EDITORIAL

464 Classificatory updates in verrucous and cuniculatum carcinomas: Insights from the 5th edition of WHO-IARC head and neck tumor classification
Silveira FM, Schuch LF, Bologna-Molina R

468 Understanding the role of transmembrane 9 superfamily member 1 in bladder cancer pathogenesis
Gade VKV, Yadav BS

472 Management of lateral pelvic lymph nodes in rectal cancer: Is it time to reach an Agreement?
Romero-Zoghbi SE, López-Campos F, Couñago F

478 Tumor infiltrating lymphocytes in gastric cancer: Unraveling complex interactions for precision medicine
Kapoor M, Sehrawat A, Karthik J, Sundriyal D

REVIEW

482 Focus on current and emerging treatment options for glioma: A comprehensive review
Lucke-Wold B, Rangwala BS, Shafigue MA, Siddiq MA, Mustafa MS, Danish F, Nasrullah RMU, Zainab N, Haseeb A

496 Immune pathway through endometriosis to ovarian cancer
Calmon MS, Lemos FFB, Silva Luz M, Rocha Pinheiro SL, de Oliveira Silva LG, Correa Santos GL, Rocha GR, Freire de Melo F

MINIREVIEWS

523 Britainin – a beacon of hope against gastrointestinal tumors?
Kajdanek A, Kolat D, Zhao LY, Kciuk M, Pasieka Z, Kałuzińska-Kolat Ż

531 Molecular targets and mechanisms of different aberrant alternative splicing in metastatic liver cancer
Geng DY, Chen QS, Chen WX, Zhou LS, Han XS, Xie QH, Guo GH, Chen XF, Chen JS, Zhong XP

ORIGINAL ARTICLE

Retrospective Cohort Study

540 Comparative effectiveness of immunotherapy and chemotherapy in patients with metastatic colorectal cancer stratified by microsatellite instability status
Niu CG, Zhang J, Rao AV, Joshi U, Okolo P

Retrospective Study

548 Elevated cardiovascular risk and acute events in hospitalized colon cancer survivors: A decade-apart study of two nationwide cohorts
Desai R, Mondal A, Patel V, Singh S, Chauhan S, Jain A
<table>
<thead>
<tr>
<th>Contents</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>World Journal of Clinical Oncology</td>
<td></td>
</tr>
<tr>
<td>Monthly Volume 15 Number 4 April 24, 2024</td>
<td></td>
</tr>
<tr>
<td>Basic Study</td>
<td></td>
</tr>
<tr>
<td>554 Regulation of TMEM100 expression by epigenetic modification, effects on proliferation and invasion of esophageal squamous carcinoma</td>
<td>Xu YF, Dang Y, Kong WB, Wang HL, Chen X, Yao L, Zhao Y, Zhang RQ</td>
</tr>
<tr>
<td>CASE REPORT</td>
<td></td>
</tr>
<tr>
<td>566 Low-grade myofibrosarcoma of the maxillary sinus: Two case reports</td>
<td>Mydlak A, Ścibik L, Durzynska M, Zwoliński J, Buchajska K, Lenartowicz O, Kucharz J</td>
</tr>
</tbody>
</table>
ABOUT COVER
Peer Reviewer of World Journal of Clinical Oncology, Ramiro Manuel Fernández-Placencia, FACS, MD, Professor, Surgical Oncologist, Abdominal Surgery Department, Instituto Nacional de Enfermedades Neoplásicas (INEN), Lima Lima034, Lima, Peru. ramirofp02@gmail.com

AIMS AND SCOPE
The primary aim of World Journal of Clinical Oncology (WJCO, World J Clin Oncol) is to provide scholars and readers from various fields of oncology with a platform to publish high-quality basic and clinical research articles and communicate their research findings online.

