MINIREVIEWS

1136 Spontaneous bacterial peritonitis due to carbapenemase-producing Enterobacteriaceae: Etiology and antibiotic treatment

Fiore M, Di Franco S, Alfieri A, Passavanti MB, Pace MC, Petrou S, Martora F, Leone S

1148 Molecular heterogeneity in intrahepatic cholangiocarcinoma

Ahn KS, Kang KJ

1158 Spectrum of esophageal motility disorders in patients with liver cirrhosis

Khalaf M, Castell D, Elias PS

1168 Metabolic associated fatty liver disease: Addressing a new era in liver transplantation

Gill MG, Majumdar A

1182 Liver injury in COVID-19: The hepatic aspect of the respiratory syndrome — what we know so far

Anirvan P, Bharali P, Gogoi M, Thalothav P, Singh SP, Satapathy SK

ORIGINAL ARTICLE

Basic Study

1198 Cyclin-dependent kinase inhibitors p21 and p27 function as critical regulators of liver regeneration following 90% hepatectomy in the rat

Moniaux N, Lacaze L, Gothland A, Deshayes A, Samuel D, Faivre J

1211 Pivotal role of long non-coding ribonucleic acid-X-inactive specific transcript in regulating immune checkpoint programmed death ligand 1 through a shared pathway between miR-194-5p and miR-155-5p in hepatocellular carcinoma

Atwa SM, Handoussa H, Hosny KM, Odenthal M, El Tayebi HM

Case Control Study

1228 Validation of genetic variants associated with metabolic dysfunction-associated fatty liver disease in an ethnic Chinese population

Retrospective Cohort Study

1239 Comparison between hepatocellular carcinoma prognostic scores: A 10-year single-center experience and brief review of the current literature

Retrospective Study

1258 Effects of proprotein convertase subtilisin/kexin type-9 inhibitors on fatty liver

Shafiq M, Walmann T, Natalapati V, Gibson C, Zafar Y
Contents

World Journal of Hepatology

Monthly Volume 12 Number 12 December 27, 2020

<table>
<thead>
<tr>
<th>Page</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>1267</td>
<td>Timing of paracentesis and outcomes in hospitalized patients with decompensated cirrhosis</td>
<td>Tocia C, Dumitru A, Alexandrescu L, Popescu R, Dumitru E</td>
</tr>
<tr>
<td>1276</td>
<td>Bioelectrical impedance vector analysis evaluates cellularity and hydration in cirrhotic patients</td>
<td>Fernandes SA, Leonhardt LR, da Silva DM, Alves FD, Marroni CA</td>
</tr>
<tr>
<td>1289</td>
<td>Incidental biliary dilation in the era of the opiate epidemic: High prevalence of biliary dilation in opiate users evaluated in the Emergency Department</td>
<td>Barakat MT, Banerjee S</td>
</tr>
</tbody>
</table>

Clinical Trials Study

<table>
<thead>
<tr>
<th>Page</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
</table>

Observational Study

<table>
<thead>
<tr>
<th>Page</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>1314</td>
<td>HIPPOCRATES® project: A proof of concept of a collaborative program for hepatitis C virus micro-elimination in a prison setting</td>
<td>Gaspar R, Liberal R, Tavares J, Morgado R, Macedo G</td>
</tr>
</tbody>
</table>

Prospsective Study

<table>
<thead>
<tr>
<th>Page</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
</table>

CASE REPORT

<table>
<thead>
<tr>
<th>Page</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>1341</td>
<td>Safety and efficacy of sofosbuvir/velpatasvir/voxilaprevir in post-liver transplant patients with previous direct-acting antiviral failure: Six case reports</td>
<td>Higley C, Hsu CC, Smith C, Nadella S, Laños AT</td>
</tr>
<tr>
<td>1358</td>
<td>Hepatitis E virus re-infection accelerates hepatocellular carcinoma development and relapse in a patient with liver cirrhosis: A case report and review of literature</td>
<td>Lin XN, Lin QX, Li SM, Xie KP, Hou J, Chen R</td>
</tr>
</tbody>
</table>

