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Abstract
AIM: To understand how interactions between hepati-
tis C virus (HCV) and the host’s immune system might 
lead to viral persistence or effective elimination of HCV.

METHODS: Nucleotides 3519-3935 of the non-struc-
tural 3 (NS3) region were amplified by using reverse 
transcription polymerase chain reaction (PCR). PCR 
products of the HCV NS3 regions were integrated into 
a PCR® T7TOPO® TA vector and then sequenced in 
both directions using an automated DNA sequencer. 
Relative major histocompatibility complex binding lev-
els of wild-type and variant peptides were performed 
by fluorescence polarization-based peptide competition 
assays. Peptides with wild type and variant sequences 
of NS3 were synthesized locally using F-moc chemistry 

and purified by high-performance liquid chromatog-
raphy. Specific cytotoxic T lymphocytes (CTLs) clones 
toward HCV NS3 wild-type peptides were generated 
through limiting dilution cloning. The CTL clones spe-
cifically recognizing HCV NS3 wild-type peptides were 
tested by tetramer staining and flow cytometry. Cyto-
lytic activity of CTL clones was measured using target 
cells labeled with the fluorescence enhancing ligand, 
DELFIA EuTDA.

RESULTS: The pattern of natural variants within three 
human leukocyte antigen (HLA)-A2-restricted NS3 epi-
topes has been examined in one patient with chronic 
HCV infection at 12, 28 and 63 mo post-infection. Re-
sults obtained may provide convincing evidence of im-
mune selection pressure for all epitopes investigated. 
Statistical analysis of the extensive sequence variation 
found within these NS3 epitopes favors a Darwinian 
selection model of variant viruses. Mutations within the 
epitopes coincided with the decline of CTL responses, 
and peptide-binding studies suggested a significant im-
pact of the mutation on T cell recognition rather than 
peptide presentation by HLA molecules. While most 
variants were either not recognized or elicited low re-
sponses, such could antagonize CTL responses to tar-
get cells pulsed with wild-type peptides.

CONCLUSION: Cross-recognition of CTL epitopes from 
wild-type and naturally-occurring HCV variants may lead 
to impaired immune responses and ultimately contribute 
to viral persistence.
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INTRODUCTION
Hepatitis C virus (HCV) is one of  the leading causes of  
chronic liver disease[1] arising from persistent infection 
that lasts decades despite evidence of  humoral and cellu-
lar immune responses[2]. Chronic infection occurs in up to 
85% of  patients[3]. The mechanisms responsible for high 
rates of  HCV persistence are unknown, but are thought 
to involve a complex interplay between the host immune 
system and viral diversity[4], which may lead to viral escape 
through the mutation of  epitopes recognized as targets 
of  the immune response[4,5]. The combination of  a very 
high rate of  HCV replication, estimated at 1012 virions per 
day[6], and an RNA-dependent RNA polymerase that lacks 
proofreading ability[7] sets the stage for Darwinian selec-
tion of  variant or mutant viruses via pressure mediated by 
humoral and cellular immune responses[8].

Selective pressure appears to be applied by all ele-
ments of  the immune response including antibody-pro-
ducing B-cells and both CD4+ and CD8+ T cells. Such 
persistence of  HCV infection has been particularly as-
sociated with mutations in epitopes encompassed within 
the hypervariable region 1 of  HCV envelope glycopro-
tein 2, recognized by both antibodies and CD4+ helper 
T cells[9,10]. Studying a class Ⅱ restricted immunodomi-
nant epitope within the non-structural 3 (NS3) protein 
region of  HCV, we have identified a highly significant 
variation that correlated with escape from CD4+ T cell 
responses[11-14]. Other sequence variations in epitopes 
recognized by CD8+ cytotoxic T lymphocytes (CTLs) 
have been identified in chimpanzees[4,15] and humans[16-22] 
with chronic HCV infections.

CTLs recognize peptide fragments of  cellular or viral 
proteins in the form of  short peptides comprising 8-11 
amino acids presented in association with major histo-
compatibility complex (MHC) class Ⅰ molecules on the 
surface of  infected cells[23-27]. These peptides are usually 
derived from intracellular viral protein pools and associ-
ated in the lumen of  the endoplasmic reticulum with 
MHC class Ⅰ molecules, after which the MHC-peptide 
complex is transported to the cell surface and recognized 
by a specific T cell receptor (TCR) located on the surface 
of  the CD8+ killer T cell.

Variation within a viral epitope can lead to a total or 
partial loss of  functional recognition by CTL. Substitu-
tions occurring at key anchor residues may alter peptide 
affinity for MHC class Ⅰ molecules and thereby interfere 
with antigen presentation and effector T-cell mediated 
clearance of  infected cells. Other variations, primarily in 
solvent-accessible residues, may abrogate TCR recogni-

tion altogether or alter it in such a way that critical activa-
tion signals are not transmitted to the cytotoxic T cells 
resulting in attenuated responses or even anergy[10,16-18]. 
Examples of  attenuated responses have also been found 
with HIV and HBV[28-32]. It is thought that by antagoniz-
ing T-cell responses to native epitopes, viruses expressing 
mutant epitopes might aid in the survival of  infected cells 
producing wild-type viruses, which would otherwise be 
recognized and destroyed by CTL. Although parts of  this 
issue have been examined in chronic HCV infection[15-18,33], 
unresolved questions remain, including whether naturally 
occurring variants antagonize CTL responses to wild-
type epitopes that are found within the same host. To 
address this, viral sequences were examined by assessing 
CTL activity in three epitopes that were previously identi-
fied by Koziel et al[34]. Comprising amino acids 1073-1081, 
1131-1139, and 1169-1177, these 9-mer epitopes are 
restricted by human leukocyte antigen (HLA)-A*02 and 
recognized by specific CTL clones. Initially, we examined 
epitope heterogeneity in the viral sequences from an 
A*02-positive patient applying polymerase chain reaction 
(PCR) technology. This was followed by the synthesis of  
peptides corresponding to observed variations in these ep-
itopes and subsequently used to sensitize A*02-expressing 
target cells. Results illustrate allele-specific viral evolution 
and escape from a dominant CD8+ CTL response. While 
most variants were either not recognized or elicited low 
responses, such could antagonize CTL responses to target 
cells pulsed with wild-type peptides. The ability to inter-
fere with CTL function was independent of  the ability of  
variant peptides to bind MHC molecules. Overall, we view 
this study as a bridge to understanding how interactions 
between HCV and the host’s immune system might lead 
to viral persistence or effective elimination of  HCV.

MATERIALS AND METHODS
Human subjects
Peripheral blood samples were collected from a pa-
tient B3019 with chronic HCV at approximately 12 mo 
(B3019.1), 28 mo (B3019.3), and 63 mo (B3019.5) after 
infection. This patient never received any therapeutic 
intervention during the 5 years chronic HCV infection. 
The presence of  HCV-specific antibodies and HCV 
RNA in the patient’s serum was determined as described 
previously[11]. Blood was collected in acid citrate dextrose 
anticoagulant, centrifuged at 400 × g for 15 min, and 
divided into plasma and buffy coat fractions. After isola-
tion of  peripheral blood mononuclear cells (PBMC) over 
Lymphocyte Separation Medium (Organon/Teknika), 
plasma and PBMC were stored at -70℃ or in liquid ni-
trogen, respectively.

Amplification of the HCV NS3 region using reverse 
transcription PCR
Total HCV genomic RNA was isolated from 140 μL of  
B3019.1, 3019.3 and 3019.5 sera using the QIAamp®  
Viral RNA Mini Kit (QIAGEN, Inc.). The cDNA 
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was synthesized using reverse transcriptase (RT) from 
Moloney’s murine leukemia virus and random hexad-
eoxynucleotide primers (Invitrogen). HCV cDNA was 
then amplified using nested primer sets (“outer” sense 
prime: 5'-GGCCTCCTAGGGTGTATAATCACC-3'; 
“outer” antisense primer: 5'-GAGGAGTTGTCCGT-
GAACAC-3'; “inner” sense primer: 5'-CAGATCGTGT-
CAACTGCTAC-3'; “inner” antisense primer 5'-CCA-
CAGGGATAAAGTCCACC-3') specific for nucleotides 
3519-3935 of  the NS3 region. Primers were created 
based on the previously reported HCV sequence from 
genotypes 1a, (isolate H77), which generated a final PCR 
product of  417 bp.

