Contents

EDITORIAL
166 Importance of methodological considerations in documenting psychological trauma
Vyshka G, Elezi F, Mana T

OPINION REVIEW
170 ChatGPT in action: Harnessing artificial intelligence potential and addressing ethical challenges in medicine, education, and scientific research
Jeyaraman M, Ramasubramanian S, Balaji S, Jeyaraman N, Nallakumarasamy A, Sharma S

REVIEW
179 Compensated liver cirrhosis: Natural course and disease-modifying strategies
Kumar R, Kumar S, Prakash SS

194 Telemedicine in inflammatory bowel diseases: A new brick in the medicine of the future?

ORIGINAL ARTICLE

Basic Study
210 Utilization of online systems to promote youth participation in research: A methodological study
Salem M, Pollack L, Zepeda A, Tebb KP

223 Comprehensive analysis of cell-extracellular matrix protein Ras suppressor-1 in function and prognosis of gastrointestinal cancers
Xu Y, Hou YY, Wu Z, Fang ZX, Wu HT, Liu J

Retrospective Cohort Study
238 Role of the phase angle in the prognosis of the cirrhotic patient: 15 years of follow-up
Pinto LP, Marroni CA, Czermainski J, Dahlem MLF, Carteri RB, Fernandez SA

Retrospective Study
248 Association of carbon monoxide poisonings and carboxyhemoglobin levels with COVID-19 and clinical severity
Coskun A, Demirci B, Turkdogan KA

Observational Study
259 External validation of the Moroccan Arabic version of the European Organization for Research and Treatment of Cancer colorectal (CR29) module: Monocentric study
Contents

World Journal of Methodology

Quarterly Volume 13 Number 4 September 20, 2023

<table>
<thead>
<tr>
<th>Page</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>287</td>
<td>Role of endoscopic ultrasound and endoscopic ultrasound-guided tissue acquisition in diagnosing hepatic focal lesions</td>
<td>Okasha HH, Delsa H, Alsawaf A, Hashim AM, Khattab HM, Abdelfatah D, Abdellatef A, Albitar A</td>
</tr>
</tbody>
</table>

Prospective Study

SYSTEMATIC REVIEWS

<table>
<thead>
<tr>
<th>Page</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>296</td>
<td>Post-COVID-19 cholangiopathy: Systematic review</td>
<td>Rasheed MA, Ballotin VR, Bigarella LG, Soldera J</td>
</tr>
</tbody>
</table>

SCIENTOMETRICS

<table>
<thead>
<tr>
<th>Page</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>337</td>
<td>Physician-scientists or celebrities? Kardashian-index of gastroenterologists</td>
<td>Ugonabo O, Malik SU, Akbar UA, Zamani Z, Frandah W</td>
</tr>
<tr>
<td>345</td>
<td>Mapping research trends of transarterial chemoembolization for hepatocellular carcinoma from 2012 to 2021: A bibliometric analysis</td>
<td>Zhang N, He XF, Niu AK</td>
</tr>
</tbody>
</table>

CASE REPORT

<table>
<thead>
<tr>
<th>Page</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>366</td>
<td>Sclerotic marginal zone lymphoma: A case report</td>
<td>Moureiden Z, Tashkandi H, Hussaini MO</td>
</tr>
</tbody>
</table>
ABOUT COVER
Peer Reviewer of World Journal of Methodology, Ahmad Ozair, MBBS, Postdoctoral Fellow, Miami Cancer Institute, Baptist Health South Florida, Miami, FL 33176, United States. ahmad.ozair@baptisthealth.net

AIMS AND SCOPE
The primary aim of World Journal of Methodology (WJM, World J Methodol) is to provide scholars and readers from various fields of methodology with a platform to publish high-quality basic and clinical research articles and communicate their research findings online.

WJM mainly publishes articles reporting research results obtained in the field of methodology and covering a wide range of topics including breath tests, cardiac imaging techniques, clinical laboratory techniques, diagnostic self-evaluation, cardiovascular diagnostic techniques, digestive system diagnostic techniques, endocrine diagnostic techniques, neurological diagnostic techniques, obstetrical and gynecological diagnostic techniques, ophthalmological diagnostic techniques, otological diagnostic techniques, radioisotope diagnostic techniques, respiratory system diagnostic techniques, surgical diagnostic techniques, etc.