LETTER TO THE EDITOR

<table>
<thead>
<tr>
<th>Page</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>1367</td>
<td>Autophagy related protein 9A increase in hepatitis B virus-associated hepatocellular carcinoma and the role in apoptosis</td>
<td>Kimkong I, Kumanapparat A</td>
</tr>
</tbody>
</table>
ABOUT COVER

Editor-in-Chief of World Journal of Hepatology, Dr. Nikolaos Pyrsopoulos, MD, PhD, MBA, FACP, AGAF, FAASLD, FRCP, FACP, currently serves Professor of Medicine, Professor of Physiology, Pharmacology and Neuroscience, and Chief of Gastroenterology & Hepatology at New Jersey Medical School and the Medical Director of Liver Transplantation for University Hospital (United States). Dr. Pyrsopoulos is board certified in the areas of Internal Medicine, Gastroenterology and Transplant Hepatology. Dr. Pyrsopoulos is a Fellow of the American College of Physicians, American Gastroenterological Association, Royal College of Physicians at Edinburgh, and American Association of the Study of Liver Diseases. He is also a member of various medical associations, such as the European Association of the Study of the Liver, American Society of Gastrointestinal Endoscopy, and American Society of Transplantation, among others. (L-Editor: Filipodia)

AIMS AND SCOPE

The primary aim of World Journal of Hepatology (WJH, World J Hepatol) is to provide scholars and readers from various fields of hepatology with a platform to publish high-quality basic and clinical research articles and communicate their research findings online.

WJH mainly publishes articles reporting research results and findings obtained in the field of hepatology and covering a wide range of topics including chronic cholestatic liver diseases, cirrhosis and its complications, clinical alcoholic liver disease, drug induced liver disease autoimmune, fatty liver disease, genetic and pediatric liver diseases, hepatocellular carcinoma, hepatic stellate cells and fibrosis, liver immunology, liver regeneration, hepatic surgery, liver transplantation, biliary tract pathophysiology, non-invasive markers of liver fibrosis, viral hepatitis.

INDEXING/ABSTRACTING

The WJH is now abstracted and indexed in PubMed, PubMed Central, Emerging Sources Citation Index (Web of Science), Scopus, China National Knowledge Infrastructure (CNKI), China Science and Technology Journal Database (CSTJ), and Superstar Journals Database.

RESPONSIBLE EDITORS FOR THIS ISSUE

Production Editor: Li Li Wang; Production Department Director: Yan Xianjian Wu; Editorial Office Director: Xiang Li.
Molecular heterogeneity in intrahepatic cholangiocarcinoma

Keun Soo Ahn, Koo Jeong Kang

ORCID number: Keun Soo Ahn 0000-0001-8738-8009; Koo Jeong Kang 0000-0003-1385-8308.

Author contributions: Ahn KS designed the study, analyzed the data, and wrote the paper; Kang KJ collected the data and approved the final manuscript.

Supported by the National Research Foundation of Korea Grant funded by the Korea Government, No. 2018R1C1B3004435.

Conflict-of-interest statement: Authors declare no conflict of interests for this article.

Open-Access: This article is an open-access article that was selected by an in-house editor and fully peer-reviewed by external reviewers. It is distributed in accordance with the Creative Commons Attribution NonCommercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: http://creativecommons.org/License s/by-nc/4.0/

Manuscript source: Invited manuscript

Specialty type: Gastroenterology

Keun Soo Ahn, Koo Jeong Kang. Department of Surgery, Keimyung University Dongsan Hospital, Keimyung University School of Medicine, Daegu 42601, South Korea

Corresponding author: Keun Soo Ahn, MD, PhD, Associate Professor, Department of Surgery, Keimyung University Dongsan Hospital, Keimyung University School of Medicine, No.1035 Dalgubeol- daero, Dalseo-gu, Daegu 42601, South Korea. ahnksmd@gmail.com