Initial PCR was performed using the outer primer 
set starting with heat-activation of  the ProofStart DNA 
Polymerase at 95℃ for 5 min, followed by 35 cycles of  
denaturation at 94℃ for 30 s, annealing at 55℃ for 30 s 
and extension at 72℃ for 1 min. A final extension step 
at 72℃ for 10 min was introduced to increase the pool 
of  full-length products. Two microliters of  the first am-
plification product was transferred into the second nest-
ed PCR reaction mixture containing the “inner” primer 
pair. The second round of  amplification was performed 
for 35 cycles under equal conditions. For all PCR ampli-
fications, ProofStart DNA Polymerase (QIAGEN) with 
proofreading capabilities was used. PCR products were 
analyzed on a 1.5% agarose gel stained with ethidium 
bromide. As described elsewhere[35], all measures were 
taken to avoid contamination of  PCR samples. 

As a control strategy for polymerase errors, two dif-
ferent experimental approaches were applied. In a first 
experiment, the plasmid pT7 TOPO-TA/NS3 from 
the Hutchinson strain (1a) of  HCV[36] was diluted to  
10-14 g/mL and amplified using the same PCR procedure 
described above. In an alternative experiment, reverse 
transcription PCR (RT-PCR) was used to amplify an 
RNA template derived from the pT7 TOPO-TA/NS3 
plasmid. The RNA template was obtained utilizing a 
T7 RNA polymerase (USB) according to the supplier’s  
instructions. The resulting transcript was treated with 
DNase Ⅰ for 15 min at room temperature and RNA was 
extracted using the QIAamp® Viral RNA Mini Kit (QIA-
GEN, Inc.). Reverse transcription and amplification of  
this control RNA was carried out as described above. 

Cloning and sequencing
PCR products of  the HCV NS3 regions were integrated 
into a PCR® T7TOPO® TA vector (Invitrogen, Carlsbad, 
CA). Ligations and transformations were executed ac-
cording to the manufacturer’s instructions. Recombinant 
clones were then screened for positive PCR product in-
tegration by using a PCR amplification procedure detect-
ing HCV NS3 inserted fragments. Plasmid DNAs with 
confirmed inserts were purified with QIAprep® spin 
miniprep kit (QIAGEN, Inc.) according to the standard 
protocol from Qiagen and further analyzed. Thirty in-
dependent clones for each sample of  B3019.1, B3019.3 
and B3019.5, as well as 23 and 17 independent clones 

for each control strategy, respectively, were sequenced 
in both directions using an automated DNA sequencer 
(373A, Applied Biosystems). The sequencing results 
were analyzed using GCG SeqWeb package (V2.0.2). 
The polymerase error rate under applied conditions 
was calculated as [(No. of  sporadic changes)/[(No. of  
clones) × (sequence length) × (PCR cycles)] as described 
by Smith et al[37]. 

Peptide synthesis
Peptides with wild type and variant sequences of  NS3 
1073-1081, NS3 1131-1139 and NS3 1169-1177 were 
synthesized locally using F-moc chemistry and purified 
by high-performance liquid chromatography (HPLC). 
Peptide powder was dissolved in a drop of  DMSO and 
adjusted to approximately 1 mg/mL with RPMI 1640 
tissue culture medium before being used to stimulate 
PBMC in CTL cloning, cytotoxicity and antagonist assays. 
For the competition assay procedure, the FITC-labeled 
peptide was commercially synthesized by Synpep (Dub-
lin, CA) using solid-phase strategies and purified with 
reverse-phase HPLC. For this procedure, NS3 peptides 
were originally dissolved in 100% DMSO at a concentra-
tion of  10 mmol/L. Subsequent dilutions were done in 
1 × bovine γ globulin in PBS (BGG/PBS; 0.5 mg/mL; 
0.05%; Sigma; St. Louis, MO). 

Fluorescence polarization-based peptide competition 
assay
To determine relative MHC binding levels of  wild-type 
and variant peptides, fluorescence polarization (FP)-
based peptide competition assays were performed as 
described[38,39]. Initially, the four components of  the bind-
ing reaction (competitor peptide, tracer, sHLA and β2m) 
were prepared as concentrates. The fluorescent-labeled 
tracer peptide (pFITC P5), ALMDKVL-K(FITC)-V, and 
the sHLA-A*0201 component of  the reaction were di-
luted to appropriate 8 × and 2 × solutions, respectively. 
The β2m component (Fitzgerald Industries International; 
Concord, MA) was prepared as an 8 × mix and always 
added in a 2 × molar excess of  the used sHLA concen-
tration. Each competitor peptide was prepared at various 
dilutions and added as 4 × solutions. For all preparations, 
1 × BGG/PBS was used as buffer. Next, each individual 
well of  a black 96-well LJL HE PS microplate (Molecu-
lar Devices) was loaded with 5 μL of  the prepared 8 × 
β2m, 10 μL of  each competitor solution, and 5 μL of  8 
× pFITC. To start the peptide exchange procedure, the 
2 × sHLA mixes was activated by incubating at 53℃ for 
15 min before adding 20 μL to the previously loaded 
wells reaching a final volume of  40 μL. All reagents 
were added to the wells of  the microtiter plate sequen-
tially using manual pipettors. The plates were then read 
at room temperature using an Analyst AD (Molecular 
Devices; Sunnyvale, CA) until no further increase in po-
larization was observed indicating that equilibrium was 
reached (24-48 h). Data analysis was performed using the 
software package Prism (GraphPad), by direct fit to the 
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appropriate models by computer- aided, nonlinear regres-
sion analysis.

CTL cloning
Specific CTL clones toward HCV NS3 wild-type pep-
tides 1073-1081 (wt1073), 1131-1139 (wt1131) and 1169 
(wt1169) were generated. Briefly, PBMCs were thawed, 
diluted rapidly at 4℃, washed twice by centrifugation at 
400 × g for 10 min, resuspended and plated into wells 
of  96 well flat bottom plates (200 μL) at a density of   
2 × 106 cells/mL. Cells were then stimulated individu-
ally with wild-type NS3 peptides 10 nmol/L at 37℃ in 
a 5% CO2 incubator. After 7 d of  incubation, 20 U/mL 
rhIL-2 (ENDOGEN) was added to the cultures. On 
day 14, cells were screened for the ability to lyse target 
cells pulsed with NS3 wild-type peptide. Functional 
cells were further subcloned by limiting dilution (at cell 
densities of  10, 3, 1 and 0.3 cells/well) in 96 well round 
bottom plates which contained 105 irradiated, autolo-
gous PBMCs, 20 U/mL rhIL2, and 10 nmol/L HCV 
NS3 wild-type peptide. Positive clones were further 
expanded and re-stimulated in 24-well plates with 105 ir-
radiated (3000 rad) autologous PBMCs, in the presence 
of  10 nmol/L wild-type peptide and 20 U/mL rhIL-2 
in RPMI 1640 medium supplemented with 25 mmol/L 
HEPES buffer, 2.0 mmol/L L-glutamine, 50 U/mL 
penicillin, and 100 mg/mL streptomycin, 5.0 mg/mL 
gentamicin, 10 U/mL sodium heparin, 1.0 mmol/L 
sodium-pyruvate, and 10% pooled AB human serum 
(complete RPMI-10 AB). Finally, cells were tested for 
cytolytic recognition of  B-LCL targets pulsed separately 
with wild-type peptides. 14 d after the last stimulation, 
specific CTL clones were maintained in a long term cul-
ture in T-25 flasks by re-stimulating 2 × 106 cells every 
2 wk with 1 × 106 irradiated (3000 rad) allogeneic PBMC 
feeders and 50 U/mL rIL-2 in complete RPMI-10 AB 
media. Not immediately used clones were frozen in liq-
uid nitrogen for later usage. 

