Supplementary materials for

Tumor-derived exosomal miR-425-5p and miR-135b-3p enhance colorectal cancer progression through immune suppression and vascular permeability promotion

Feng CZ et al. Exosomal miR-425-5p & miR-135b-3p's Roles in CRC

Chun-Zai Feng, Si-Quan Zhong, Shao-Wei Ye, Zheng Zheng, Hao Sun, and Shi-Hai Zhou

Chun-Zai Feng, Si-Quan Zhong, Shao-Wei Ye, Zheng Zheng, Hao Sun, Shi-Hai Zhou, Department of Tumor Surgery, Zhongshan City People's Hospital, Zhongshan 528403, Guangdong Province, China

Author contributions: Feng CZ, Zhong SQ, Ye SW, Zheng Z, Sun H and Zhou SH designed the study; Feng CZ performed the research; Zhong SQ and Ye SW performed validation and data curation; Zheng Z carried out data analysis; Sun H handled visualization; Feng CZ and Zhou SH wrote and reviewed the manuscript; all authors approved the final version of the article.

Supportive foundation: None.

Corresponding author: Shi-Hai Zhou, MD, Associate Chief Physician, Department of Tumor Surgery, Zhongshan City People's Hospital, Zhongshan 528403, Guangdong Province, China. 13068120688@163.com

Supplementary figures:

Supplementary Figure 1 Characterization of exosomes from SW620 cells transfected with miRNA inhibitors or negative control. A: Transmission electron microscopy images and B: Nanoparticle tracking analysis of exosomes isolated from SW620 cells. C: Western blot analysis of exosomes isolated from SW620 cells. CD81: CD81 antigen; TSG101: Tumor susceptibility gene 101 protein.

Supplementary Figure 2 Validation of exosomal miR-425-5p inhibition promoting macrophage M1-like polarization and proinflammatory T cell

differentiation using SW620-derived exosomes. A: Flow cytometry analysis of CD86⁺iNOS⁺ and CD163⁺CD206⁺ cells ratio in THP-1 cells cultured with exosomes isolated from SW620 cells transfected with negative control (NC) and miR-425-5p inhibitor; B: Immunofluorescent staining of CD86 (red) and CD206 (green) in THP-1 cells with DAPI nuclei (blue); C: RT-qPCR analysis of cytokine expression in CD4⁺ T cells cultured with exosomes; D, E: Flow cytometry analysis of CD4⁺ T cell subsets. ^a P < 0.05, ^cP < 0.001 vs NC-exo (n = 3 per group). CD4: T-cell surface glycoprotein CD4; CD25: Interleukin-2 receptor subunit alpha; CD86: T-lymphocyte activation antigen CD86; CD163: Scavenger receptor 1; FoxP3: Forkhead box protein P3; IFN- γ : Interferon gamma; IL-1 β : Interleukin 1 beta; IL-4: Interleukin 4; IL-6: Interleukin 6; iNOS: Nitric oxide synthase, inducible; Th: T helper cells; TNF- α : Tumor necrotic factor alpha; Treg; Regulatory T cells.

Supplementary Figure 3 Validation of exosomal miR-135b-3p enhancing vascular permeability and angiogenesis using SW620-derived exosomes. A: Representative images and branch points of microscopic observation of angiogenesis in HUVECs cultured with exosomes from SW620 cells transfected with miR-135b-3p inhibitor or negative control (NC); B: Representative images and invaded cells of cell invasion assay; C: Permeability of the HUVEC monolayers to rhodamine-dextran (70 kDa) after exposure to exosomes for 72 h; D: Representative images of the aortic ring and numbers of microvascular

sprouts; E: Western blot analysis of tight junction proteins ZO-1, Occludin, and Claudin-5 in HUVECs treated with exosomes; GAPDH as an internal control; F: Immunofluorescent staining of tight junction proteins ZO-1, Occludin, and Claudin-5 (green) in HUVECs treated with DAPI nuclei (blue). ^a P < 0.05, ^b P < 0.01 vs NC-exo (n = 3 per group). ZO-1: Tight junction protein 1.

Supplementary Figure 4 Validation of exosomal miR-425-5p and mir-135b-3p on tumor growth, metastasis, and angiogenesis in vivo using SW620 cells. A: Body weight, tumor volume, tumor weight and gross size of tumors from mice treated with SW620 cells; B: Number of liver and lung tumors; C: Representative images of H&E staining in tumor tissues; D: Immunohistochemical staining of CD34 in tumor tissues. P < 0.05, P < 0.01, c P < 0.001 vs Model (n = 3 per group). CD34: Hematopoietic progenitor cell antigen CD34.

