World Journal of *Clinical Oncology*

World J Clin Oncol 2024 September 24; 15(9): 1117-1255

Published by Baishideng Publishing Group Inc

World Journal of Clinical Oncology

Contents

Monthly Volume 15 Number 9 September 24, 2024

EDITORIAL

- 1117 Advanced glycation end products in gastric cancer: A promising future Wang MH, Fang H, Xie C
- 1122 Optimizing postsurgical recovery for elderly patients with gastric cancer Isah AD, Shaibu Z, Dang SC
- 1126 Immunosuppressive tumor microenvironment in gastric signet-ring cell carcinoma Xie YQ, Li CC, Yu MR, Cao J
- 1132 Navigating emotional challenges: A journey with patients undergoing chemotherapy Pandey NM, Ramakant P

REVIEW

1136 Colorectal cancer: Recent advances in management and treatment Fadlallah H, El Masri J, Fakhereddine H, Youssef J, Chemaly C, Doughan S, Abou-Kheir W

MINIREVIEWS

How to "pick up" colorectal serrated lesions and polyps in daily histopathology practice: From termino-1157 logies to diagnostic pitfalls

Tran TH, Nguyen VH, Vo DT

1168 Recent advancements in understanding of biological role of homeobox C9 in human cancers Zhang Y, Li J

ORIGINAL ARTICLE

Clinical Trials Study

1177 Systematic treatment in gastric cancer patients with overt bleeding: A propensity score matching analysis Yao YH, Zhang H, Xiao Y, Liu ZT, Shi YY, Yu JY, Li Q, Cao BS

Clinical and Translational Research

1188 Study on the expression and prognostic relationship of MYL6B in liver cancer based on bioinformatics Lv HB, Wu QY, Zhang YJ, Quan SW, Ma N, Dai YQ, Sun Y

Basic Study

Anti-inflammatory effects of Tao Hong Si Wu Tang in mice with lung cancer and chronic obstructive 1198 pulmonary disease

Wang GL, Xu YL, Zhao KM, Sui AF, Wang LN, Deng H, Wang G

I

Contents

CASE REPORT

- 1207 Blastic plasmacytoid dendritic cell neoplasm: Two case reports Ma YQ, Sun Z, Li YM, Xu H
- 1215 Breast cancer and rectal cancer associated with Lynch syndrome: A case report Qin PF, Yang L, Hu JP, Zhang JY
- 1222 Periampullary duodenal neuroendocrine tumor in a patient with neurofibromatosis-1: A case report Zhang XY, Yu JF, Li Y, Li P
- 1232 Successful cetuximab rechallenge in metastatic colorectal cancer: A case report Guedes A, Silva S, Custódio S, Capela A
- 1239 Large-cell neuroendocrine carcinoma of the bladder: A case report Zhou Y, Yang L
- 1245 Prenatal ultrasound diagnosis of fetal maxillofacial teratoma: Two case reports Gao CF, Zhou P, Zhang C

LETTER TO THE EDITOR

1251 Timing of antiviral therapy in patients with hepatitis B virus related hepatocellular carcinoma undergoing hepatectomy

Wan DL, Sun LQ

Contents

Monthly Volume 15 Number 9 September 24, 2024

ABOUT COVER

Peer Reviewer of World Journal of Clinical Oncology, Takashi Ono, MD, PhD, Doctor, Assistant Professor, Radiation Oncology, Faculty of Medicine, Yamagata University, Yamagata 990-9585, Japan. abc1123513@gmail.com

AIMS AND SCOPE

The primary aim of World Journal of Clinical Oncology (WJCO, World J Clin Oncol) is to provide scholars and readers from various fields of oncology with a platform to publish high-quality basic and clinical research articles and communicate their research findings online.

WJCO mainly publishes articles reporting research results and findings obtained in the field of oncology and covering a wide range of topics including art of oncology, biology of neoplasia, breast cancer, cancer prevention and control, cancer-related complications, diagnosis in oncology, gastrointestinal cancer, genetic testing for cancer, gynecologic cancer, head and neck cancer, hematologic malignancy, lung cancer, melanoma, molecular oncology, neurooncology, palliative and supportive care, pediatric oncology, surgical oncology, translational oncology, and urologic oncology.