Tetramer staining and flow cytometry
The CTL clones specifically recognizing HCV NS3 wild-
type peptides were washed with 10% FCS in PBS followed 
by staining with the HCV NS3 1073-1081 peptide MHC 
class Ⅰ tetramer complexes as described previously[40]. The 
following antibodies and tetramer complexes were used: 
Anti-CD8-FITC, anti-mouse IgG FITC (Pharmingen, San 
Diego, CA, USA), HLA-A*02-restricted HIV p17 epitope 
tetramer PE, HLA-A*02- restricted HCV NS3 1073-1081 
tetramer PE. Specific CTL clones were incubated with the 
antibodies and tetramer reagents for 45 min at room tem-
perature in the dark, then washed with 1 × PBS and resus-
pended in 500 μL of  1 × PBS. Samples were analyzed on 
a FACScan flow cytometer (Becton-Dickinson, Mountain 
View, CA, USA). The data were analyzed by WinMDI 
2.8 software, kindly provided by Dr. Joel Trotter. Both 
the HCV NS3 1073-1081 peptide-MHC class Ⅰ tetramer 
complex and the negative control tetramer complex HIV 
p17 peptide SLYNTVATL were made by the NIAID tet-

ramer Facility, Emory University Vaccine Center (Emory 
University, Atlanta, GA, USA).

Cytotoxicity assay
Cytolytic activity of  CTL clones was measured using 
target cells labeled with the fluorescence enhancing li-
gand, DELFIA EuTDA (Perkin-Elmer Life Sciences, 
Norwalk, CT) according to the manufacturer’s instruc-
tions. As target cells, the HLA-A*02 positive Epstein-
Barr virus (EBV) transformed B-cell line (L.B3019) 
was labeled with DELFIA BATDA reagents at 37℃ 
for 20 min, washed three times, and incubated with the 
indicated concentration of  peptide for 1 h. After three 
additional washes, effector cells were added at various 
concentrations and incubated for 2 h in 96-well round- 
bottom plates (5000 target cells per well) at 37℃ in 5% 
CO2. After centrifugation at 500 × g for 5 min, 20 μL of  
supernatant was transferred to corresponding wells of  a 
flat bottom plate and 200 μL of  europium solution was 
added. Fluorescence was measured using a Wallace Vic-
tor2 Multilabel Counter (Perkin-Elmer Life Sciences). 
Percent specific release was calculated according to the 
following formula: Percent specific lysis = 100 × [(ex-
perimental release - spontaneous release)/(maximum 
release - spontaneous release)]. Results were reported as 
the means of  duplicate wells.

Antagonist assay
To measure the ability of  each variant peptide to an-
tagonize CTL responsiveness against wild-type peptide, 
an antagonist assay was performed using the method 
described by Jameson et al[41] under slightly modified 
conditions. Briefly, target cells were labeled with DEL-
FIA BATDA reagents at 37℃ for 20 min, washed three 
times with RPMI 1640 medium, and then pulsed for 1 h  
with 10 nmol/L wild-type peptide. After removal of  the 
wild-type peptide by another wash step (3 ×), the cells 
were pulsed a second time using varying concentrations 
of  variant or control peptide for another hour. After a 
final wash step, specific CTL effector cells were added 
at various concentrations and incubated for 2 h. After 
incubation, the cytolytic activity of  CTL was measured 
as described above. Percent inhibition of  lysis was cal-
culated as {% inhibition = 100 × [(A-B)/A]} where A 
is the percent specific lysis in the absence and B is the 
percent lysis in the presence of  the variant peptide under 
investigation. Each point represents the mean of  dupli-
cate wells.

RESULTS
Mutations in the HCV NS3 region
The majority of  RNA viruses produce RNA polymer-
ases that lack proofreading activity, and thus introduce 
mutations into the viral genome. In the presence of  im-
mune selection pressure exerted by CTLs against wild-
type virus, this genomic diversity could facilitate pref-
erential expansion of  mutant progeny encoding altered 
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epitopes that evade recognition by effector T cells. To 
monitor HCV genetic diversity within a fragment of  the 
NS3 region, three different sera samples of  a single sub-
ject with chronic HCV, collected at approximately 12, 28, 
and 63 mo after infection, were investigated by sequence 
analysis. In particular, the region 1060-1198 was selected 
for analysis because of  the inclusion of  previously 
identified HLA-A*02 restricted epitopes comprising 
amino acids 1073-1081, 1131-1139, and 1169-1177. An 
overall sequence comparison to the wild-type sequence 
revealed a set of  40 out of  90 individually sequenced 
clones (44.4%) carrying one or more mutations (Table 1). 
Within the 40 alternative sequences, a total of  51 nucleo-

tide substitutions were detected of  which 12 (23.5%) 
were synonymous (SYN) silent mutations and 39 (76.5%) 
were nonsynonymous (NSY) mutations, respectively, 
leading to specific amino acid alterations within this 
NS3 fragment (Figure 1). The frequency of  sporadic 
substitutions was calculated as 1.9 × 10-5 according to 
the formula described by Smith et al[37]. Furthermore, 
the frequency of  mutations observed at 3 different time 
points of  disease progression for the same patient was 
not significantly different. 

To determine if  observed mutations are consistent 
with a positive Darwinian selection model as described 
in other reports[13,14,20], we compared the ratios of  NSY/
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    Wt QIVSTATQTFLAT  CINGVCWTV  YHGAGTRTIASPKGPVIQMYTNVDQDLVGWPAPQGSRSLTPCTCGSSDL  YLVTRHADV  IPVRRRGDSRGSLLSPRPISYLKGSSGGP  LLCPAGHAV  GLFRAAVCTRGVAKAVDFIPV

12-  1 -------------  ---------  ------------------T------------------------------  ---------  -----------------------------  ---------  ---------------------
12-  2 -------------  ---------  -------------------------------------------------  -----y---  -----------------------------  ---------  ---------------------
12-  3 -------------  ---------  ------------------------------------H------------  ---------  -------------------P---------  ---------  ---------------------
12-  4 -------------  ---------  -------------------------------------∆-----------  ---------  -----------------------------  ---------  ---------------------
12-  5 -------------  ---------  --------------∆----------------------------------  ---------  -----------------------------  ---------  ---------------------
12-  6 -------------  ---------  -------------------------------------------------  ---------  -----------------------------  --R------  ---------------------
12-  7 -------------  -----S---  -------------------------------------------------  ---------  -----------------------------  ---------  ---------------------
12-  8 ------------A  ---------  -------------------------------------------------  ---------  -----------------------------  ---------  ---------------------
12-  9 -------------  ---------  ----------------------A--------------------------  ---------  -----------------------------  ---------  ---------------------
12-10 --------A----  ---------  --------V----------------------------------------  ---------  -----------------------------  ---------  ---------------------
12-11 -------------  -----S---  -------------------------------------------------  ---------  -----------------------------  ---------  ---------------------

28-12 -------------  ---------  -------------------------------------------------  C--------  -----------------------------  ---------  ---------------------
28-13 -------------  ---------  H------------------------------------------------  -----R---  -----------------------------  ---------  -----T----R----------
28-14 -------------  ---------  -------------------------------------------------  ---------  --------------------C--------  ---------  ---------------------
28-15 -------------  ---------  -------------------------------------------------  ---------  ------------P----------------  ---------  ---------------------
28-16 -------------  ---------  -----------------∆-------------------------------  ---------  -----------------------------  ---------  ---------------------
28-17 -------------  ---------  -------------------------------------------------  ---------  -----------------------------  ---------  ----V----------------
28-18 -------------  -∆-------  -------------------------------------------------  ---------  -----------------S-----------  ---------  ---------------------
28-19 -------------  ------R--  -------------------------------------------------  ---------  -----------------------------  ---------  ---------------------
28-20 -------------  ---------  -------------------------------------------------  ---------  -----------------------------  --R------  ---------------------
28-21 -------------  Y--------  ----------------V--------------------------------  ---------  -----------------------------  ---------  ---------------------
28-22 -------------  ----∆----  -------------------------------------------------  ---------  -----------------------------  ---------  ---------------------
28-23 -------------  ---------  ---------------------------G---------------------  ---------  -----------------------------  ---------  ---------------------
28-24 -------------  ---------  ---------------------D---------------------------  ---------  -----------------------------  ---------  ------M--------------
28-25 -------------  ---------  -------------------------------------------------  ---------  -----------------------------  -----∆---  ---------------------