Abstract

Intrahepatic cholangiocarcinoma (iCCA) is a heterogeneous primary liver cancer, and currently there exist only a few options of targeted therapy. Histopathologically, iCCA is sub-classified according to morphology (mass forming type, periductal infiltrating type, and intraductal growing type) and histology (small duct type and large duct type). According to different histopathological types, clinical features such as risk factors and prognosis vary. Recent developments in genomic profiling have revealed several molecular markers for poor prognosis and activation of oncogenic pathways. Exploration of molecular characteristics of iCCA in each patient is a major challenge in a clinical setting, and there is no effective molecular-based targeted therapy. However, several recent studies suggested molecular-based subtypes with corresponding clinical and pathological features. Even though the subtypes have not yet been validated, it is possible that molecular features can be predicted based on clinicopathological characteristics and that this could be used for a more rational approach to integrative clinical and molecular subclassification and targeted therapy. In this review, we explored the genomic landscape of iCCA and attempted to find relevance between clinicopathologic and molecular features in molecular subtypes in several published studies. The results reveal future directions that may lead to a rational approach to the targeted therapy.

Key Words: Cholangiocarcinoma; Mutation; Gene expression; Pathway; Target therapy; Molecular

©The Author(s) 2020. Published by Baishideng Publishing Group Inc. All rights reserved.

Core Tip: Intrahepatic cholangiocarcinoma (iCCA) is a histopathologically and molecularly heterogeneous tumor. Recent developments in genomic profiling have revealed several molecular markers for poor prognosis and activation of oncogenic pathways. Exploration of molecular characteristics of iCCA in each patient is a major
Cholangiocarcinoma (CCA) is a malignant tumor that arises from biliary epithelium in any portion of the bile duct. Intrahepatic cholangiocarcinoma (iCCA) arises from small peripheral bile duct to second-order segmental bile duct. Risk factors, clinical symptoms, type of surgical resection, and prognosis of iCCA are different from those of extrahepatic CCA (eCCA; Klatskin tumor and distal bile duct cancer).\(^4\) ICCA is the second most common primary malignant liver tumor and accounts for 10%-15% of hepatobiliary neoplasms; however, recently, there has been an increase in the incidence and associated significance of pathologic, clinical, and therapeutic challenges. Based on morphological and gross appearance, iCCA can be further classified into three subtypes: Mass forming (MF), periductal infiltrating (PI), and intraductal growing (IG). The prognosis of the subtypes differ according to gross morphology. Due to pathologic heterogeneity and lack of specific symptoms, iCCA is hard to diagnose at the early stages, and most of the patients are at an advanced stage at the time of diagnosis. Therefore, prognosis after curative surgical resection is dismal, and efficacy of chemotherapy or targeted therapy is limited.\(^1\)

Recent molecular analyses revealed several markers for poor prognosis and activation of oncogenic pathways (KRAS mutation, human epidermal growth factor receptor 2 (HER2), and epidermal growth factor receptor (EGFR) signaling). In addition, various recurrent mutations and fusions have been reported, including IDH1 and IDH2, BRAF, TP53, and FGFR2 genes. These molecular findings demonstrate a more integrative analysis of clinical and molecular alterations in iCCA. However, there exist a few other challenges. First of all, the molecular characteristics of tumor heterogeneity are not yet clear. Second, integrative relevance between clinical and molecular characteristics is not enough; and finally, most prevalent oncogenic alterations in CCA are still undruggable. Understanding the molecular characteristics in these heterogeneous tumors may derive specific biologically meaningful subtypes that can be used to define more rational potential targeted therapy.

This review provides an overview of the genetic characteristics and heterogeneity of iCCA with a focus on molecular subtypes and their relevance with the clinicopathological phenotype. Furthermore, the role of molecular markers to stratify patients based on their prognosis and response to therapies is discussed.