INDEXING/ABSTRACTING

The WJCO is now abstracted and indexed in PubMed, PubMed Central, Emerging Sources Citation Index (Web of Science), Reference Citation Analysis, China Science and Technology Journal Database, and Superstar Journals Database. The 2024 Edition of Journal Citation Reports® cites the 2023 journal impact factor (JIF) for WJCO as 2.6; JIF without journal self cites: 2.6; 5-year JIF: 2.7; JIF Rank: 175/322 in oncology; JIF Quartile: Q3; and 5-year JIF Quartile: Q3.

RESPONSIBLE EDITORS FOR THIS ISSUE

Production Editor: Yu-Qing Zhao.; Production Department Director: Xu Guo, Cover Editor: Xu Guo.

INSTRUCTIONS TO AUTHORS https://www.wjgnet.com/bpg/gerinfo/204
GUIDELINES FOR ETHICS DOCUMENTS https://www.wjgnet.com/bpg/GerInfo/287
GUIDELINES FOR NON-NATIVE SPEAKERS OF ENGLISH https://www.wjgnet.com/bpg/gerinfo/240
PUBLICATION ETHICS https://www.wjgnet.com/bpg/GerInfo/288
PUBLICATION MISCONDUCT https://www.wjgnet.com/bpg/gerinfo/208
ARTICLE PROCESSING CHARGE https://www.wjgnet.com/bpg/gerinfo/242
STEPS FOR SUBMITTING MANUSCRIPTS https://www.wjgnet.com/bpg/GerInfo/239
ONLINE SUBMISSION https://www.f6publishing.com

© 2024 Baishideng Publishing Group Inc. All rights reserved. 7041 Koll Center Parkway, Suite 160, Pleasanton, CA 94566, USA E-mail: office@baishideng.com https://www.wjgnet.com

W J C O World Journal of Clinical Oncology

Submit a Manuscript: https://www.f6publishing.com

World J Clin Oncol 2024 September 24; 15(9): 1188-1197

DOI: 10.5306/wjco.v15.i9.1188

ISSN 2218-4333 (online)

ORIGINAL ARTICLE

Clinical and Translational Research

Study on the expression and prognostic relationship of MYL6B in liver cancer based on bioinformatics

Hai-Bing Lv, Qing-Yun Wu, Yu-Jiao Zhang, Sheng-Wei Quan, Ning Ma, Yu-Qing Dai, Yan Sun

Specialty type: Oncology

Provenance and peer review: Unsolicited article; Externally peer reviewed.

Peer-review model: Single blind

Peer-review report's classification

Scientific Quality: Grade A Novelty: Grade A Creativity or Innovation: Grade A Scientific Significance: Grade A

P-Reviewer: Soreq L

Received: May 7, 2024 Revised: July 21, 2024 Accepted: August 2, 2024 Published online: September 24, 2024 Processing time: 113 Days and 16.9 Hours

Hai-Bing Lv, Sheng-Wei Quan, Department of General Surgery, Beidahuang Group General Hospital, Harbin 150000, Heilongjiang Province, China

Qing-Yun Wu, Department of General Surgery, Xianning Central Hospital, Xianning 437000, Hubei Province, China

Yu-Jiao Zhang, Department of Medical oncology, Beidahuang Group General Hospital, Harbin 150000, Heilongjiang Province, China

Ning Ma, Department of General Surgery, Daqing Oilfield General Hospital, Daqing 163000, Heilongjiang Province, China

Yu-Qing Dai, College of Clinical Medicine, Bengbu Medical University, Bengbu 233000, Anhui Province, China

Yan Sun, Department of General Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin 150000, Heilongjiang Province, China

Co-first authors: Hai-Bing Lv and Qing-Yun Wu.