WJCO mainly publishes articles reporting research results and findings obtained in the field of oncology and covering a wide range of topics including art of oncology, biology of neoplasia, breast cancer, cancer prevention and control, cancer-related complications, diagnosis in oncology, gastrointestinal cancer, genetic testing for cancer, gynecologic cancer, head and neck cancer, hematologic malignancy, lung cancer, melanoma, molecular oncology, neurooncology, palliative and supportive care, pediatric oncology, surgical oncology, translational oncology, and urologic oncology.

INDEXING/ABSTRACTING
The WJCO is now abstracted and indexed in PubMed, PubMed Central, Emerging Sources Citation Index (Web of Science), Reference Citation Analysis, China Science and Technology Journal Database, and Superstar Journals Database. The 2023 Edition of Journal Citation Reports® cites the 2022 impact factor (IF) for WJCO as 2.8; IF without journal self cites: 2.8; 5-year IF: 3.0; Journal Citation Indicator: 0.36.

RESPONSIBLE EDITORS FOR THIS ISSUE
Production Editor: Yu-Qing Zhao; Production Department Director: Xu Gan; Cover Editor: Xu Gan.
Tumor infiltrating lymphocytes in gastric cancer: Unraveling complex interactions for precision medicine

Mayank Kapoor, Amit Sehrawat, Jayalingappa Karthik, Deepak Sundriyal

Abstract

This editorial will focus on tumor immunity and the factors that alter the tumor immune micro-environment. The role of tumor infiltrating lymphocytes (TILs) will also be discussed in detail, including the types, mechanism of action, and role. Gastric cancer (GC) often presents in the advanced stage and has various factors predicting the outcomes. The interplay of these factors and their correlation with the TILs is discussed. A literature review revealed high intra-tumoral TILs associated with higher grade, HER2-, and Helicobacter pylori negativity. Moreover, stromal (ST) TILs correlated with lower grade and lesser recurrence risk in GC. High TILs in ST and invasive border also correlated with mismatch repair deficiency status. Further characterization of the CD3+, CD8+, and other cells is also warranted. In the future, this complex correlation of cancer cells with the immune system can be explored for therapeutic avenues.

Key Words: Tumor infiltrating lymphocytes; Gastric cancer; Helicobacter pylori; HER-2-neu

Core Tip: Tumor infiltrating lymphocytes (TILs) are an essential component of the tumor microenvironement. The association of TIL levels with outcomes of malignancies is an upcoming field. This correlation may be utilized to explore the new immuno-oncological therapeutic avenues.
INTRODUCTION

Gastric cancer (GC) often presents at an advanced stage, making successful treatment a daunting challenge. Immuno-therapy is considered for treating GC because of the high tumor mutation burden[1]. Hence, a more in-depth understanding of tumor immunity in GC is needed. The tumor cells may be eliminated by these immune cells or escape detection. In the elimination phase, the cells, like natural killer cells, with the help of dendritic cells and CD4+ T-cells, recognize and eliminate tumor cells. However, the less immunogenic tumor cells can escape the immuno-surveillance.

Based on the presence of immune cells, tumors can be classified into inflamed and non-inflamed[2]. These inflammatory cells may contribute to pro- or anti-tumor activities. Amongst these cells, the tumor-infiltrating lymphocytes (TILs) are the significant determinants of the host immune response to tumor cells. TILs have recently gathered much attention because of their presumed role in carcinogenesis and therapeutics[3]. The “Hallmarks of Cancer” proposed by Hanahan et al[4] now include inflammatory infiltrates into the tumors as one of the components. This is because of their roles in tumor progression and escape from the host immunity. The new technological advancements mean improved assessment of tumor infiltrates and identification of genetic signatures expressed in the tumor micro-environment (TME).

TILs and their functions have now become a leading topic of research. We can discover the prognostic relevance of TILs, which can help predict outcomes and guide therapy. The complex correlation of cancer cells with the immune system can be explored for therapeutic avenues.