HISTOPATHOLOGIC CLASSIFICATION OF iCCA

Histological classification of iCCA is important for understanding the molecular heterogeneity of iCCA. Several investigations have revealed that a whole range of phenotypical traits of hepatocytes, cholangiocytes, and progenitor cells was seen in primary liver cancer [hepatocellular carcinoma (HCC) and iCCA]. It has been suggested that iCCA originated from biliary tree stem cells located within the peribiliary gland as well as hepatic progenitor cells within canals of Hering. Hepatic bipotent progenitor cells along the small intrahepatic bile duct possibly differentiate not only into hepatocytes but also into cholangiocytes, which can lead to iCCA. Consequently, two different histological types of iCCA may develop: One originating from hepatic stem cell-derived lineages with stem-like molecular characteristics similar to those in HCC or combined HCC-CCA and the other originating from biliary...
MOLECULAR ALTERATIONS IN iCCA

Recent technological advancements have helped in understanding the mutational landscape of iCCA. Mutations in common driver oncogenes and suppressor genes are summarized in Table 1. Due to a small number of samples compared to other cancer and pathological heterogeneity, the prevalence of the mutation is variable across studies. However, several key driver somatic mutations commonly seen in other tumors, such as KRAS, BRAF, TP53, BAP1, and ARID1A, are also frequently identified in iCCA. Other driver genes like BRAF, PIK3CA, GNAS, EGFR, and ERBB2/HER2 have also been identified in iCCA, but at a much lower frequency in most of the cohorts. The presence of EGFR, TP53, and KRAS mutation is known as poor prognostic factor. Mutation of TERT promoter and ALB gene, which are frequently seen in HCC, are also detected in CCA, but only in iCCA or combined HCC and CCA samples with less frequency. Meanwhile, isocitrate dehydrogenase (IDH)1 and IDH2 mutations have been reported in 10 %-20% of iCCA cases. Interestingly, a large extent of IDH mutation has been observed in iCCA and not in eCCA and rarely identified in HCC. IDH mutation is associated with a better prognosis. In one large scale study, IDH1/2 mutations were identified to be associated with improved overall survival; however, as the incidence of IDH mutation is not frequent, survival impacts of IDH mutation is not yet clear. In iCCA, frequency of fibroblast growth factor receptor 2 (FGFR2) fusion is reported as 10%-15%. FGFR2 pairs with some genes such as TACC1, BICCI, PRKACA, AHCYL, and PRKACB. These fusions result in the constitutive activation of FGFR2 and its oncogenic functions. The FGFR related pathway is involved in cellular migration and proliferation. Patients with FGFR2 fusion show good prognosis, which suggests that FGFR2 fusions can be a prognostic marker as well as potential target for therapy. Altered genes involving chromatin remodeling, such as BAPI, ARID1A, and PBRM1, are also frequently found in iCCA. Meanwhile, germline DNA mismatch repair deficiency (Lynch syndrome) has been reported to be associated with CCA. There exists a report that deleterious germline mutations in breast cancer gene 1/2, RAD51D, MutL homolog 1, and MutS homolog 2 were detected in 11% of CCA patients.

Genomic alteration in CCA is highly heterogeneous, like pathologic features. Several studies identified different gene alterations between iCCA and eCCA. While alterations in IDH1/2, BRAF, FGFR2, BAPI, and NRAS are frequently found in iCCA, TP53, KRAS, SMAD4, and BRAF mutations are common in eCCA. Interestingly, some of the altered genes commonly found in eCCA such as KRAS,
Table 1 Frequency of genetic alteration in intrahepatic cholangiocarcinoma