63-26 -------------  ---------  -----A-------------------------------------------  ---------  -----------------------------  ---------  ---------------------
63-27 -------------  ---------  ------------------T------------------------------  ---------  -----------------------------  ---------  ---------------------
63-28 -------------  ---------  -R-----------------------------------------------  ---------  -----------------------------  ---------  ---------------------
63-29 -------------  ---------  ---------------------D---------------------------  ---M-----  -----------------------------  -------T-  ---------------------
63-30 ----------∆--  ---------  -------------------------------------------------  ---------  -----------------------------  ---------  ---------------------
63-31 -------------  ---------  -------------------------------------------------  ---------  -----------------------------  ---------  ---G-----------------
63-32 -------------  ---------  ----------------------------------D--------------  ---------  -----------------------------  ---------  ---------------------
63-33 -------------  ---------  ---------------------------A---------------------  ---------  -----------------------------  ---------  ---------------------
63-34 -------------  ---------  ----------------------------------D--------------  ---------  -----------------------------  ---------  ---------------------
63-35 -------------  ---------  -------------------------------------------------  ---------  -----------------------------  ---------  ---S-----------------
63-36 -------------  ---------  ----------------∆--------------------------------  ---------  -----------------------------  ---------  ---------------------
63-37 -------------  ---------  -------------------------------------------------  ---------  -----------------------------  -----∆---  ---------------------
63-38 -------------  ---------  ------------------------------------------∆------  ---------  -----------------------------  ---------  ---------------------
63-39 -------------  ---------  --------------∆----------------------------------  ---------  -----------------------------  ---------  ---------------------
63-40 -------------  ---------  --------------∆------------------------A---------  ---------  -----------------------------  ---------  ---------------------

                      Epitope                                                         Epitope                                    Epitope
                    1073-1081                                                     1131-1139                                1169-1177

Figure 1  Summary of sequence changes detected over time within the hepatitis C virus (HCV) non-structural 3 (NS3) fragment of a single patient. HCV 
RNA extracted from patient sera at months 12, 28 and 63 was amplified by reverse transcription polymerase chain reaction (RT-PCR). A panel of molecular clones 
spanning the NS3 fragment was aligned with the wild-type consensus sequence which is shown on top (underlined). From a total of 51 nucleotide substitutions 
found, 39 were nonsynonymous, causing amino acid alterations (capital letters). The amplified NS3 fragment encompasses epitopes NS3 1073-1081, 1131-1139 and 
1169-1177. Dashed lines indicate identity to the consensus sequences, whereas positions of synonymous mutations not causing amino acid alterations are marked 
with the greek delta sign (∆).
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SYN mutation for the NS3 fragment covering amino 
acid 1060-1198. As defined earlier for positive Darwinian 
selection, the rate of  NSY substitution usually exceeds 
the SYN substitution rate and heterogeneity increases 
more quickly, whereas at sites subject to negative selec-
tion, the NSY/SYN ratio is < 1 and the heterogeneity 
will be much lower[37,42]. Among the total 51 nucleotide 
substitutions, 18 occurred in the first codon position, 18 
at the second and 15 at the third position. According to 
the methods used by Nei et al[43] and Wang et al[14], theo-
retical values for SYN and NSY mutations were calcu-
lated as 11.7 and 39.3, respectively, which closely match 
our observed values of  12 for SYN and 39 for NSY. The 
total NSY/SYN ratio was 3.3, which is consistent with 
the positive Darwinian selection theory. Furthermore, 
we also compared our observed mutation values from 
different sections of  the amplified region within NS3 
with theoretical values for NSY mutations (Table 2). As 
seen in Figure 2, we found a significantly higher frequen-
cy of  NSY mutations for section 1070-1119, 1130-1139, 
1150-1159 and 1170-1189, earlier described as vari-
able regions and also harboring the known HLA-A*02 
epitopes. As expected, these findings are in contrast to 
the frequencies found within the so-called conservative 
regions covering sections 1060-1069 and 1120-1129 and 
showing a much lower mutation rate. It is notable that 
the 10-fold higher mutation rate within the epitope re-
gion 1073-1081, 1131-1139 and 1169-1177 compared to 
the conservative regions, with a NSY/SYN ratio of  2.8, 
suggests a high level of  positive selective pressure on 
these immunogenic regions. No mutations were found in 
sections 1140-1149, 1160-1169 and 1190-1198 potential-
ly carrying sequences not under immunological pressure 
within this patient. Variants do not seem to accumulate 
within CTL epitopes and most NSY are transient. 

To ensure that the observed mutations were not 
due to nucleotide misincorporations introduced by the 
RT or polymerase during the amplification reaction, 
two control experiments were carried out: In the first 
experiment, 0.01 pg of  a known NS3 plasmid template 
was subjected to PCR amplification in the usual two 
step protocol and subcloned. Sequence analysis of  23 
independent clones showed absolute identity compared 
to the parental clone. In a second experiment, 0.01 pg 
of  the same NS3 plasmid template was linearized and 
in vitro transcribed with T7 RNA polymerase. Limiting 
amounts of  the RNA transcript was subjected to the 

complete RT-PCR amplification procedure, and the am-
plified product was subcloned and sequenced. Out of  17 
independent clones sequenced, only one demonstrated 
a single nucleotide change. An error rate of  2.02 × 10-6 
was calculated according to the formula described by 
Smith et al[37] and found to be well in line with the Pfu 
DNA polymerase error rate reported by others[44,45]. 
Conclusively, these findings not only highlight the fidel-
ity of  the polymerase used for our viral genome ampli-
fication procedure, but also confirm the necessity of  
utilizing proofreading DNA polymerases to prevent false 
interpretation of  mutations in genetic diversity studies 
of  RNA viruses. Taken together, our results suggest that 
the mutations identified by our approach primarily rep-
resent naturally occurring mutations in the HCV RNA 
genome, rather than artificial PCR errors. 

In addition, particular attention was given to the 
analysis of  sequence changes encompassing epitopes 
recognized by CTL responses[34]. Changes that emerged 
within stretches of  sequence containing CTL epitopes 
are shown in Figure 1. As seen, sequence data from the 
epitopes defined within the NS3 region clearly reveal 
evolution in these target regions. By month 63 after 
transmission, bulk sequence data from the single tar-
geted regions illustrates the development of  mixed viral 
populations while still maintaining the original dominant 
sequence. Complete replacement of  the initial virus pop-
ulation with viruses bearing nonsynonymous sequence 
changes within one or more epitope-containing regions 
could not be observed. For epitope CINGVCWTV 
(1073-1081), three mutations developed at residues 1, 6 
and 7, whereas 4 different mutations were noted within 
epitope YLVTRHADV (1131-1139) with changes at 
residues 1, 4, and 6. Only 2 alterations were observed for 
epitope LLCPAGHAV at residues 3 and 8, which may 
indicate a less immunologically pressured epitope. These 
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Table 1  Mutations in the HCV NS3 region

Sample Month 12 Month 28 Month 63 Total

No. of clones tested 30 30 30 90
Clones with mutations 11 14 15 40
Total mutations 13 20 18 51
SYN mutations   2   4   6 12
NSY mutations 11 16 12 39

SYN: Synonymous; NSY: Nonsynonymous; HCV: Hepatitis C virus; NS3: 
Non-structural 3.
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numbers are small, but consistent with the possibility of  
CTL-mediated selection.

Cytotoxicity of wt-specific CTL clones against various 
natural epitope variants
Next, we examined the phenotypic effects of  these 
changes upon CTL recognition. For this reason, we ini-
tially produced CTL clones specifically recognizing tar-
get cells pulsed with wild-type peptides. CTL clone 1073 
was generated recognizing MHC complexes loaded with 
wt1073, whereas CTL 1131 and CTL1169 were made to 
bind complexes harboring wt1131 and wt1169, respec-
tively. Their specificity was confirmed in a separate set 
of  experiments, where CTL clones were stained with 

MHC class Ⅰ tetramers loaded with the corresponding 
HCV NS3 wild-type peptide. Figure 3 shows the result 
for the CTL clone 1073.3 containing tetramer positive 
CD8+ cells in the upper-right quadrant. Additional stain-
ing experiments were performed using clones 1073.2 
and 1073.4 with similar outcome (data not shown). 