INDEXING/ABSTRACTING
The WJM is now abstracted and indexed in PubMed, PubMed Central, Reference Citation Analysis, China National Knowledge Infrastructure, China Science and Technology Journal Database, and Superstar Journals Database.

RESPONSIBLE EDITORS FOR THIS ISSUE
Production Editor: Zi-Hang Xu; Production Department Director: Xu Gan; Editorial Office Director: Ji-Hong Liu.
Physician-scientists or celebrities? Kardashian-index of gastroenterologists

Onyinye Ugonabo, Saad Ullah Malik, Usman Ali Akbar, Zarlakhta Zamani, Wesam Frandah

Abstract

BACKGROUND

The coronavirus disease 2019 pandemic unleashed a flood of untrustworthy information on social media platforms, resulting in the unfortunate consequence of expert scientists' opinions getting lost amidst the chaotic sea of misinformation. The question of how much influence these esteemed scientists hold on social media platforms remains elusive. To address this scientific quandary, we sought to explore the concept of the Kardashian index (K-index), a term introduced by Hall in 2014. This metric provides a rudimentary means of evaluating whether a physician scientist's popularity on social media aligns with their significant scientific contributions.

AIM

To evaluate if a Gastroenterologist physician's popularity on social media is at par with their scientific contributions (research articles and publications).

METHODS

We conducted an extensive search to identify all gastroenterologists actively practicing and associated with the top 100 hospitals as reported by the United States News. We collected specific data on a sub-group including their names,
affiliations, degrees, and sub-specializations. To gauge their social media popularity, we utilized the K-index calculation which is determined by dividing the actual number of Twitter followers by the number of researcher's citations. The expected number of followers (F) is calculated using the formula $F = 43.3 \ C^{0.32}$, where C represents the number of citations.

RESULTS
Physicians affiliated with the Mayo Clinic emerged as the most prominent presence on Twitter, constituting 16% of the total. They were followed closely by physicians from Mount Sinai Hospital (9%) and the University of Michigan Hospital (9%). Surprisingly, 76% of the physicians evaluated exhibited a low K-index, falling within the range of 0 to less than 2. This suggests that a significant number of highly influential physician-scientists are not receiving due recognition, as indicated by their relatively low number of followers. On the other hand, 24% of the physicians had an inflated K-index, exceeding 5, which positioned them as the "Kardashians". These individuals enjoyed greater social media popularity than their actual scientific contributions. Interestingly, our analysis revealed no discernible association between sex and K-index (P value of 0.92).

CONCLUSION
In the gastroenterology field, our study estimated that a majority (76%) of highly researched physicians are undervalued despite their significant scientific contributions.

Key Words: Kardashian index; Gastroenterology Twitter; Kardashian index of gastroenterology; Physician-scientists; Social media; Physician celebrities

©The Author(s) 2023. Published by Baishideng Publishing Group Inc. All rights reserved.

Core Tip: Twitter has become the most used social media by physicians to connect with colleagues and disseminate health information. People are prone to believing any information posted on social media to varying degrees. Thus, when do we consider this information factual and the truth? In our study, we used the Kardashian index to estimate whether the Twitter followers of the top 100 gastroenterologists are relatable to their scientific contributions in terms of citation of their scholarly works, and we found the majority of the gastroenterology physician scientists scored < 2 because of inactivity on Twitter and very low number of followers. We postulated that an avenue to mitigate the prevalence of misinformation on social media could emerge by involving a greater number of physician-scientists on this platform. Their engagement, coupled with the dissemination of their research discoveries could contribute significantly to this endeavour.