Corresponding author: Yan Sun, MD, Chief Doctor, Department of General Surgery, Second Affiliated Hospital of Harbin Medical University, No. 246 Xuefu Road, Nangang District, Harbin 150000, Heilongjiang Province, China. sunyan202405@163.com

Abstract

BACKGROUND

Primary liver cancer is a prevalent and deadly cancer type. Despite treatment advances, prognosis remains poor, with high recurrence rates. Early detection is crucial but challenging due to the disease's insidious nature. Myosin proteins play significant roles in cancer development, influencing cell migration, invasion, and tumor suppression. MYL6B, a myosin light chain, is involved in various cellular processes and has been associated with poor prognosis in colorectal adenocarcinoma and potential as a biomarker in breast cancer.

AIM

To investigate the expression of *MYL6B* in liver hepatocellular carcinoma (LIHC) and its impact on prognosis and potential mechanisms of action using bioinformatics methods.

METHODS

The expression of *MYL6B* in pan-cancer and normal tissues was analyzed using the gene expression profiling interactive analysis 2 and tumor immune estimation resource databases. The expression level of MYL6B in LIHC tissues and its relationship with prognosis were analyzed, immunohistochemical analysis of MYL6B and its effect on immune cell infiltration, and the protein network were further studied.

RESULTS

MYL6B was highly expressed in diffuse large b-cell lymphoma, LIHC, pancreatic adenocarcinoma, skin cutaneous melanoma, thymoma, uterine corpus endometrial carcinoma, uterine carcinosarcoma, and lowly expressed in kidney chromophobe, acute myeloid leukemia, testicular germ cell tumors. The expression level of MYL6B was significantly different between cancer and normal tissues. It had a significant impact on both overall survival and disease-free survival. MYL6B is highly expressed in hepatocellular carcinoma and its expression level increases with cancer progression. High MYL6B expression is associated with poor prognosis in terms of overall survival and recurrence-free survival. The immunohistochemical level of *MYL6B* is high in hepatocellular carcinoma tissues, and MYL6B has a high level of immune infiltration inflammation. In protein network analysis, MYL6B is correlated with MYL2, MYL6, MYL9, MYLK4, MYLK2, MYL12A, MYL12B, MYH11, MYH9 and MYH10.

CONCLUSION

The expression level of MYL6B in LIHC was significantly higher than in normal liver tissues, and it was correlated with the degree of differentiation survival rate, and immune infiltration. MYL6B is a potential target for LIHC treatment.

Key Words: MYL6B; Liver cancer; Bioinformatics; Prognosis; Expression

©The Author(s) 2024. Published by Baishideng Publishing Group Inc. All rights reserved.

Core Tip: In the study, we employed advanced bioinformatics methodologies to meticulously scrutinize the intricate relationship between MYL6B and liver hepatocellular carcinoma (LIHC). It entailed a comprehensive analysis encompassing the contrasting expression patterns observed between LIHC and normal tissue samples, coupled with an intricate examination of how MYL6B expression levels correlate with the staging of cancer progression and the rates of survival. Furthermore, an exhaustive immunohistochemical investigation was conducted to elucidate the nuances of inflammation across varying levels of MYL6B expression in tissue specimens. The findings of this investigation unequivocally underscore MYL6B's pivotal role as a prognostic determinant in hepatocellular carcinoma.

Citation: Lv HB, Wu QY, Zhang YJ, Quan SW, Ma N, Dai YQ, Sun Y. Study on the expression and prognostic relationship of MYL6B in liver cancer based on bioinformatics. World J Clin Oncol 2024; 15(9): 1188-1197 URL: https://www.wjgnet.com/2218-4333/full/v15/i9/1188.htm DOI: https://dx.doi.org/10.5306/wjco.v15.i9.1188

INTRODUCTION

Primary liver cancer is a common cancer type with a high mortality rate. In 2020, there were 905677 new cases (4.7%) and 830180 deaths (8.3%) from liver cancer worldwide[1]. Different treatment strategies are applied for liver cancer patients at different stages. Early-stage liver cancer patients should undergo curative treatments such as liver resection, transplantation, and radiofrequency ablation, while late-stage patients should receive palliative treatments such as transarterial chemoembolization and chemotherapy [2-5]. Despite significant progress in its diagnosis and treatment in recent years, the prognosis of liver cancer remains unsatisfactory. The 5-year survival rate for liver cancer patients after surgery is 37%-65%, and the recurrence rate is as high as 75%-100%[6-8].