<table>
<thead>
<tr>
<th>Pathway</th>
<th>Gene</th>
<th>Frequency of alteration</th>
</tr>
</thead>
<tbody>
<tr>
<td>NADPH metabolism</td>
<td>IDH1/2</td>
<td>4-36</td>
</tr>
<tr>
<td>Chromatic remodeling</td>
<td>BAPI</td>
<td>9%-25%</td>
</tr>
<tr>
<td></td>
<td>ARID1A</td>
<td>11-36</td>
</tr>
<tr>
<td></td>
<td>PBRM1</td>
<td>11-17</td>
</tr>
<tr>
<td>Cell cycle regulation and DNA damage response</td>
<td>Cdkn2A</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>CDK6</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>TP53</td>
<td>3-38</td>
</tr>
<tr>
<td></td>
<td>BRCA1/2</td>
<td>4</td>
</tr>
<tr>
<td>PI3K signaling</td>
<td>PIK3CA</td>
<td>4-6</td>
</tr>
<tr>
<td></td>
<td>PTEN</td>
<td>1-11</td>
</tr>
<tr>
<td>Ras/Raf/MEK/ERK</td>
<td>EGFR</td>
<td>2.2</td>
</tr>
<tr>
<td></td>
<td>KRAS</td>
<td>9-24</td>
</tr>
<tr>
<td></td>
<td>NRAS</td>
<td>3.6</td>
</tr>
<tr>
<td></td>
<td>BRAF</td>
<td>3-22</td>
</tr>
<tr>
<td>FGF</td>
<td>FGFR2</td>
<td>4-38</td>
</tr>
</tbody>
</table>

DNA: Deoxyribonucleic acid; ERK: Extracellular signal-regulated kinase; MEK: Mitogen-activated protein kinase kinase; NADPH: Nicotinamide adenosine dinucleotide phosphate; PI3K: Phosphoinositide-3-kinase.

SMAD4, and TP53 were also shared by large duct types of iCCA. Whereas, small duct iCCA has frequent IDH1/2 mutations and FGFR2 gene fusion[31,36]. Therefore, pathological characteristics and genetic alterations appear to be closely related to each other.

EPIGENETIC PROFILE OF iCCA

Epigenetic mechanisms of iCCA include histone modification, DNA methylation, and noncoding RNAs. In CCA, hypermethylation at the promoters of tumor suppressor genes has been reported[37]. iCCA is a highly epigenetic regulated tumor type.

DNA methylation is an early molecular lesion of carcinogenesis; tumor suppressor promoter hypermethylation of tumor suppressor gene leads to transcriptional modification and inactivation, and hypomethylation of oncogenes results in activation[38]. Most of the genes that were altered by CpG methylation belonged to wingless-related integration site (WNT), transforming growth factor beta, PI3K, MAPK, and NOTCH signaling pathways in iCCA[39]. Like other cancers, promoter hypermethylation of tumor suppressor genes, such as DAPK, SOX17, and RUNX3, has been commonly reported[40]. It is known that IDH mutations result in hypermethylation and induce silencing of ARID1A[40].

MicroRNA (miRNA) plays a crucial role in diverse cellular processes and regulates gene function. Several pieces of research revealed that overexpression of miR-21 inhibits TIMP3 and PDCD4 and sequentially leads to cancer progression[40]. Besides, miR-191, miR-200, miR-141, miR-204, miR-214, and miR-221 are involved in CCA development[40]. Among these miRNAs, miR-21, miR-191, and miR-26a were identified as poor prognostic markers[40]. Meanwhile, the high expression of several lncRNA (H19, NEAT1, PVT1, CKDN2B-AS1, and HUILC) has been reported to be associated with poor survival of CCA[44,45].

However, most of the epigenetic mechanisms of iCCA have not been studied sufficiently, and their role as biomarkers and potential targeted therapies should be extensively investigated.
EXPRESSION PROFILE AND FUNCTIONAL GENOMIC PATHWAY OF iCCA

Several studies based on microarray or NGS revealed the expression profile and oncogenic pathway of iCCA. The major key oncogenic molecules, including tumor necrosis factor, transforming growth factor, extracellular regulated signal kinase, epidermal growth factor, RAS, AKT, p53, NOTCH, and platelet-derived growth factor, are deregulated in iCCA. Immune response-related pathways and inflammation associated with signatures are also enriched. Aberrant HER2 expression is seen in about 30% of iCCA, and it is related to poor prognosis with coactivation of ERBB3 and EGFR2 as well as mesenchymal epithelial transition factor and mammalian target of rapamycin. Inflammation associated signatures are commonly activated in iCCA, but their oncologic and prognostic role is controversial. Activation of the WNT pathway is often seen in iCCA, and it relates to inflammatory reaction because macrophages in the stroma surrounding the tumor are required for the maintenance of activated WNT pathway.