INTRODUCTION
The role of social media platforms in the promotion and exposure of medical literature has shown marked improvement in the last several years. Numerous societies and journals patronize Twitter, Facebook, and other platforms to bring their readership closer to their published articles. Twitter, with an estimated 300 million monthly users, has become a major nerve center between medical practitioners, patients, journals, and healthcare for discussion and transit of information. A directory of researchers on Twitter does not exist, which in turn increases the visibility of research articles. Twitter, with an estimated 300 million monthly users, has become the most used social media by physicians to connect with colleagues and disseminate health information. People are prone to believing any information posted on social media to varying degrees. Thus, when do we consider this information factual and the truth? In our study, we used the Kardashian index to estimate whether the Twitter followers of the top 100 gastroenterologists are relatable to their scientific contributions in terms of citation of their scholarly works, and we found the majority of the gastroenterology physician scientists scored < 2 because of inactivity on Twitter and very low number of followers. We postulated that an avenue to mitigate the prevalence of misinformation on social media could emerge by involving a greater number of physician-scientists on this platform. Their engagement, coupled with the dissemination of their research discoveries could contribute significantly to this endeavour.
MATERIALS AND METHODS

We conducted an extensive search using usnews.com to identify all gastroenterologists currently practicing and affiliated with the top 100 hospitals as reported by the United States Health News and World Report. From this comprehensive search, we collected specific sub-group data including names, affiliations, degrees, and sub-specializations. Additionally, we collected other variables such as sex, title [Doctor of Medicine degree (MD) or Doctor of Osteopathic Medicine (DO)], and number of years in practice. We randomized the data using randomization software to ensure unbiased selection and selected the top 2000 gastroenterologists for our study.

Utilizing Twitter as our chosen social media platform, we evaluated the number of followers for each of these selected gastroenterologists, excluding those whose accounts were no longer active. It's important to note that we were unable to determine the occupation of each follower, thus we could not ascertain whether the majority were medical professionals or not.

To authenticate the number of citations, we utilized various publications and citation search engines, including Semantic Scholar, Scopus, ResearchGate, and Google Scholar. The K-index was then calculated using the formula F_{20}/F_{50}, where F_{20} represents the number of Twitter followers and F_{50} represents the number of followers based on citations. The actual trend of Twitter follows was described using the formula $F = 43.3 \times C^{-0.5}$, where F denotes the number of Twitter followers and C represents the number of citations.

A higher K-index suggests a lower proportion of actual scientific contribution in relation to the number of followers on Twitter. Demographic data were presented as mean or median values, and associations were assessed using appropriate statistical tests such as t-tests, chi-square tests, and Spearman tests. Further evaluation of significant results was performed using ordered logistic regression. All statistical analyses were conducted using STATA version 15.1.

RESULTS

A total of 1979 GI physicians had analyzable data. 98.8% ($n = 1956$) were MDs and 1.16% ($n = 23$) were DOs. Only 6.6% ($n = 131$) had an extra-degree. The mean years as faculty was 19.8 years (SD = 9.4). Only 16.6% ($n = 330$) had an active Twitter account and among them 66% ($n = 218$) were males, and 34% ($n = 112$) were females. Only 2.5% ($n = 50$) of Twitter-using physicians had an extra degree and their median years as faculty was 18 (SD = 8.6). The most dominant presence on Twitter was by physicians from Mayo Clinic (16%), followed by Mount Sinai Hospital (9%) and the University of Michigan Hospital (9%) (Figure 1, Table 1). Approximately 76% of the physicians studied exhibited a low K-index (ranging from 0 to less than 2), suggesting a significant under-representation of highly influential physician-scientists on Twitter. Conversely, 24% displayed an inflated K-index (> 5), classifying them as “Kardashians” or physician celebrities, implying that their popularity surpasses their actual scientific contributions. (Figures 2 and 3). We found no association between sex and K-index ($P = 0.92$). There was a significant association between K-index and extra degree ($P = 0.17$). A higher K-index was associated with lower odds of an advanced degree [odds ratio (OR): 0.74, 95% confidence intervals (95%CI): 0.57-0.96, $P = 0.03$] when adjusted for sex and years as faculty. There was a significant association between the number of years as faculty and K-index ($P = 0.008$) but this association did not remain significant when adjusted for sex, years on Twitter, and extra degree ($P = 0.69$). A higher number of years of Twitter use leads to higher K-index (OR: 1.39, 95%CI: 1.11-1.74, $P = 0.004$) after controlling for sex, years as faculty, and extra degree.