TILS IN GC

The magnitude of TIL infiltration is thought to be related to the control of cancer growth, progression, and metastasis. In addition, it may be predictive of the response to cytotoxic treatment[5]. Still, various studies have shown conflicting results[6,7]. The prognostic role of TILs in GC needs further clarification. TILs, as a natural component of the immune system, can offer a tailored approach to battling GC. It is critical to understand the heterogeneity of TILs and their interaction with the tumor microenvironment. TILs differ according to their location in the tumor. These include intratumoral (IT), stromal (ST), and invasive border (IB)[8]. An analysis of the studies of IT TILs revealed robust hazard ratios (HRs) for overall cancer survival (OCS) than for other TILs. Studies of the pan-T-cell IT TILs, such as CD3/TIL, CD4, and CD8, in GC tissues revealed association with survival (CD3: HR = 0.65, 95%CI: 0.5-0.8; CD4: HR = 0.7, 95%CI: 0.55-0.9; CD8: HR = 0.65, 95%CI: 0.5-0.85). Higher CD8+ cells demonstrated the greatest overall survival (OS) improvement. In contrast, TILs with high FOXP3+ expression significantly correlated with decreased OCS (HR = 1.89, 95%CI: 1.5-2.3). The transcription factor FOXP3, presenting with the CD4+, CD25+, and FOXP3+ phenotype, is responsible for the T regulatory (Treg) cells. Treg cells promote immune tolerance in the TME by suppressing the anti-tumor T-cells. This can explain this association of decreased OCS with high FOXP3+ cells[9,10]. A meta-analysis of around 2900 cases demonstrated a significant association between higher pan T-cell marker (+ve) TILs and better survival[11]. It implies the role of adaptive immunity in the anti-tumor response. TILs have also shown apoptosis in GC models[12]. Interestingly, a higher number of TILs in patients with microsatellite instability (MSI) or Epstein Barr virus (EBV) associated GC correlated with better treatment outcomes and longer OS, prompting the association of TILs with other factors[13-15].

ASSOCIATION WITH OTHER FACTORS

Recent advances in cancer research have shed light on the intricate relationships between Helicobacter pylori (H. pylori) infection, mismatch repair (MMR) status, HER2 amplification, and TILs in the context of GC. These connections have brought a deeper understanding of this complex disease and are opening new avenues for targeted therapies and precision medicine.

H. pylori: A pervasive culprit

H. pylori is a bacterium that colonizes the stomach lining and has long been implicated as a significant risk factor for GC. Chronic H. pylori infection can lead to the development of chronic gastritis, which, over time, may progress to atrophic gastritis, intestinal metaplasia, dysplasia, and ultimately GC. This journey from infection to malignancy underscores the need for early detection and eradication of H. pylori in at-risk individuals. H. pylori infection triggers an inflammatory response in the stomach lining, contributing to the initiation and progression of GC. This chronic inflammation damages DNA and leads to the recruitment of TILs, which are a part of the immune system's response to the infection.
MMR status: A genetic determinant

In the realm of GC, MMR status is a crucial genetic determinant. MMR proteins are responsible for correcting DNA replication errors and ensuring genomic stability. Deficiencies in MMR (dMMR), typically characterized by MSI, can result in genetic mutations and increased susceptibility to cancer development.

The association between MMR status and GC is multifaceted. Individuals with MSI-high gastric tumors tend to have a more favorable prognosis due to the increased presence of TILs. These TILs, often enriched in MSI-high tumors, are believed to have a more potent anti-tumor effect.

HER2 amplification: A target for therapy

HER2, a member of the epidermal growth factor receptor family, is known for its role in several cancers, including breast and GC. HER2 amplification or overexpression in GC represents a specific subset of cases that can be targeted with precision therapies.

Trastuzumab, a monoclonal antibody targeting HER2, has been approved to treat HER2-positive GC. Notably, HER2-positive tumors often exhibit increased TIL infiltration, pointing to the interplay between HER2 and the immune response.