The oncogenic signatures are also found in many other cancers. However, deregulated pathways are different according to pathologic and molecular subtypes; therefore, subtype-specific activated pathways are important to assess biology.

INTEGRATIVE CLINICAL-MOLECULAR SUBTYPES OF iCCA

Based on the genomic profile, a few studies have suggested molecular subtype of iCCA beyond anatomical and histological subclassification (Table 2). The recent advances in the molecular classification allow better characterization of heterogeneity of iCCA. Furthermore, they provide insight into the integrated approach of clinical and molecular characterization of iCCA.

Although each subclassification has some heterogeneity, the molecular feature of iCCA is dichotomized two subtypes that have different survival and clinical outcomes. Generally, the poor prognostic molecular subtype is associated with the KRAS mutation. Also, BRAF, ERBB2, and HER alterations are often seen in a poor prognostic subtype. On the other hand, IDH mutation and FGFR fusion are commonly seen in the good prognostic subtype. The molecular subclasses were reported to be rather related to clinical and pathologic features. While PI type, similar to eCCA, is commonly seen in the poor prognostic subtype, the MF type is almost evenly distributed in both good and poor prognostic subtypes. Large duct type, history of cholangitis and parasite infection, and elevated levels of serum biomarkers (carcinoembryonic antigen and carbohydrate antigen 19-9) are associated with poor prognostic molecular subtype, while small duct type and history of viral hepatitis are associated with good prognostic molecular subtype (Figure 1).

Several molecular subclassifications in the reported studies provide information about molecular heterogeneity in addition to histopathological heterogeneity. The integrated clinical and molecular subclassifications would be helpful to provide a more rational approach to overcome clinical and molecular heterogeneity. Molecular profile of iCCA is helpful for early diagnosis and prognosis prediction and may potentially provide personalized treatment. However, exploration of molecular characteristics of iCCA in each patient is a major challenge in a clinical setting because of the high cost for evaluating molecular characterization. If molecular subtypes of iCCA have specific clinical and pathologic features, molecular subtypes can be predicted from clinical features. Although the subclassifications reported in several studies have a few differences based on demographic characteristics and study methods, there is still no consensus on the molecular subclass. The present review shows that clinical and molecular relevance based on molecular subclassification has been exploring and may establish integrative clinical and molecular subclassification soon. Since the number of patients is not sufficient in iCCA compared to other cancers, further large scale studies are necessary for validation and establishment of molecular classification.

Still, molecular-based target therapy is not considered to be effective in CCA due to molecular heterogeneity. However, the establishment of molecular subtypes can promote the development of effective subtype-specific therapeutic molecular targeted therapy.

This dual inhibitor of EGFR and HER2, has been reported to be effective in cell lines that had genetic characteristics similar to poor prognostic subtype, while gemcitabine was identified to be effective in cell lines with similar expression profile to good prognostic subtype, which had enriched gemcitabine sensitive genes. Although these are the outcomes of cell line studies and not
Table 2 Integrative clinical-molecular subclassification of intrahepatic cholangiocarcinoma