DISCUSSION

Some gastroenterologists have utilized Twitter as a platform for sharing interdisciplinary discussions and raising awareness about their areas of expertise. Out of the 1979 GI physicians analyzed, only 16.6% maintained an active Twitter account. Among the Twitter users, 76% had a K index ranging from 0 to less than 2 depicting undervalued on social media, despite their scientific contribution. The adoption of social media among physicians significantly increased from 41% in 2010 to approximately 90% in 2011[4]. A study by Madde and Zickuhr[5] suggested that social media usage grew by 43% between June 2009 and 2010, becoming the most time-consuming internet activity[6].

Analysis of social media usage has revealed some notable trends. Twitter appears to be more popular among individuals aged 15 to 29, compared to only around 7% of those over 65-years-old[7]. According to a survey conducted by Woitowich et al[8] on sex differences in social media usage among physicians, the majority of respondents were women. However, men were found to utilize social media more extensively for building professional networks and staying updated on research and clinical topics[9]. Another study by Demailly et al[10] focused on anesthesia and critical care researchers reported lower visibility of women compared to their male counterparts on a scientific research-dedicated social network called ResearchGate. Similarly, our study found that male GI physicians had a higher prevalence of Twitter usage (66%) compared to females (33%).

Although our data analysis did not show a significant difference between sex and K-index ($P = 0.92$), it revealed an association between years of experience as faculty and K-index. However, when adjusting for sex, years on Twitter, and additional degrees, this association no longer remained significant ($P = 0.69$). It is important to note that the K-index, used as a measure of celebrity status, has been referenced to evaluate researchers in certain clinical specialties such as cardiology and interventional neuroradiology. The K-index studies conducted by Khan et al[11] and Vilanilam et al[12] on cardiologists and interventional neuroradiologists, respectively, demonstrated that most physicians on Twitter had a
Table 1: Top 15 hospitals contributing to most gastroenterology physician users on Twitter

<table>
<thead>
<tr>
<th>Hospital Name</th>
<th>Frequency</th>
<th>Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stanford Healthcare-Stanford Hospital</td>
<td>12</td>
<td>6.90</td>
</tr>
<tr>
<td>Baylor College of Medicine</td>
<td>13</td>
<td>7.47</td>
</tr>
<tr>
<td>Brigham and Women’s Hospital</td>
<td>14</td>
<td>8.05</td>
</tr>
<tr>
<td>Cedars-Sinai Medical Center</td>
<td>10</td>
<td>5.75</td>
</tr>
<tr>
<td>Cleveland Clinic</td>
<td>13</td>
<td>7.47</td>
</tr>
<tr>
<td>Hospitals of University of Pennsylvania-Penn Presbyterian</td>
<td>9</td>
<td>5.17</td>
</tr>
<tr>
<td>Jefferson Health-Thomson Jefferson University Hospitals</td>
<td>10</td>
<td>5.75</td>
</tr>
<tr>
<td>Massachusetts General Hospital</td>
<td>9</td>
<td>5.17</td>
</tr>
<tr>
<td>Mayo Clinic</td>
<td>27</td>
<td>15.52</td>
</tr>
<tr>
<td>Mount Sinai Hospital</td>
<td>15</td>
<td>8.62</td>
</tr>
<tr>
<td>NYU Langone Hospitals</td>
<td>8</td>
<td>4.60</td>
</tr>
<tr>
<td>New York-Presbyterian Hospital-Columbia and Cornell</td>
<td>8</td>
<td>4.60</td>
</tr>
<tr>
<td>University of Chicago Medical Center</td>
<td>11</td>
<td>6.32</td>
</tr>
<tr>
<td>University of Michigan Hospital-Michigan Medicine</td>
<td>15</td>
<td>8.62</td>
</tr>
</tbody>
</table>

Figure 1: Top 14 hospitals contributing to most gastroenterology physician users on Twitter.

The issue of information authenticity on social media is a contentious one, particularly since many individuals rely on social media instead of journals or guidelines. Our hypothesis is that if highly cited GI physicians become more active on Twitter, it may be possible to raise the K-index of a majority of physicians to 3. This would lead to more tweets on published research articles and guidelines, attract more followers, and potentially reduce the dissemination of low K-index between 0 and 2, while only a few were considered the Kardashians or physician-celebrities (K-index > 5), consistent with the findings of our study. However, it should be emphasized that the K-index formula has limited scientific value and may not accurately reflect a physician’s true value and worth[3].