However, the high malignancy and insidious nature of liver hepatocellular carcinoma (LIHC) mean that most advanced or end-stage cancer patients have little chance of surgical cure[9]. LIHC is typically detected in the late stages of the disease, at which point there are few effective treatment options to improve survival rates[10]. Therefore, the search for diagnostic biomarkers is crucial for early diagnosis and personalized treatment of LIHC. Additionally, accurate subtyping aids in providing personalized therapy. Myosin plays a significant role in the development of cancer, as it is involved in cell migration, invasion, and tumor suppression. Genetic and epigenetic modifications of genes encoding myosin heavy chains have been found in many types of cancer. In some cases, changes in myosin expression can serve as prognostic factors for patient survival. Therefore, some members of the myosin superfamily may have potential as cancer biomarkers^[11].

Myosin plays an important role in cancer development. Myosin is involved in cancer progression through their roles in cell migration and invasion and their tumor suppressor functions. Genetic and epigenetic alterations of genes encoding

myosin heavy chains have been found in many types of cancer. In some cases, changes in myosin expression can serve as a predictor of patient survival. Therefore, some members of the myosin superfamily have potential as cancer biomarkers [11]. For example, myosin 1e can promote the malignant progression of breast cancer by enhancing tumor cell proliferation and stimulating tumor cell dedifferentiation[12], while the activation of myosin II in cancer cells drives tumor progression through interaction with the secretions of the immune microenvironment^[13]. Additionally, The elevated expression of myosin X in tumors contributes to the invasiveness and metastasis of breast cancer^[14], myosin Vb can function as a tumor suppressor gene in colorectal cancer^[15].

MYL6B is myosin light chain 6B, a protein encoded by the MYL6B gene. Myosins are superfamily of motor proteins that have a significant effect on the process of movement, and myosin light chains can regulate Ca²⁺ transduction[16,17]. As an important myosin light chain, MYL6B is involved in cell viability, adhesion, migration, and endocytosis, tissue structure, and transportation[18-20].

MYL6B is associated with various cancers. For instance, in colorectal adenocarcinoma, MYL6B is correlated with poor prognosis in patients. In vitro functional experiments have validated that knocking down MYL6B can inhibit the proliferation, migration, and invasion of colorectal adenocarcinoma cells, while promoting apoptosis[21]. In breast cancer, MYL6B is upregulated and serves as a potential biological marker. The expression level of MYL6B mRNA in breast tumor tissues is higher than in normal tissues, and in Luminal A type breast cancer, the expression level of MYL6B is significantly positively correlated with the expression of miRNA clusters. Similarly, messenger RNA expression promotes the metastasis of Luminal A subtype breast cancer. MYL6B is significantly upregulated in the blood of breast cancer patients and can be identified with the highest level of protein certainty in human plasma. Therefore, further exploration of *MYL6B* as a potential blood biomarker for breast cancer is warranted^[22].

Therefore, this study used bioinformatics methods to analyze the expression level, staging, and prognostic significance of MYL6B in liver cancer. Based on these analyses, this study elucidates the role of MYL6B in liver cancer and provides potential therapeutic targets for its progression and diagnosis.

MATERIALS AND METHODS

Comparative analysis of MYL6B expression in cancer tissues and normal tissues

The investigation into MYL6B expression profiles involved a meticulous comparison between various cancer tissues and their corresponding normal counterparts, facilitated by the utilization of the gene expression profiling interactive analysis (GEPIA2) database (http://gepia2.cancer-pku.cn/). Furthermore, a comprehensive analysis of *MYL6B* expression across diverse tissue types was undertaken utilizing the tumor immune estimation resource (TIMER) database (http://timer. cistrome.org/). Notably, a rigorous statistical analysis was conducted to discern significant differences in MYL6B expression among various cancer types, thereby enriching our understanding of its potential roles in malignancy progression.

Evaluation of survival outcomes associated with MYL6B expression

Survival outcomes associated with MYL6B were meticulously evaluated through meticulous scrutiny of data obtained from the Kaplan-Meier plotter database (https://kmplot.com/). This encompassed an in-depth analysis of both overall survival (OS) among a cohort of 364 subjects and recurrence-free survival (RFS) within a subgroup comprising 316 individuals. These survival analyses provided invaluable insights into the prognostic implications of MYL6B expression levels in cancer.