Subsequently, the cytolytic activity of  these CTL 
clones was determined by incubating them with target 
cells pulsed with either variant or wild type peptides as 
reference. Results obtained for CTL 1073 (Figure 4A) 
showed a more than 80% cytolytic activity, confirming the 
capability of  this CTL clone to recognize wild-type pep-
tide wt1073 presented by the HLA-A*02 positive EBV 
transformed target B-cell line (L.B3019). In all instances, 

Table 2  Nonsynonymous and synonymous mutations in different regions of HCV NS3

Region (aa) Length (bp) PCR cycles No. of clones Mutation P Mutation

Expected sporadic NSY SYN NSY/ SYN

1060-1069 30 70 90 0.25 1 > 0.050 0 1/0
1070-1079 30 70 90 0.25 5 < 0.001 3 5/3
1080-1089 30 70 90 0.25 4 < 0.001 0 4/0
1090-1099 30 70 90 0.25 3 < 0.001 5 3/5
1100-1109 30 70 90 0.25 5 < 0.001 0 5/0
1110-1119 30 70 90 0.25 3 < 0.001 1 3/1
1120-1129 30 70 90 0.25 1 > 0.050 1 1/1
1130-1139 30 70 90 0.25 4 < 0.001 0 4/0
1140-1149 30 70 90 0.25 0 NS 0 0
1150-1159 30 70 90 0.25 4 < 0.001 0 4/0
1160-1169 30 70 90 0.25 0 NS 0 0
1170-1179 30 70 90 0.25 3 < 0.001 2 3/2
1180-1189 30 70 90 0.25 6 < 0.001 0 6/0
1190-1198 27 70 90 0.23 0 NS 0 0
1073-10811 27 70 90 0.23 4 < 0.001 2 4/2
1131-11391 27 70 90 0.23 4 < 0.001 0 4/0
1169-11771 27 70 90 0.23 3 < 0.001 2 3/2

1Epitope region. Expected sporadic mutations = ER × L × Nc × N × P/Ns, where ER = error rate of polymerases (2.02 × 10-6), L: Nucleotide length of 
compared region; Nc: Number of PCR cycles; N: Number of clones sequenced; P: Proportion of sporadic mutations expected to produce amino acid 
substitutions (2/3), Ns: Number of sample (1) according to Smith et al[37] (1997).  PCR: Polymerase chain reaction; NS: No significant.
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the amino acid changes found within this epitope region 
(1073-1081) showed reduced ability of  the variant pep-
tides to sensitize target cells for CTL lysis. Changes from 
cysteine (C) to serine (S) at position 6 and tryptophan (W) 
to arginine (R) at position 7 were found to be more ef-
fective than changes from a cysteine (C) to tyrosine (Y) at 
position 1 thus showing only a 50% reduction of  specific 
lysis. Similar results were found for the epitope region 
1169-1177 using CTL1169 (Figure 4C). The cytolytic 
activity for the parental peptide wt1169 again was over 
80%. Variant C1171R, containing an amino acid change 
from cysteine (C) to an arginine (R) at position 3 could 

still be recognized with a 60% lytic activity, whereas only 
a minor activity level was noted for A1176T, showing a 
change from alanine (A) to threonine (T) at position 8. 
The control experiment using unrelated wild-type peptide 
wt1131 did not produce any cytolytic response confirm-
ing the specificity of  CTL recognition. Finally, CTL clone 
1131 (covering epitope region 1131-1139) (Figure 4B) was 
also, as expected, able to sensitize target cells for CTL lysis 
when using the wt peptide (wt1131). Target cells loaded 
with variant peptide T1134M and H1136Y with mutations 
at position 4 [threonine (T) to methionine (M)] and posi-
tion 6 [histidine (H) to tyrosine (Y)], respectively, seemed 
nearly unaffected, showing only minor loss of  cytolytic ac-
tivity compared to the wild-type response, suggesting that 
the mutations seen in these particular cases did not abolish 
CTL recognition. In contrast, CTL 1131 completely failed 
to respond to variant peptide Y1131C and showed only 
minor lytic activity using target cells loaded with peptide 
H1136R harboring an amino acid substitution at position 
6 [histidine (H) to arginine (R)]. This result suggests that 
the mutations within variant peptide Y1131C from a tyro-
sine (Y) to a cysteine (C) at position 1 was highly efficient 
to abrogate CTL recognition in contrast to the observa-
tion made for CTL 1073, where the opposite mutation at 
the same position from a cysteine (C) to tyrosine (Y) had 
much less impact on the lytic capability of  the CTL clone. 
Overall, a decrease in specific lysis could be demonstrated 
for the majority of  variant peptides compared to wild-
type responses indicating that most of  our identified HCV 
NS3 epitope variants were able to escape or lower specific 
CTL recognition to various degrees. 

Impact of variant peptides on MHC class Ⅰ binding
To investigate directly whether these amino acid changes 
within the variant peptides were due to impairment of  
peptide binding to MHC and/or to alteration of  recog-
nition of  the peptide-MHC complex by T cells, we per-
formed a series of  peptide binding assays to determine 
if  our identified viral peptide epitope variants lost their 
capacity to form stable class Ⅰ major histocompatibility 
complexes compared to their wild-type counterpart. Af-
ter peptides representing putative escape variants were 
synthesized, binding affinities of  both wild-type and 
variant peptide epitopes were assessed using serial dilu-
tions of  the peptides in FP-based peptide competition 
assays utilizing soluble HLA (sHLA)-A*0201 molecules 
as the binding entity. Each peptide tested generated its 
own binding isotherm from which IC50 values were ex-
tracted. Figure 5A-C present multiple reaction curves 
obtained from the competition experiments, whereas 
Table 3 summarizes assessed IC50 values for the pep-
tides along with their exact amino acid sequences. Using 
previously obtained results[39], we used other assay sys-
tems as guidelines to define an FP-based classification 
system, where peptides with an FP-based IC50 value of   
5000 nmol/L and lower were considered high affinity 
binding, 5000-50 000 nmol/L IC50 values were consid-
ered medium-affinity binding, 50 000-1 000 000 nmol/L 
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IC50 values were judged low-affinity binding, and IC50 
values above 1 mmol/L were regarded as no binders. 
Additionally, low affinity binders were further subdi-

vided into a low (50 000-350 000 nmol/L) and very low 
affinity category (350 000-1 000 000 nmol/L). To provide 
better correlation between peptide binding affinity and 
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Figure 5  Soluble human leukocyte antigen (HLA)-A*0201 competition assays determining the binding capacity (IC50) of natural HCV epitope variants. 
The affinity of three wild type HCV peptide epitopes (bold) wt1073 (A), wt1131 (B), wt1169 (C) derived from three locations within the NS3 region and their variants 
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Table 3  Binding capacity, cytotoxicity and antagonicity of HCV NS3 peptides

Sequence Name Peptide origin Position Peptide 
length (aa)

IC50 
(nmol/L)

R 2 Cytotoxicity 
10 nmol/L (%)1

Inhibition 
1:1 (%)

CINGVCWTV Wt1073 HCV NS3 1073-1081   9   54 640 0.994 86.74 -
CINGVSWTV C1078S HCV NS3 wt1073 (C6S)   9      1271 0.993 24.57 59.30
YINGVCWTV C1073Y HCV NS3 wt1073 (C1Y)   9      1627 0.999 45.21 44.70
CINGVCRTV W1079R HCV NS3 wt1073 (W7R)   9 297 500 0.991 21.02 54.50
YLVTRHADV Wt1131 HCV NS3 1131-1139   9      4800 0.995 52.03 -
YLVMRHADV T1134M HCV NS3 wt1131 (T4M)   9      7200 0.991 44.53 36.75
YLVTRYADV H1136Y HCV NS3 wt1131 (H6Y)   9      7401 0.993 35.56 92.54
CLVTRHADV Y1131C HCV NS3 wt1131 (Y1C)   9      8345 0.995   2.01 67.89
YLVTRRADV H1136R HCV NS3 wt1131 (H6R)   9   27 700 0.993 14.53 47.46
LLCPAGHAV Wt1169 HCV NS3 1169-1177   9   35 440 0.999 84.56 -
LLCPAGHTV A1176T HCV NS3 wt1169 (A8T)   9   27 640 0.998 27.75 61.42
LLRPAGHAV C1171R HCV NS3 wt1169 (C3R)   9   82 100 0.997 59.98 44.39
FLPSDFFPSV HBV-Core HBV Core (18-27)[99] 10           481.1 0.999 NS NS
SLYNTVATL HIV-p17 HIV-1 p17  (77-85)[100]   9      4248 0.984 NS NS
ILKEPVHGV HIV-RT HIV-1 Pol (476-484)[47]   9      7082 0.997 NS NS

1Means of two experiments. Variant substitutions are expressed in underlined letters.
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immunogenicity, binding results from peptides known 
for their ability to induce potent and specific CTL re-
sponses were presented (Figure 5A). Among our viral 
controls, the HBV-derived epitope FLPSDFFPSV was 
found to display very high affinity values. As one of  the 
more referenced peptides found in literature, FLPSDFF-
PSV is known for high affinity binding to A*0201[46-48] 
as well as for inducing potent CTL responses[49]. Ad-
ditional controls were the peptides SLYNTVATL and 
ILKEPVHGV, two other well-studied HIV-derived CTL 
epitopes[50-52].

According to our FP-based classification system, wild-
type peptides wt1131 and wt1169 were found to be of  
high and medium affinity, respectively, matching with the 
high cytolytic activity level of  these CTL clones (Figure 
4B and C). Somewhat unexpected was the low affinity 
binding observed for wild-type peptide wt1073, showing 
a very high cytolytic response when used in combination 
with CTL clone 1073 (Figure 4A). However, it has to be 
noted that this wild-type peptide has two cysteine residues 
within its sequence, allowing for disulfide bond forma-
tion. Potentially, this characteristic could lead to a reduced 
availability of  intact peptides during the assay procedure 
directly affecting IC50 determination, ultimately causing an 
underestimation of  its binding capacity. As the two vari-
ant peptides within this group, C1078S and C1073Y, have 
only a single cysteine in their sequence and demonstrate 
very high affinity thus strongly supporting our hypothesis 
of  a cys-cys interference. 

In reviewing the binding results found for each vari-
ant peptide, none of  the amino acid changes identified 
within each epitope region abolished peptide binding. 
Motif  analysis of  these variants showed that none of  
the anchor positions (defined at position 2 and 9 for 
nonameric peptides and critical for high affinity A*0201-
related binding) contained any amino acid alterations, 
consistent with an escape mechanism affecting mainly 
peptide regions responsible for TCR recognition rather 
than MHC binding. More specifically, variants T1134M, 
H1136Y and Y1131C covering epitope 1131-1139 re-
mained in close affinity range of  the wild-type peptide 
indicating that mutations at positions 1, 4, and 6 had 
practically no effect on their binding capacity. An ex-
ception within this epitope region is variant peptide 
H1136R, whose binding capacity dropped 5.8 fold 
compared to the wild-type peptide probably caused by 
the introduction of  a positive charge derived from the 
arginine (R) residue replacing the original histidine (H) 
residue at position 6. Similar observations were made in 
variant peptides W1079R and C1171R, in which the in-
troduction of  an arginine (R) at position 7 and 3 resulted 
in a more dramatic decrease in affinity. W1079R shifted 
to a 5.4 and C1171R to a 2.3 fold lower binding capac-
ity. It is noteworthy that variant W1079R, like parental 
peptide Wt1073, possesses a disulfide bond potentially 
causing interference in binding thus also causing an 
underestimation of  its binding capacity. Nevertheless, 
these arginine substituted variant peptides were still able 

to bind A*0201. Interestingly, in some cases such as 
C1078S, C1073Y and A1176T, the binding capacity actu-
ally increased compared to the wild-type peptide. 

CTL antagonism
Because peptide variants of  class Ⅰ-restricted epitopes po-
tentially could antagonize naturally occurring epitopes[31], 
we explored this possibility by using different ratios of  
variant to wild-type peptide concentrations (V:W). In these 
antagonist assays, target cells were pre-pulsed with wt1073 
(Figure 6A), wt1131 (Figure 6B) or wt1169 (Figure 6C) 
peptides for 1 h and pulsed a second time after excessive 
washing with variant or control peptide for another hour. 
Notably, results showed that all of  the specific clones 
were antagonized by their corresponding variant pep-
tides generally providing inhibition values above 35% for 
the V:W ratio 1:1 (Figure 6). This observation is in good 
agreement with the obtained IC50 data suggesting that all 
variant peptides are capable of  binding HLA-A*0201. In 
more detail, NS3 variant peptides C1073Y, C1078S and 
W1079R behaved as strong antagonists for CTL 1073 
and inhibited lysis of  target cells at all three ratios tested  
(Figure 6A). An exception is variant peptide W1079R, 
which could not significantly inhibit the lysis of  target 
cells at the low V:W ratio 0.1:1. This is most likely due 
to its much lower affinity compared to the other variant 
peptides within this epitope region. However, the fact that 
W1079R performed well as antagonist above the 1:1 ratio 
supports our earlier concern of  reduced activity within the 
peptide binding assay which seems not to influence this 
cell-based antagonist assay. Equal results were obtained for 
variant peptides Y1131C, T1134M, H1136R and H1136Y 
testing antagonistic effects using CTL 1131 (Figure 6B). 
However, because of  an insufficient amount of  cell mate-
rial obtained for CTL clone 1131, experiments were only 
conducted at a single V:W ratio of  1:1. Nevertheless, all of  
the variant peptides acted as antagonists for this CTL with 
highest inhibition of  target lysis seen for H1136Y (92%), 
followed by Y1131C (68%), H1136R (47%), and T1134M 
(37%). The low inhibition results obtained for T1134M 
was somewhat unexpected considering its much higher 
binding capacity and cytotoxicity compared to the other 
variants within this group. This observation seems to 
indicate the presence of  other factors involved to success-
fully antagonize CTL responses within this experimental 
setup such as peptide stability towards degradation and 
also uptake and transport mechanisms of  the target cell 
potentially influencing peptide availability within the cell. 
Furthermore, both variant peptides C1171R and A1176T 
also demonstrated strong capabilities to antagonize CTL 
1169 responses as shown in Figure 6C. Moreover, it was 
found that control peptide wt1131 (specific to CTL clone 
1131), with high HLA-A*0201 binding affinity, was un-
able to inhibit CTL recognition of  the wild-type peptides 
for CTL 1073 and 1169, respectively (Figure 6A and C). A 
similar result was obtained for wt1169 together with CTL 
1131, suggesting that those natural variant peptides do not 
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simply exert their inhibitory activity by competing with 
wild-type peptides for HLA binding as recently described 
for hepatitis B epitopes by Bertoletti et al[28]. 