<table>
<thead>
<tr>
<th>Good prognostic subclass</th>
<th>Poor prognostic subclass</th>
</tr>
</thead>
<tbody>
<tr>
<td>GSE26566</td>
<td>Periductal infiltrating type, perineural invasion; KRAS mutation, EGFR and HER2 signatures</td>
</tr>
<tr>
<td>GSE32225</td>
<td>Well differentiated tumor; inflammation-related signatures</td>
</tr>
<tr>
<td>GSE32879</td>
<td>Poor differentiated tumor; RTK-related pathways (AKT, MET, RAS/RAF/MAPK); overexpression of EGFR; KRAS mutation</td>
</tr>
<tr>
<td>GSE39749</td>
<td>EMT-related signatures; TGFβ1, NCAM1, CD133</td>
</tr>
<tr>
<td>GSE107943</td>
<td>Fluke-negative; FGFR fusion; BAP1, IDH mutation</td>
</tr>
<tr>
<td>TCGA¹</td>
<td>Large duct type (bile duct type); Elevated CEA, CA 19-9; underlying cholangitis; P53, inflammation-related signatures; KRAS mutation</td>
</tr>
<tr>
<td>TCGA¹</td>
<td>Mitochondria/metabolic-related signatures; IDH, BAP1 mutation</td>
</tr>
<tr>
<td>TCGA¹</td>
<td>Inflammation-related pathways</td>
</tr>
</tbody>
</table>

¹In The Cancer Genome Atlas, two subtypes have no statistical different survival.

BRCA1/2: Breast cancer gene 1/2; CA 19-9: Carbohydrate antigen 19-9; CEA: Carcinoembryonic antigen; EGFR: Endothelial growth factor receptor; EMT: Epithelial to mesenchymal transition; FGFR2: Fibroblast growth factor receptor 2; HER2: Human epidermal growth factor receptor 2; IDH: Isocitrate dehydrogenase; MAPK: Mitogen-activated protein kinase; NCAM1: Neural cell adhesion molecule; TCGA: The Cancer Genome Atlas; TGFβ1: Transforming growth factor beta 1.

Validated clinical data, it is hypothesized that additional applications of drug study on different subtype signaling pathways may be helpful to stratify patients for targeted approaches for the treatment of iCCA.

CONCLUSION

In the present study, we reviewed the molecular heterogeneity of iCCA in association with the clinicopathological features. Several recent studies have revealed molecular characteristics of iCCA and suggested several molecular subclassifications. Molecular study of iCCA may help identify patients at risk of developing iCCA, predicting prognosis, and targeting approach to treatment. However, molecular exploration in all patients is not feasible because of the high cost. Accordingly, analysis of relevance between molecular and clinicopathological features is considered as imperative because if clinicomolecular relevance is established, molecular characteristics can be predicted based on clinical features in each patient.

The present analysis showed that the molecular subtypes of iCCA have distinct clinicopathologic features and prognostic differences. However, integrative clinical and molecular subclassification is not yet validated. For developing effective targeted and personalized therapies based on clinical and molecular knowledge, future additional large scale studies are necessary.
Intrahepatic cholangiocarcinoma

Good prognostic subclass
- Hepatic stem cell
- Viral hepatitis, cirrhotic liver
- NA
- N-cadherin, NCAM1
- IDH mutation
- FGFR fusion

Poor prognostic subclass
- Biliary stem cell
- Risk factor
- Hepatolithiasis, liver flukes
- MF type
- Small duct type
- Serum biomarkers
- CEA, CA 19-9

Histopathology
- MF, PI and IG type
- Large duct type

Genetic features
- S100, mucin family
- EGFR, HER2 signatures
- KRAS, TP53 mutation

Figure 1: Summary of clinical and molecular characteristics of molecular-based subtypes of intrahepatic cholangiocarcinoma. CA 19-9: Carbohydrate antigen 19-9; CEA: Carcinoembryonic antigen; FGFR2: Fibroblast growth factor receptor 2; HER2: Human epidermal growth factor receptor; IDH: Isocitrate dehydrogenase; IG: Intraductal growing; MF: Mass forming; PI: Periductal infiltrating.

REFERENCES

20 Nakamura Y, Uchida T, Sato Y, Uesaka K. An S100P-positive biliary epithelial field is a preinvasive intraepithelial neoplasm in nodular-sclerosing cholangiocarcinoma. Hum Pathol 2017; 60: 46-57. [PMID: 27984121 DOI: 10.1016/j.humpath.2016.10.003]