Immune infiltration and immunohistochemical staining analysis

Immune infiltration analysis using TIMER database. The exploration of MYL6B expression extended beyond mere quantitative assessments, delving into qualitative aspects through immunohistochemical staining analyses. Leveraging the resources provided by the human protein atlas (HPA) database (https://www.proteinatlas.org/), this endeavor involved the meticulous examination of MYL6B expression in both high-expression cancer tissues and normal tissue counterparts. The antibody HPA063034 (Sigma-Aldrich) was utilized for immunohistochemical analyses.

Exploration of co-expressed genes associated with MYL6B

Furthermore, a deeper understanding of MYL6B's functional implications was sought through an exploration of its coexpression network. This endeavor was facilitated by the utilization of the LinkedOmic database (https://www. linkedomics.org/), enabling the identification and analysis of genes that exhibit coordinated expression patterns with MYL6B. Subsequently, comprehensive analyses of both upregulated and downregulated genes were undertaken, with a focus on the top 50 significantly altered genes. The visualization of these findings was facilitated through the generation of heat maps, enhancing the interpretability and utility of the results.

Additionally, the construction of protein-protein interaction networks surrounding MYL6B was undertaken utilizing the resources provided by the STRING database (https://string-db.org/).

Statistical analysis

The statistical analysis was automatically computed based on the above online databases. $^{a}P < 0.05$ indicated a statistically significant difference.

Figure 1 Expression of MYL6B across various cancer types. A: Comparison between cancerous tissues and adjacent normal tissues using the gene expression profiling interactive analysis database; B: Comparison of cancer tissues with corresponding normal tissues utilizing the tumor immune estimation resource 2.0 database. Statistical significance is denoted by asterisks. *P < 0.05. *P < 0.01. *P < 0.001. TPM: Transcripts per million; ACC: Adrenocortical carcinoma; BLCA: Bladder urothelial carcinoma; BRCA: Breast invasive carcinoma; CESC: Cervical squamous cell carcinoma and endocervical adenocarcinoma; CHOL: Cholangiocarcinoma; COAD: Colon adenocarcinoma; DLBC: Lymphoid neoplasm diffuse large B-cell lymphoma; ESCA: Esophageal carcinoma; GBM: Glioblastoma multiforme; HNSC: Head and neck squamous cell carcinoma; KICH: Kidney chromophobe; KIRC: Kidney renal clear cell carcinoma; KIRP: Kidney renal papillary cell carcinoma; LAML: Acute myeloid leukemia; LGG: Brain lower grade glioma; LIHC: Liver hepatocellular carcinoma; LUAD: Lung adenocarcinoma; LUSC: Lung squamous cell carcinoma; MESO: Mesothelioma; OV: Ovarian serous cystadenocarcinoma; PAAD: Pancreatic adenocarcinoma; PCPG: Pheochromocytoma and paraganglioma; PRAD: Prostate adenocarcinoma; READ: Rectum adenocarcinoma; SARC: Sarcoma; SKCM: Skin cutaneous melanoma; STAD: Stomach adenocarcinoma; TGCT: Testicular germ cell tumors; THCA: Thyroid carcinoma; THYM: Thymoma; UCEC: Uterine corpus endometrial carcinoma; UCS: Uterine carcinosarcoma; UVM: Uveal melanoma.

RESULTS

Expression analysis of MYL6B in various cancers

In multiple cancer tissues, the expression level of MYL6B showed variability compared to normal tissues, MYL6B expression levels differed significantly between cancer and normal tissues (Figure 1A). GEPIA2 analysis revealed MYL6B high expression in diffuse large B-cell lymphoma, pancreatic adenocarcinoma, skin cutaneous melanoma, thymoma, uterine corpus endometrial carcinoma, and uterine carcinosarcoma cancer tissues, while low expression was observed in

Figure 2 Relationship between MYL6B expression and staging in hepatocellular carcinoma. A: Comparison of MYL6B expression levels between liver hepatocellular carcinoma (LIHC) and normal tissues; B: Correlation between MYL6B expression levels and staging in LIHC. TPM: Transcripts per million; LIHC: Liver hepatocellular carcinoma; T: Tumor; N: Normal.

kidney chromophobe, acute myeloid leukemia, testicular germ cell tumors. Furthermore, in LIHC, *MYL6B* showed high expression in GEPIA2 analysis. Similarly, TIMER analysis showed high expression in LIHC with significant differences (Tumor n = 371, Normal n = 50) (Figure 1B).