DISCUSSION
In recent years, there has been an increasing interest in 
HCV vaccine approaches that elicit CTL, which recognize 
and eliminate cells infected with HCV. Unlike antibodies, 
effective CTL responses can be directed against epitopes 

derived from any viral protein, raising the possibility that 
CTLs can be targeted to regions that are more conserved 
than the viral envelope. Current vaccine modalities can 
elicit potent CTL responses against multiple viral epitopes. 
Indeed, many lines of  evidence indicate that cell-mediated 
immunity plays a major role in restraining HCV infections. 
Several studies have suggested an association between cer-
tain MHC class Ⅰ and class Ⅱ alleles in the control of  viral 
replication. Strong HCV-specific CD4+ and CD8+ T cell 
responses against multiple viral epitopes have been associ-
ated with clearance of  HCV during acute infection[1,15,53-60], 
and thought to be important contributors to protective im-
munity[58,61,62]. A typical example of  replication control by 
CTL was recently presented for HIV, showing antibody-
mediated depletion of  CD8+ cells in infected macaques, 
which resulted in dramatically increased virus loads in 
both acute and chronic infections[63-65]. However, despite 
the presence of  specific CD8+ CTL responses, more than 
80% of  individuals develop a persistent HCV infection. 
Although there is increasing evidence for the importance 
of  HCV-specific T cell responses in the resolution of  
HCV infection, reasons for the failure of  the immune 
system to eradicate the virus are less clear[66]. Functional 
impairment of  the antigen-specific CTL responses has 
been observed by several investigators and is thought to be 
possible reasons for viral persistence despite measurable T 
cell responses in HCV[66-69]. Under normal circumstances 
CD8+ T-cells contribute to the control of  viral infections 
by recognizing peptides of  viral proteins presented by 
MHC class Ⅰ molecules on infected cells. If  HCV peptides 
are presented to the immune system, why does the virus 
persist? One potential explanation for this phenomenon is 
that HCV seems to accumulate mutations in both its struc-
tural and NS proteins[36,70], and escape mutants may emerge 
under the presence of  immune selection pressure exerted 
by CTLs against wild-type virus. Despite the importance 
of  the CTL epitope viral mutation for immune evasion, in 
HCV infection many highly targeted epitopes have a low 
mutation frequency. Epitopes such as HLA-A2 restricted 
NS3 1073-1081 are consistently targeted by CD8+ T cells, 
but amino acid mutations facilitating immune evasion are 
rarely observed[16,71]. Since the NS3 protein shares both 
protease and NTPase-dependent helicase functions, it has 
been proposed that mutations in these epitopes may be 
lethal to the virus[72]. Additionally, another study indicates 
that CTL escape mutations emerging early in infection are 
not necessarily stable, but are eventually replaced with vari-
ants that achieve a balance between immune evasion and 
fitness for replication[73].

CTLs contribute to the control of  viral infections 
by recognizing peptides of  viral proteins presented by 
MHC class Ⅰ molecules on infected cells. Some viruses 
have developed strategies to evade recognition by CTL 
and one of  these strategies involves antigenic variation in 
CTL epitopes. The emergence of  CD8+ escape variants 
has been demonstrated in numerous other viral infections 
chronically infecting their host like HBV, HIV, or SIV[74-78]. 
In HCV infection, a strong association between viral per-
sistence and the development of  escape mutations has 
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Figure 6  Antagonistic effect of NS3 peptide variants inhibiting specific 
cytolytic activity of specific CTL clones. A detailed inhibition profile is shown 
for CTL clones 1073 (A) and 1169 (C) in which target cells were pre-pulsed 
with 10 nmol/L of wild-type peptide, and then incubated at indicated ratios of 
variant to wild-type peptide concentrations (V:W). Wild-type peptides wt1131 
and wt1169 were used as negative controls for experiments using CTL clone 
1073, where only a single control (wt1131) was used for tests involving CTL 
clone 1169. Both data sets were determined at effector to target ratios of 20:1. 
Because of lack of material, a more simplified profile is shown for CTL clone 
1131 (B) testing only a V:W ratio of 1:1 with wt1169 as negative control. All 
experiments were performed in duplicates.
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been demonstrated in the chimpanzee model[4,15,62]. In this 
study, animals with persistent infections developed muta-
tions in multiple regions of  the viral genome encoding 
known epitopes and were largely confined to the MHC 
class Ⅰ restriction element expressed by these animals. 
Further, such mutations correlated with abrogated CTL 
function. In addition to studies in acute hepatitis, other 
sequence variations in epitopes recognized by CD8+ CTLs 
have been identified in humans with chronic HCV infec-
tions[16-20,22]. By focusing on single MHC class Ⅰ alleles, 
Tsai et al[18] observed variant epitope sequences with CTL 
antagonist activity within an A*02-restricted HCV E1 
epitope in two patients who developed chronic infections, 
whereas Timm et al[20] described the development of  CTL 
responses against a single HLA-B*08-restricted epitope 
within the NS3. Furthermore, Ray et al[22] used the unique 
approach of  comparing the sequences of  viruses from 
22 humans with chronic hepatitis C with the sequence of  
the single common virus. The expression of  HLA-B*07, 
HLA-B*35, or HLA-B*37 alleles were found to be linked 
to the presence of  mutations in epitopes presented by 
these alleles, indicating a likely role for CTL-mediated 
pressure in driving viral evolution. All these manuscripts 
constitute a critical mass of  evidence for CTL muta-
tions in MHC class Ⅰ-restricted epitopes of  HCV, which 
may play an important role in evasion of  the antiviral 
CTL response. CTL activities in vivo may be impacted by 
cross-recognition with HCV-related or unrelated epitope 
sequences found in humans. For example, there exists 
partial sequence homology between the NS3 1131-1139 
and NS4 1585-1593 epitopes and between NS 1073-1081 
epitope and influenza-A neuraminidase, a common hu-
man pathogen.

Study of  viral evolution throughout the course of  
HCV infection has hence proved extremely difficult in 
the past. Much effort has therefore recently been direct-
ed to the monitoring of  HCV evolution. Such analyses 
allow definitive assessment of  changes within the viral 
genome, which are critical in determining the role of  
immune selection pressure in viral evolution. Since the 
high rate of  chronicity after acute HCV infection is dif-
ficult to explain in the presence of  a multi-specific CTL 
response[18], we sought to identify mechanisms favoring 
viral persistence. As noted earlier, we have previously 
described an immunodominant T-cell epitope restricted 
by HLA-DR15 in HCV NS3, NS3 358-375, for which 
epitope variants evolve through immune selection and 
stimulate not only attenuated levels of  proliferation and 
IL-2 production, but also higher levels of  type 2 cyto-
kines[13,79]. We reasoned that if  CD8+ CTL exerts selec-
tion pressure on the virus, then the frequency of  amino 
acid replacement should be higher in class Ⅰ MHC 
restricted epitopes as well, potentially altering the out-
come of  infection by preventing or delaying clearance of  
infected hepatocytes by T lymphocytes and thus contrib-
ute to persistent HCV infection.

In order to identify escape mutations in a single patient 
with chronic infection, we monitored the genetic diversity 

in a region of  the HCV NS3 protein that contains HLA-
A*02-restricted CTL epitopes, NS3 1073-1081[34,54,80], 
NS3 1131-1139[81,82], and NS3 1169-1177[60,83]. Sequence 
analysis presented extensive variations in this region along 
with significant substitutions in segments encoding the 
class Ⅰ restricted epitopes. Furthermore, results showed 
that the ratio of  nonsynonymous base substitution (which 
changed the amino acid encoded) to synonymous base 
substitution (which left encoded amino acids unchanged) 
in these NS3 epitopes was 10-fold higher than in flanking 
sequences. This is comparable with our previous observa-
tions and consistent with the model for a positive Dar-
winian selection pressure expected for immune-mediated 
selection of  escape variants at the epitope level[13,14,21]. 
Genetic variation is inherent to all RNA viruses but has 
been best characterized for HIV-1, which is the result of  
a high number of  errors made by the RT enzyme[84], the 
absence of  an RT proofreading mechanism during rep-
lication[85,86], the fast turnover of  virions in HIV infected 
individuals[87-89] and selective immunological pressure from 
the host. Since HCV replication is directed by an error-
prone RNA-dependent RNA polymerase encoded by the 
viral NS5b gene, which due to its propensity to introduce 
mutations into the viral genome, seems to provide the 
same selective advantage enjoyed by HIV, facilitating pref-
erential expansion of  the mutant progeny that potentially 
evade immune recognition. As a result, the virus popula-
tion in an infected patient does not consist of  a single 
uniform sequence but rather a distribution of  different 
variants or quasispecies. The generation of  new antigenic 
variants that escape the current immunological attack 
may lead to a persistent infection that culminates in the 
development of  chronic infections. However, the mas-
sive heterogeneity observed in the worldwide epidemic of  
HIV-1 originated from a rapid viral turnover in HIV in-
fected individuals, and seems to be much less extensive in 
chronic HCV infected individuals where the initial highly 
homogeneous virus population changes with much slower 
kinetics towards a mixed viral population. 

