Retrospective Study

Artificial intelligence technology and ultrasound-guided nerve block for analgesia in total knee arthroplasty

INTRODUCTION

Entering the century of rapid development, the phenomenon of aging population is also increasing, aging problems have received widespread social attention, middle-aged and elderly people are prone to knee joint lesions, the most important feature of knee joint lesions is its multiple, this disease affects the motor function of the elderly\(^1,2\). Among the disabling chronic diseases, gonarthritis also accounts for a considerable part, and only knee replacement by surgery can minimize the patient’s pain, help the patient get rid of the disease distress as much as possible, help them establish a new outlook on life, and enhance the quality of life\(^3\). However, surgery in the treatment of diseases at the same time, will bring a greater degree of trauma to patients, the most ideal anesthesia is perioperative analgesia. This anesthesia method is not only aimed at the surgical process, but also includes the postoperative period. If reasonable nursing is given in the perioperative period, the incidence rate of postoperative complications will be greatly reduced. This management not only includes providing a good method for the patient with labor pain, but also includes the guidance and help for the patient ‘postoperative exercise and improving the patient’ s comfort level\(^4\).

Knee joint diseases are mostly seen in middle-aged and elderly people, so artificial knee arthroplasty is also mostly used in middle-aged and elderly people\(^5\). Although the pain of patients can be reduced through surgery, it is often accompanied by more than moderate pain during and after surgery, which not only aggravates the
psychological burden of patients, but also greatly reduces the postoperative recovery effect, and may also lead to the occurrence of postoperative adverse events in serious cases[6]. Therefore, the most important purpose of medical staff is to do a good job of preoperative as well as postoperative anesthesia and minimize the patient's pain[7]. The use of artificial intelligence (AI) technology combined with ultrasound-guided nerve block anesthesia has achieved ideal results, reducing the pain of patients while reducing the incidence of postoperative complications.

MATERIALS AND METHODS

General information

A total of 92 patients with total knee arthroplasty (TKA) who were treated in our hospital from January 2021 to January 2022 were opted, and the patients were divided into two groups according to the treatment regimen. Inclusion criteria: (1) All meet the relevant standards for TKA; (2) Clear consciousness and normal communication; (3) Normal spirit; (4) Normal blood coagulation function; and (5) All know and agree to this study. Exclusion criteria: (1) Patients with allergic reactions to anesthetics; (2) Patients with infection at the puncture site; (3) Patients with severe abnormal coagulation function; and (4) Patients with nerve damage in the bottom extremity on the operating side or abnormal skin sensation patient. Ethics approval was provided by the ethical committee of Wuhan First Hospital. Written informed consent was obtained from all participants. The research group included 31 males and 15 females, with a mean age of 74.7 ± 1.4 years and a mean weight of 64.6 ± 2.1 kg. The control group included 27 males and 19 females, with a mean age of 74.5 ± 1.3 years and a mean weight of 64.3 ± 2.0 kg. No statistically significant difference was found between the two groups.

Intervention methods

Control group: The control group was given combined spinal-epidural anesthesia, and L2-3 was used as the puncture point for puncture anesthesia. Glucose (10%, approved
by Chinese medicine: H13022457, produced by CSPC) was mixed for anesthesia for the patient, and 8-10 mL of lidocaine (1.5%, approved by Chinese medicine: H35020528) was added to the epidural during the operation.

Research group: The research group performed nerve block anesthesia guided by ultrasound, and used a portable ultrasound instrument (S-NERVE, Solo Sound) to perform nerve block anesthesia on the patients. After opting a good position for the patient, let the patient flex their knees and flex their hips. After disinfection, mark points are made. The data is imported into the AI KNEE system to quickly and intelligently generate and automatically segment the three-dimensional bone anatomy of the patient's knee joint. The software automatically identifies anatomical landmarks and measures key knee parameters. After the image was obtained, 25 mL of ropivacaine (0.5%, approved by the State Drug Administration: H20113463, produced by Hebei Yipin Company) was injected into the sciatic nerve using a spinal anesthesia needle; A short-axis view was performed while 20 mL of ropivacaine was injected near the nerve using a spinal needle.

Observation indicators

Sensory block time: Observe and record the sensory block time of the two clusters of patients, including the onset time, perfection time, and duration.

Motor block time: Mainly include onset time, perfection time, and duration.

Visual analog scale: Contrasted the pain conditions of the two clusters of patients at different time points, the score is 10 points, 0 points: no pain; < 3 points: slight pain, but tolerable; 4-6 points: pain affects sleep, but can be tolerated; 7-10 points: pain is intense, unbearable, affects sleep, and affects appetite.
The range of motion of hip flexion and abduction: The changes in the range of motion of hip flexion and abduction after surgery were contrasted between the two clusters.

Complications: Mainly headache, low back pain, nausea and vomiting.

Statistical analysis
The count data was expressed as n (%) and compared using the χ² test. The measurement data was expressed as mean ± SD and compared using the t-test. P < 0.05 was considered as significant differences.