High expression of MYL6B in LIHC tissues and its significant correlation with grading and staging

In the context of hepatocellular carcinoma (HCC), *MYL6B* demonstrated significant differences when subjected to comparative analysis (Tumor n = 369, Normal n = 160) (P < 0.05), revealing markedly elevated expression levels specifically within the LIHC samples (as illustrated in Figure 2A). Furthermore, upon scrutinizing *MYL6B* expression vis-à-vis tumor staging, a statistically significant correlation emerged [Pr (> F) = 0.00103], underscoring the close association between *MYL6B* expression levels and unfavorable prognostic indicators in LIHC. Moreover, as the disease progressed, a noticeable upward trajectory was observed in the expression levels of *MYL6B* (as depicted in Figure 2B), suggesting a potential link between *MYL6B* expression dynamics and the evolving pathophysiology of HCC.

High expression of MYL6B associated with poor prognosis in HCC patients

To investigate the correlation between *MYL6B* and LIHC prognosis, Kaplan-Meier plotter database was used to explore the association between high and low expression groups of *MYL6B* with survival rates, patient prognosis, and recurrence risk. Results indicated a close association between high gene expression and shorter OS and progression-free survival. Analysis of OS (n = 364), with low expression group (n = 208) and high expression group (n = 156), showed higher OS in the low expression group compared to the high expression group (logrank P = 0.0057), with median survival times of 70.5 months and 41 months, respectively (Figure 3A). For RFS, with low expression group (n = 235) and high expression group (n = 81), median survival times were 36.1 months and 15.17 months, respectively (Figure 3B).

Higher immune infiltration levels of MYL6B

Through comprehensive immune infiltration analyses, we uncover a compelling association between elevated *MYL6B* expression and heightened immune cell infiltration, particularly characterized by increased activation of CD8 + T cells. This observation, depicted graphically in Figure 4A, underscores the immunomodulatory roles of *MYL6B* within the tumor milieu, potentially shaping the host immune response to cancer. Additionally, immunohistochemical staining images obtained from the HPA database further corroborate these findings, revealing differential *MYL6B* expression patterns between normal and cancer tissues (Figure 4B). Notably, high *MYL6B* expression in cancer tissues correlates with the severity of malignancy, underscoring its potential as a biomarker of tumor aggressiveness and immune modulation.

MYL6B gene expression and protein network

Furthermore, the LinkedOmic database was harnessed to delve into the repertoire of co-expressed genes associated with *MYL6B*. This comprehensive analysis unveiled a diverse array of genes that exhibited either positive or negative correlations with *MYL6B* expression. As depicted in Figure 5A, a heat map visualizes the top 50 co-expressed genes, showcasing downregulated genes such as *SARNP*, *SNRPD2*, *ATP5G2*, *SNRPA*, *PFDN5*, and upregulated genes including *KLHL20*, *NFIC*, *PLB2*, *MTM1*, *LONP2*, among others. This systematic exploration of co-expression patterns provides valuable insights into the potential regulatory networks in which *MYL6B* participates, offering avenues for further investigation into its functional roles in HCC.

Zaishideng® WJCO | https://www.wjgnet.com

Figure 3 Relationship between MYL6B expression levels and prognosis in liver hepatocellular carcinoma. A: Overall survival (n = 316); B: Progression-free survival (n = 370). OS: Overall survival; HR: Hazard ratio; RFS: Recurrence-free survival.

Analysis of the protein interaction network of MYL6B using the STRING database revealed correlations with MYL2, MYL6, MYL9, MYLK4, MYLK2, MYL12A, MYL12B, MYH11, MYH9, and MYH10 (Figure 5B). This facilitated the elucidation of interactions associated with MYL6B, thereby offering deeper insights into its molecular mechanisms and functional roles. Furthermore, the identification of top co-expressed protein genes provided valuable context and further enriched our understanding of the biological processes in which MYL6B may be implicated.