Indeed, this process of  immune evasion through 
mutation that characterizes infection with HCV viruses 
is a substantial barrier to the development of  successful 
vaccines and therapeutic interventions based on ma-
nipulation of  the T cell response. From this perspective, 
it is essential to gain a more integrated picture of  the 
controlling influences that underlie the complex relation-
ship between HCV and CD8+ T cell immunity. Due to 
the observed viral evolution in the NS3 region, we hy-
pothesized that the newly discovered variant sequences 
may resemble mutations capable of  escaping from the 
original CTL response against the wt epitope. For this 
reason, we examined the relationship between cloned 
CTL responses and variant viral peptide sequences de-
rived from the three NS3 epitopes. In total, 5 out of  the 
9 CTL responses studied here were not recognized by 
specific CTL and another four variant peptides dramati-
cally reduced the cytolytic activity of  CTL. Nonetheless, 
comparison of  features of  CTL suggested that both 
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quantitative and qualitative factors may play a role in 
determining the pressure exerted by individual epitope-
specific CTL responses on in vivo viral replication. Con-
sidering that HLA-A*02 represents the most frequent 
allele in the Northern American population with a gene 
frequency of  27.2% in Caucasians, 23.0% in Hispanics, 
22% in Natives and 12.3% in African Americans[90], we 
assume that, in the absence of  reversion, certain variants 
can be expected to be present at least in some HLA-
A*02-negative subjects with chronic infection. Another 
factor that likely has an important impact on the extent 
and kinetics of  viral escape from epitope-specific CTL 
responses is the cost of  escape to intrinsic viral fitness. 
Several papers[91,92] provide examples of  high costs to 
intrinsic viral fitness preventing a lasting impact on over-
all viral evolution of  particular epitopes. If  CTL escape 
constitutes a common and significant means of  immune 
evasion in HCV infection, vaccination strategies should 
be designed to elicit a response that will have the mini-
mal chance of  being escaped after infection. One way 
in which escape can be reduced is by induction of  a T 
cell response that exerts balanced pressure against mul-
tiple viral epitopes (e.g. composed of  multiple epitope-
specific responses of  similar magnitude and efficacy). 
A vaccine-generated host immune response that at-
tacks the primary viral strain and subsequent mutants 
that arise during replication would possibly circumvent 
persistence through elimination or drive viral evolution 
towards defective mutants with high fitness cost and 
which lack the ability to infect new host cells or repli-
cate in infected cells.

With respect to cellular immune responses, muta-
tions can have effects other than loss of  binding to MHC 
or TCR molecules. Studies in HLA class Ⅰ restricted 
systems have demonstrated that altered peptide ligands 
(APLs) may antagonize the immune response or lead 
to antigen-specific anergy not only in CTL responses to 
HCV[10,16-18] but also to the inhibition of  CTL responses 
to native antigens in other viral systems[28,31,32,93,94]. Based 
on our previous work with the class Ⅱ restricted epitope 
NS3 358-375[13,14], we were interested to know whether 
class Ⅰ restricted variant epitopes for NS3 could also act 
as APLs and thus antagonize CTL function. Indeed, most 
variant peptides for each of  the three CTL epitopes were 
capable of  acting as antagonists and suppressed CTL rec-
ognition of  wild-type peptide epitopes. For some of  the 
variant peptides, inhibition was detectable at antagonist 
concentrations as low as 1 nmol/L, which is similar to 
physiological levels of  natural peptides within infected 
cells according to Christinck et al[95]. Thus, it is interesting 
to speculate that escape and antagonism may together 
serve to blunt the CTL response to multiple HCV epit-
opes. Ultimately, antagonism may play an important role 
in the persistence of  HCV and other viral infections, 
where mutant viruses harboring antagonist APL epit-
opes may aid in the survival of  wild-type viruses which 
otherwise would be recognized and destroyed by CTL. 
Furthermore, these observations are likely due to TCR 

antagonism as opposed to MHC blockade, which is sup-
ported by the fact that experiments using wild-type con-
trol peptides with high HLA-A*02 binding affinity failed 
to show inhibition of  CTL recognition of  targets pulsed 
with a CTL corresponding wild-type peptide. This repre-
sents a different mechanism than that reported earlier by 
Bertoletti et al[28]. In terms of  the practical implications of  
this phenomenon, reported antagonism of  T lymphocyte 
activity in a vaccine study is of  particular concern because 
the antagonism was identified in a patient that became in-
fected following vaccination[96]; antagonism may therefore 
represent a potential mechanism for vaccine failure and 
requires further careful consideration.

Overall, our data are correlative and it is important to 
emphasize that the coexistence of  virus encoding wild 
type and variant epitopes does not prove that such are 
selected for by in vivo CTL responses. In the absence of  
a convenient animal model for HCV infection, the causal 
relationship between blunted CTL responses and a vari-
ant viral peptide sequence in HCV infection cannot be 
tested directly[97,98]. Nonetheless, the presence of  variant 
peptides that are not recognized by or are able to antag-
onize specific CTL in the same patient is consistent with 
the notion that CTL pressure on a mutable virus such 
as HCV can result in the selection of  escape or APL 
variants, similar to proposals by others with respect to 
HCV[16,18] and other viral infections[31,74]. The fact that all 
variant peptides in the NS3 1073-1081 epitope were able 
to antagonize two CTL clones specific for the wild-type 
sequence suggests that immune selection for variants, if  
it exists, may be very strong. In line with this is the fact 
that similar results were obtained with variant peptides 
located in epitopes NS3 1131-1139 and NS3 1169-1177 
although clones were differentially susceptible to the 
inhibitory activity of  certain variant peptides. Alterna-
tively, if  such variants arise from quasispecies variations 
present in the initial inoculums, they would need to be 
maintained without sacrificing viral fitness in a signifi-
cant way. This raises a question, currently unanswered, 
as to whether mutation of  the HCV genome recapitu-
lates quasispecies diversity within a single patient. To our 
knowledge this has not been investigated, but the answer 
would have important ramifications for understanding 
the immuno-pathogenesis of  an HCV infection.

In summary, the findings presented here illuminate 
the potential mechanisms that underlie observed patterns 
of  mutational immune escape. Analyses of  MHC binding 
data suggest that amino acid substitutions in the bound 
peptide preferably impact TCR recognition, rather than 
MHC binding, as a consequence of  continuous shifts in 
antigen topography that exemplify adaptive viral evolution 
to the individual host environment. In addition, the ability 
of  naturally occurring variant forms to antagonize CTL 
clones, as suggested within this study, is increasingly recog-
nized in chronic infections of  other viruses. In this light, 
persistence of  HCV seems to be facilitated by viral evolu-
tion not only enabling the escape from prominent CTL re-
sponses but also through antagonistic effects triggered by 
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viral variants. It can be imagined that various variant pep-
tides, which were found to have similar binding affinities 
to the MHC, compete against the wild type and therefore 
help to maintain wild-type virus by lowering the number 
of  wild-type peptides to be recognized by patient CTLs. 
In any event, simultaneous analysis of  the viral nucleotide 
sequence and the CTL response to multiple CTL epitopes 
in the same individual is needed to determine the potential 
contribution of  CTL escape variants to HCV persistence. 
Information on heterogeneity in a single carrier seems 
very important in understanding immunopathogenic pro-
cesses that may be influenced by viral genomic changes; 
such goes beyond a simple paradigm of  viral escape from 
strong and multi-specific CTL responses against various 
immunodominant epitopes and should be considered as 
a potential determinant of  HCV persistence. However, 
variants do not seem to accumulate within CTL epitopes 
but occur in early infection. Other minor species may be 
present but not detected and/or arise at time points other 
than those examined. We suggested that HCV escape mu-
tants occurring are transient, but are eventually replaced 
with variants/or wild type that may seek a balance between 
avoiding recognition by host immune cells and reducing 
fitness for replication. Ultimately, viral mutants that escape 
immune recognition are a formidable challenge to the de-
sign of  an effective HCV vaccine. 
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epitopes might aid in the survival of infected cells producing wild-type viruses, 
which would otherwise be recognized and destroyed by cytotoxic T lymphocytes 
(CTLs). Although parts of this issue have been examined in chronic HCV 
infection unresolved questions remain, including whether naturally occurring 
variants antagonize CTL responses to wild-type epitopes that are found within 
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