Nonetheless, spending more time on Twitter may have a positive impact on the citation of scholarly works. Recent studies have suggested a positive correlation between highly tweeted articles and increased citations. For instance, a study by Haustein et al[13] on tweeting biomedicine, demonstrated a positive correlation between tweeting and citation behavior across various specialties. Eysenbach[14] reported that highly tweeted articles were more likely to be cited than less tweeted articles, with statistically significant Pearson correlation coefficients ranging from 0.42 to 0.72 for log-transformed Google Scholar citations. Gunaratne et al[15] illustrated that articles tweeted by authors experienced a 3.08-fold increase in citations within a year and a 1.51-fold increase in total citations. Furthermore, a recent prospective randomized controlled trial study by Luc et al[16] found that tweeted articles achieved a significantly higher increase in altmetric scores compared to non-tweeted articles, along with a greater change in citations in 1 year.

DOI: 10.5662/wjgm.v13.i4.337 Copyright ©The Author(s) 2023.
misinformation. Aside from increasing research citations and providing factual health information to the public, Twitter offers various other benefits. As a GI physician on Twitter, you have the opportunity to network with colleagues, recruit diverse applicants for fellowship programs, participate in discussions like the Monday night inflammatory bowel disease initiated by John Hopkin’s GI physician, Dr. Charabaty, and engage in academic forums like Liver Twitter, which focuses on sharing contents related to chronic liver diseases with a global audience[9,17]. GI mentors with high Twitter impact who are advanced in their field can use this medium to promote the accomplishments of their mentees, increase their visibilities, and open up channels for additional career opportunities[18].

Certain limitations are associated with the K-index. Younger researchers tend to score higher due to a faster accumulation of Twitter followers compared to lifetime citations. Additionally, effective communication of scientific knowledge to attract a large audience is a necessary skill. Furthermore, researchers working in fields with highly ranked professionals are more likely to have their articles cited compared to those in smaller fields[19]. Our data analysis revealed that most GI physicians active on Twitter were affiliated with top-ranked hospitals, with Mayo Clinic having the highest percentage (16%) of physicians with an active Twitter presence, followed by Mount Sinai Hospital (9%) and the University of Michigan Hospital (9%).

It is important to acknowledge the limitations of our study. Firstly, our focus was solely on GI physicians on Twitter due to the original Kardashian study’s emphasis on Twitter. We were unable to determine how many of the Twitter followers were medical professionals likely to retweet or quote articles. We also were not able to analyze the contents of the Tweets. Although we conducted a thorough search, there remains a chance that certain Twitter accounts might have eluded detection. Lastly, it is worth noting that the Kardashian formula lacks scientific validation to determine a physician’s worth. It is common for celebrity physicians to forgo the humorous intent behind the creation of the K-index
by Hall and take it too seriously, misinterpreting it in a different light than it was created. Hall, 2014 advocated that physicians on Twitter may find it useful to calculate their K-index and attach it to their profile.

CONCLUSION

In conclusion, encouraging highly cited GI physicians to be more active on Twitter may have positive implications, including increased citation of research works and the availability of accurate health information. Twitter also offers opportunities for networking, recruitment, and participation in academic discussions. Nonetheless, the K-index has its limitations, and caution should be exercised when interpreting its results. By sharing and retweeting articles, fostering scientific discussions, forming professional connections, and potentially boosting the impact factor of journals through increased citations, Twitter can serve as a valuable platform. However, it is essential to remember that having an opinion on a subject does not automatically make one an expert. Increased participation of GI physician-scientists on Twitter, specifically in sharing new clinical guidelines and research findings, may help combat misinformation within the GI community.

ARTICLE HIGHLIGHTS

Research background

There is a growing recognition among certain physicians about the significance of social media in facilitating the dissemination of research findings. While some physicians are beginning to appreciate the usefulness of social media, a ton of others are yet to comprehend its importance. In 2014, Hall proposed the K-index as a scientific metric aimed at evaluating if a physician's celebrity status on Twitter (assessed by the high number of followers) is at par with their scientific contributions based on the number of cited research work.