Supplementary Figure 5 Validation of exosomal miR-425-5p and mir-135b-3p on immune microenvironment modulations using SW620 cells. A: Immunofluorescence staining of M1 marker iNOS and M2 marker CD206 in tumor tissues; B: Flow cytometry analysis of tumor-infiltrating T cells, including CD4⁺IFN γ^+ Th1, CD4⁺IL-4⁺ Th2, CD4⁺IL-17A⁺ Th17, and CD4⁺CD25⁺Foxp3⁺ Tregs; C: ELISA results of IL-1 β , IL-6, and TNF- α in tumor tissues. ^a *P* < 0.05, ^b *P* < 0.01, ^c *P* < 0.001 vs Model (n = 3-5 per group). CD206: Macrophage mannose receptor 1; IL-1 β : Interleukin 1 beta; IL-6: Interleukin 6; iNOS: Nitric oxide synthase, inducible; Th: T helper cells; TNF- α : Tumor necrotic factor alpha; Treg: Regulatory T cells.

Supplementary Methods:

Exosome isolation and characterization

Exosomes were isolated from cell supernatants using the exoEasy Maxi Kit (Qiagen, Germany) following the manufacturer's protocol:

- 1. Conditioned media were centrifuged at $300 \times g$ for 10 min to remove cells.
- 2. Supernatants were filtered through a 0.22-µm filter (Millipore, USA).
- Exosomes were pelleted by ultracentrifugation at 100,000 × g for 70 min at 4°C (Beckman Coulter Optima XPN-100 Ultracentrifuge).
- 4. Exosome pellets were resuspended in PBS and stored at -80°C.

Cell culture and transfection

CRC cell lines (HCT116, SW620, SW480, HT-29) and normal colon epithelial cells (FHC) were cultured in specific media (as described in the Methods) supplemented with 10% FBS (Gibco, USA) and 1% penicillin-streptomycin (Gibco, USA).

THP-1 macrophages were differentiated into M0 macrophages using 100 ng/mL phorbol 12-myristate 13-acetate (PMA, Sigma-Aldrich, USA) for 48 h. Primary naive CD4⁺ T cells were isolated from healthy donor peripheral blood using magnetic beads (Miltenyi Biotec, Germany) and activated with anti-CD3/CD28 beads (Thermo Fisher, USA) for 72 h.

RT-qPCR

- RNA Extraction: Total RNA from exosomes was isolated using the All-in-One miRNA Extraction Kit (GeneCopoeia, USA), and from cells using TRIzol (Invitrogen, USA).
- cDNA Synthesis: miRNAs: Reverse transcribed using the miRNA First-Strand cDNA Synthesis Kit (Vazyme, China). mRNAs: Reverse transcribed using MonScript RTIII Super Mix (Monad, China).
- 3. qPCR Conditions: miRNA qPCR: 95°C for 30 s, followed by 40 cycles of 95°C for 10 s and 60°C for 30 s. mRNA qPCR: 95°C for 10 min, followed by 40

cycles of 95°C for 15 s and 60°C for 1 min.

4. Primers listed in Table 1 were used at a final concentration of 0.5 µM.

Flow cytometry

- Cell Staining: THP-1 cells: Surface markers (CD86, CD163, CD206) and intracellular iNOS were stained using BD Cytofix/Cytoperm Kit (BD Biosciences, USA). CD4⁺ T cells: Surface markers (CD4, CD25) and intracellular cytokines (IFN-γ, IL-4, IL-17A) were stained using BD Cytofix/Cytoperm Kit. Tumor-infiltrating T cells: Cells were stained with Zombie NIR[™] viability dye (BioLegend, USA) followed by surface markers and intracellular cytokines.
- Flow Cytometer: Data were acquired on a CytoFLEX S (Beckman Coulter, USA) and analyzed using Kaluza v2.1 software.

In vitro Functional assays

- Tube Formation Assay: HUVECs (5 × 10⁴ cells/well) were seeded on Matrigel (Corning, USA) and incubated for 12 h. Images were captured using an Olympus CKX53 microscope.
- Transwell Migration Assay: HUVECs (1 × 10⁵ cells/well) were seeded in 8μm transwell inserts (BD Biosciences, USA). Migrated cells were stained with hematoxylin and counted under a light microscope.
- Permeability Assay: Rhodamine B-dextran (70 kDa, Sigma-Aldrich, USA) was added to the upper chamber, and fluorescence was measured at 544/590 nm using a SpectraMax M5 microplate reader (Molecular Devices, USA).

In vivo experiments

1. Xenograft Experiments: Nude mice (4-6 weeks old) were injected subcutaneously with HCT116 cells (2×10^6 cells/mouse) transfected with miRNA inhibitors or NC.

- Tumor volume was measured weekly using calipers: Volume = (length × width²)/2.
- 3. Metastasis Analysis: Livers and lungs were fixed in formalin, sectioned, and stained with H&E to count metastatic nodules.

Uncropped blots:

