commons Attribution NonCommercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: https://creativecommons.org/Licenses/by-nc/4.0/

Country/Territory of origin: China

ORCID number: Shi-Yong Lin 0000-0002-3881-6422; Kun-Hao Bai 0000-0003-1184-7576.

S-Editor: Qu XL

L-Editor: A

P-Editor: Qu XL

REFERENCES

Supplementary Material

- **Supplementary Table 1:** Details of the included studies.
- **Supplementary Figure 1:** Flow diagram of the study selection process.
- **Supplementary Figure 2:** Forest plot of the studies evaluating the diagnostic accuracy of endoscopic ultrasonography for rectal neuroendocrine neoplasms.