RESULTS

Comparative of sensory block time between the two groups
The time of sensory block onset and sensory block perfection in the research group was shorter than those in the control group, but the results had no significant difference (P > 0.05) (Figure 1). Duration of sensory block in the research group was significantly longer than those in the control group (P < 0.05).

Comparative of motor block time between the two groups
The time of motor block onset and motor block perfection in the research group was shorter than those in the control group, but the results had no significant difference (P > 0.05) (Figure 2). Duration of motor block in the research group was significantly longer than those in the control group (P < 0.05) (Figure 2).

Comparative of visual analogue scales between the two clusters
The visual analogue scale (VAS) scales of the research group were bottom than that of the control group at different time points, and the variance was significant difference (P < 0.05) (Table 1, Figure 3).

Comparative of postoperative hip flexion and abduction range of motion
The postoperative hip flexion and abduction range of motion in the research group were better than those in the control group at different time points, and the variance was significant difference ($P < 0.05$) (Figure 4).

Comparative of complications between the two clusters

The number of patients with headache, back pain, nausea and vomiting in the research group were 1, 2, and 3 respectively, and the complication rate was 2.2%; while those of the control group were 0, 0, and 1, respectively, with a complication rate of 13.0%. The incidence of complications was significantly lower in the research group than in the control group ($P = 0.049$, Table 2).

DISCUSSION

Osteoarthritis is a common joint disease, mainly characterized by joint deformity, dysfunction and deformity\(^{[8-10]}\). At present, TKA is mainly used to treat patients with osteoarthritis, which can relieve joint pain and restore normal function of some joints\(^{[11]}\). However, the operation process of TKA is relatively complex, causing great harm to patients\(^{[12]}\), which can easily lead to stress reactions in patients\(^{[13]}\). Pain is the most common postoperative complication of TKA. Excessive pain will have a certain impact on the quality of postoperative joint training. Reasonable and effective postoperative analgesia for patients can enhance postoperative joint function training treatment, reduce the risk of complications\(^{[14]}\).

Nerve block is to inject drugs directly into nerve trunks, nerve plexuses and other places where nerves gather, or to block nerve pathways through physical stimulation, and block the use of ultrasound-guided knee replacement surgery\(^{[15]}\). The main function of this pump is to transfer the effective concentration of drugs are introduced into the epidural space through a catheter, so that the pain transmitted from the spinal cord is blocked in the process of being transmitted to the nervous system, increased the speed and strength of venous blood return, in this way can greatly reduce the complications of surgery\(^{[16,17]}\).
The AI-based three-dimensional planning system for TKA surgery is used for preoperative planning\[18,19]\[18,19]. The system can accurately segment the skeletal bone fragments based on the preoperative computed tomography images of the patient, using a pixel-level segmentation network and edge smoothing technology based on a recurrent neural network. In nerve block, the concentration of ropivacaine is controlled between 0.2% and 0.5%, and the total amount is less than 3 mg/kg\[20]. Mixing ropivacaine with lidocaine can effectively make up for the lack of slow onset 8 of ropivacaine, and can also effectively expand the area of drug diffusion and block a wider range of\[21]. Our results showed the time of sensory block onset and sensory block perfection in the research group was shorter than those in the control group, but the results had no significant difference\[22]. However, duration of sensory block in the research group was significantly longer than those in the control group\[23].

With the continuous advancement of medical technology, ultrasound guidance has been widely used in anesthesia, which can effectively make up for the shortcomings of conventional nerve block anesthesia\[24\[24]. Our results showed that the complications in the research group was significantly lower than those in the control group, which means that in TKA, the combination of AI technology and ultrasound-guided nerve block can significantly reduce the probability of complications in patients. The VAS scales of the research group were significantly lower than that of the control group at different time points, which indicated that the combination of AI technology and ultrasound-guided nerve block in TKA was more feasible, and the method has no obvious effect on the circulatory system of patients and is easy to be widely used\[25\[25]. The most important thing is that it can significantly reduce the occurrence of various complications in the patient\[24,25\[24,25]. Although the feasibility of ultrasound-guided nerve block is high, this study also has certain shortcomings. Therefore, in the future research process, we will conduct more in-depth research and discussion in order to confirm the accuracy of the results and provide a certain scientific basis for the development of TKA. Provide some reference for other researchers.
CONCLUSION
In TKA, the combination of AI technology and ultrasound-guided 9 nerve block has a significantly effect. The AI-based three-dimensional planning system for TKA surgery performs preoperative planning, reduces the risk of complications, and speeds up patient recovery. The analgesic effect is obvious and it is worth applying.

Research perspectives
The combination of AI technology and ultrasound-guided nerve block is an effective clinical practice method, which provides a certain clinical guidance for postoperative analgesia of knee diseases in middle-aged and elderly people.