Research motivation

The coronavirus disease 2019 pandemic brought about a lot of misinformation on social media relating to its treatment and prevention. Hence, there arose a need to measure the scientific contribution (number of cited research works) of physician celebrities on Twitter. A study on the K-index of cardiology showed that the majority of the cardiologists on Twitter had a K-index < 2 (indicating more research works compared to the number of social media followers). We were motivated to find out the K-index of gastroenterologists on Twitter.

Research objectives

Our objectives are: (1) To assess whether a gastroenterologist's celebrity status on Twitter equates to the number of published and cited research works; (2) to assess the Twitter activity level of the gastroenterologists in the Top 100 hospitals as reported by the United States World News; and (3) to determine the effect of high Twitter followers on the number of cited scholarly works.

Research methods

An extensive search was done to identify all gastroenterologists actively practicing and associated with the top 100 hospitals as the United States News reported. We collected specific data on a sub-group including their names, affiliations, degrees, and sub-specializations. To gauge their social media popularity, we utilized the K-index calculation which is determined by dividing the actual number of Twitter followers by the number of researcher’s citations. The expected number of followers is calculated using the formula $F = 43.3 \times C^{0.32}$, where C represents the number of citations.

Research results

We found that physicians affiliated with Mayo Clinic emerged as the most prominent presence on Twitter, constituting 16% of the total. They were followed closely by physicians from Mount Sinai Hospital (9%) and the University of Michigan Hospital (9%). 76% of the physicians evaluated exhibited a low K-index of 0-2 which suggested that a significant number of highly influential physician-scientists are not receiving due recognition, as indicated by their relatively low number of followers. However, 24% of the physicians had an inflated K-index of > 5, which positioned them as the “Kardashians” or physician celebrities. These individuals enjoyed greater social media popularity than their actual scientific contributions.

Research conclusions

Encouraging highly cited gastroenterology physicians to be more active on Twitter may have positive implications, including increased citation of research works and the availability of accurate health information and research findings for the public. Twitter also offers opportunities for networking, recruitment, and participation in academic discussions.

Research perspectives

Some physicians, though, may misunderstand the intent of creating the K-index measure. We have been able to determine from the literature review that active presence on Twitter as evidenced by increased tweeting and retweeting
of articles can help boost citation and the H-index of scientists. Physicians who are actively invested in research may find an alternative way to get the result of their research findings to the public and increase their visibility. Mayo Clinic has been at the forefront of utilizing social media in health care, embarking on its journey with podcasting in 2005 and eventually expanding to various social media platforms like Twitter, YouTube, and Facebook. Their objective has been to disseminate the knowledge and expertise of their physicians to a wider audience while also providing a platform for patients to share their stories and experiences. By leveraging these channels, Mayo Clinic has effectively made healthcare information and personal narratives easily accessible to a diverse range of individuals. It is not surprising they ranked number 1 in our study. We hope that other programs will adopt and replicate this approach. In the future, we hope for a scientifically proven index or metric to assess a physician’s impact and research influence.

FOOTNOTES

Author contributions: Malik US performed the analysis and wrote both the methods and results; Akbar AU and Zaman Z assisted in data analysis and findings; Ugonabo O performed a comprehensive literature review, wrote the introduction, discussion, and edited and merged all of the author’s contributions to fit with the Journal’s requirements; Akbar AU assisted in reviewing the manuscript; Frandah W did a final review of the manuscript and made significant contributions before submission to the journal.

Conflict-of-interest statement: None to disclose.

PRISMA 2009 Checklist statement: The authors have read the PRISMA 2009 Checklist, and the manuscript was prepared and revised according to the PRISMA 2009 Checklist.

Open-Access: This article is an open-access article that was selected by an in-house editor and fully peer-reviewed by external reviewers. It is distributed in accordance with the Creative Commons Attribution NonCommercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: https://creativecommons.org/Licenses/by-nc/4.0/

Country/Territory of origin: United States

ORCID number: Onyinye Ugonabo 0000-0002-5837-5062.

Corresponding Author’s Membership in Professional Societies: American College of Gastroenterology; American Association for the Study of Liver Diseases.

S-Editor: Lin C
L-Editor: Filipodia
P-Editor: Yu HG

REFERENCES

1 Hadgu AT, Jäschke R. Identifying and analyzing researchers on twitter. WebSci 2014; 23-32 [DOI: 10.1145/2615569.2615676]

6 Networking- Sites.aspx