The path forward: Precision medicine and targeted therapies

Understanding the interplay between *H. pylori* infection, MMR status, HER2 amplification, and TILs in GC is vital for tailoring therapies to individual patients. Precision medicine in GC is evolving, with targeted therapies like trastuzumab for HER2-positive cases and immunotherapies that aim to enhance TIL activity showing promise. Hoilat *et al.*[16] reviewed the association between *H. pylori* infection, mismatch repair, HER2, and TILs in GC. The study addresses the critical question of the TIL-associated predictive factors. They included 503 surgically treated stage I-III GC patients. Analysis of the TILs was done following standardized international TILs working group recommendations to determine IT, ST, and IB compartments. Immunohistochemistry (IHC) stained tissue tumor arrays were utilized to calculate immune cell density (CD3, CD8, and CD163). They also determined dMMR and HER2-status by IHC. *H. pylori* infection was evaluated by histology and by quantitative polymerase chain reaction in a subset. dMMR was found in 34.4%, HER2+ status in 5%, and *H. pylori* infection in 55.7%. TILs were subdivided into the IB, IT, and ST compartments. Median TIL levels were higher in IB and ST than in the IT compartment. They also found a correlation with the grade of the tumor. Grade 3 tumors were associated with high IT TIL (*P* = 0.038), whereas ST-TIL with grade 1 (*P* < 0.001). ST and IB TILs were seen to be higher in dMMR tumors. dMMR was also associated with high CD3 and CD8 densities. HER2- associated with high IT-CD8. Also, *H. pylori* negative status correlated with higher IT-TIL (*P* = 0.009). It was also associated with high CD8 density in IT and ST compartments (*P* = 0.001). High TIL levels were associated with dMMR and *H. pylori*-negative status. Low CD8/CD3 (*P* = 0.001 in IT and *P* = 0.002 in ST compartment) and high CD3/CD163 (*P* = 0.002) predicted lower recurrence and longer survival.

These studies demonstrate that further research is required to identify *H. pylori* infection status because of the effect on the immune microenvironment, which can predict immunotherapy response. Molecular profiling and IHC can help determine the molecular subtypes of GC, guiding personalized treatment plans. The complex relationships between MMR status, HER2 amplification, and TILs in GC pave the way for more precise, effective, and individualized treatment approaches. While challenges remain in optimizing therapies for different subsets of patients, these insights represent a significant step towards conquering this relentless disease. As research progresses, we can look forward to a future where TILs may be used as prognostic and predictive factors in not only GC but also other malignancies. This warrants further studies on TILs.

CLINICAL IMPLICATIONS

TILs and their subtypes can be used in GC for predictive and prognostic purposes. The complex interplay of TILs with factors like MMR, HER2, and *H. pylori* infection demonstrates that they form an integral part of the immune response to the tumor cells. Further studies will clarify these factors’ role in predicting response to therapy.

CONCLUSION

In conclusion, TILs represent a promising avenue in the battle against GC. It is incumbent upon the medical and scientific communities to come together and realize the full potential of TILs, ensuring that their immense promise becomes a reality for all those affected by this devastating disease and other malignancies.

FOOTNOTES

Author contributions: Kapoor M and Sehrawat A contributed to this paper, designed the overall concept and outline of the manuscript, and contributed to the writing and editing of the manuscript and review of the literature; Karthik J and Sundriyal D contributed to the discussion and design of the manuscript.
Conflict-of-interest statement: The authors have no conflict-of-interest to disclose.

Open-Access: This article is an open-access article that was selected by an in-house editor and fully peer-reviewed by external reviewers. It is distributed in accordance with the Creative Commons Attribution NonCommercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: https://creativecommons.org/Licenses/by-nc/4.0/

Country/Territory of origin: India

ORCID number: Mayank Kapoor 0000-0002-7764-0044; Amit Sehrawat 0000-0001-7100-8999.

P-Editor: Zhao S

REFERENCES

3 Whiteside TL. Tumor-Infiltrating Lymphocytes and Their Role in Solid Tumor Progression. *Exp Suppl* 2022; 113: 89-106 [PMID: 35165861 DOI: 10.1007/978-3-030-91311-3_3]