REFERENCES

12 Soulioti E, Tsaroucha A, Makris A, Koutsaki M, Sklika E, Mela A, Megaloikonos PD, Mavrogenis AF, Fassoulaki A. Addition of 100 mg of Tramadol to 40 mL of 0.5% Ropivacaine for Interscalene Brachial Plexus Block Improves Postoperative Analgesia in Patients Undergoing Shoulder Surgeries as Compared to Ropivacaine Alone-A
Randomized Controlled Study. *Medicina (Kaunas)* 2019; 55 [PMID: 31340565 DOI: 10.3390/medicina55070399]

Figure Legends

Figure 1 Comparative of sensory block time (mean ± SD). A: Sensory block onset time; B: Sensory block perfection time; C: Sensory block of duration. The duration of sensation in the research group is longer than that in the control group. $P < 0.05$ indicates that there is a significant difference in the duration of sensation between the control group and the research group.

Figure 2 Comparative of motor block time (mean ± SD). A: Motor block onset time; B: Motor block perfection time; C: Duration of motor block. The exercise duration of the research group was shorter than that of the control group. $P < 0.05$ indicates that there was a significant difference in the exercise duration between the control group and the research group.

Figure 3 Comparative of visual analogue scale scores (points, mean ± SD). The visual analogue scale (VAS) score of the research group is lower than that of the control group after surgery. $P < 0.05$ means that the VAS score of the control group and the research group at different time points (2 h, 4 h, 12 h, 24 h, 48 h) after surgery, the variance is significant difference. VAS: Visual analogue scale.

Figure 4 Comparative of hip flexion and abduction range of motion between the two groups after surgery (°, mean ± SD). A: Bucking; B: Outreach. Contrasted with the control group, the research group has greater degree of hip flexion and abduction after surgery. $P < 0.05$ means that the control group and the research group at different time points (24 h, 36 h, 48 h, 7 d, 15 d after the surgery) hip flexion contrasted with abduction activity, the variance was significant difference.
Table 1: Comparative of visual analogue scale scores (points, mean ± SD)

<table>
<thead>
<tr>
<th>Group</th>
<th>2 h post-operation</th>
<th>4 h post-operation</th>
<th>12 h post-operation</th>
<th>24 h post-operation</th>
<th>48 h post-operation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>3.1 ± 1.0</td>
<td>3.3 ± 0.3</td>
<td>3.7 ± 0.6</td>
<td>3.5 ± 1.0</td>
<td>3.2 ± 0.3</td>
</tr>
<tr>
<td>Group (n = 46)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Research</td>
<td>1.0 ± 0.4</td>
<td>1.3 ± 0.4</td>
<td>1.6 ± 0.8</td>
<td>1.2 ± 0.6</td>
<td>1.5 ± 0.4</td>
</tr>
<tr>
<td>Group (n = 46)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P value</td>
<td>< 0.05</td>
<td>< 0.05</td>
<td>< 0.05</td>
<td>< 0.05</td>
<td>< 0.05</td>
</tr>
</tbody>
</table>

Table 2: Comparative of complications, n (%)

<table>
<thead>
<tr>
<th>Group</th>
<th>Headache</th>
<th>Back pain</th>
<th>Nausea and vomiting</th>
<th>Incidence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control Group (n = 46)</td>
<td>1 (2.2)</td>
<td>2 (4.3)</td>
<td>3 (6.5)</td>
<td>13.0%</td>
</tr>
<tr>
<td>Research Group (n = 46)</td>
<td>0 (0)</td>
<td>0 (0)</td>
<td>1 (2.2)</td>
<td>2.2%</td>
</tr>
<tr>
<td>(\chi^2) value</td>
<td></td>
<td></td>
<td></td>
<td>3.867</td>
</tr>
<tr>
<td>P value</td>
<td></td>
<td></td>
<td></td>
<td>< 0.05</td>
</tr>
</tbody>
</table>
Similarity Index

9%

Primary Sources

<table>
<thead>
<tr>
<th>#</th>
<th>Source</th>
<th>Words</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>f6publishing.blob.core.windows.net</td>
<td>51</td>
<td>3%</td>
</tr>
<tr>
<td>2</td>
<td>"6th World Congress-World Institute of Pain", Pain Practice, 2012 Crossref</td>
<td>46</td>
<td>2%</td>
</tr>
<tr>
<td>3</td>
<td>pjms.org.pk</td>
<td>30</td>
<td>2%</td>
</tr>
<tr>
<td>4</td>
<td>downloads.hindawi.com</td>
<td>15</td>
<td>1%</td>
</tr>
<tr>
<td>5</td>
<td>www.frontiersin.org</td>
<td>15</td>
<td>1%</td>
</tr>
<tr>
<td>6</td>
<td>www.zxyjhhl.com.cn</td>
<td>14</td>
<td>1%</td>
</tr>
<tr>
<td>7</td>
<td>www.mdpi.com</td>
<td>13</td>
<td>1%</td>
</tr>
</tbody>
</table>

Excluding Options

- Exclude Quotes: ON
- Exclude Sources: < 1%
- Exclude Bibliography: ON
- Exclude Matches: < 10 Words