DISCUSSION

This study employed advanced bioinformatics methodologies to meticulously scrutinize the intricate relationship between MYL6B and LIHC. It entailed a comprehensive analysis encompassing the contrasting expression patterns observed between LIHC and normal tissue samples, coupled with an intricate examination of how MYL6B expression levels correlate with the staging of cancer progression and the rates of survival. Furthermore, an exhaustive immunohistochemical investigation was conducted to elucidate the nuances of inflammation across varying levels of MYL6B expression in tissue specimens. The findings of this investigation unequivocally underscore MYL6B's pivotal role as a prognostic determinant in HCC.

MYL6B, as an exosomal gene, has been studied in relation to HCC. A study focusing on the prognostic, recurrence risk, and immune infiltration prediction models based on two exosomal genes, MYL6B and THOC2, in HCC revealed that the prognostic and recurrence risk prediction model built upon these two exosomal genes (MYL6B and THOC2) was confirmed to be an independent predictive factor with superior predictive performance[23]. Some mechanistic studies on MYL6B suggest that it can bind to MDM and p53 proteins. Furthermore, it has been indicated that MYL6B can promote the binding of MDM2 to p53, thereby enhancing the ubiquitination and degradation of p53 (wild-type p53 and Y220C mutant p53), exerting its p53 inhibitory effect. Overexpression of MYL6B in HCC is associated with poor prognosis in patients with HCC and several other types of tumors. Additionally, knocking out MYL6B may hinder the clonal formation ability of HCC cell lines, upregulate the protein expression levels of p53 and BAX, and increase apoptosis[24].

In this study, bioinformatics techniques alongside other research methodologies were employed to evaluate the expression pattern of MYL6B across a spectrum of cancers, with subsequent exploration of its impact on the progression and prognosis of HCC. The findings unveiled a conspicuous upregulation of MYL6B expression in HCC tissues, with substantially elevated levels of MYL6B expression demonstrating a strong correlation with unfavorable prognosis and advanced tumor staging.

Tumor occurrence is a complex and multi-step process primarily caused by the accumulation of gene mutations associated with organismal growth and development. It is widely believed that genetic and chromosomal instability are the main reasons for gene mutations and potential tumor progression. Subsequently, malignant cells detach from primary tumors and enter the stages of metastasis and invasion. To facilitate this, a series of physiological and metabolic processes need to be altered. These include loss of cell polarity and tissue disintegration, formation of cell protrusions, damage to cell adhesion, and inhibition of apoptosis. The seven classes of myosin superfamily, including myosin I, II, V, VI, VII, IX, and X, have been shown to participate in these processes during tumor occurrence. Additionally, myosins are involved in various factors, pathways, and mechanisms related to tumor progression, and they have specific functions in nuclear

division and myosin superfamily optimization processes[25].

MYL6B, as a myosin, is correlated with cancer development. The modification of the actin cytoskeleton's structure is a fundamental mechanism in the progression of cancer, enabling the proliferation and dissemination of cancerous cells. This intricate process involves a myriad of contributors, with myosin motors standing out as pivotal regulators that oversee numerous stages of tumorigenesis. From orchestrating nuclear transcriptional programs to orchestrating the reshaping of the cellular cortex during cancer cell migration and division, myosin motors exert indispensable control over the intricate dance of cancer progression[11,26].

Hence, MYL6B emerges as a versatile prognostic marker across a spectrum of cancer types. Its multifaceted roles encompassing diverse biological functions, modulation of immune infiltration, and orchestration of protein interaction networks position MYL6B as a potent facilitator of tumor progression. Delving into its protein interactions unveils a nexus with MYL2, MYL6, and MYL9, underscoring MYL6B's potential as an appealing therapeutic target for addressing LIHC. Within the realm of HCC, MYL6B assumes the role of a predictive risk factor of LIHC, offering valuable insights into disease prognosis and management strategies. However, there are several limitations in our study: (1) Some important clinical information (e.g., different ages, tumor sizes) was not considered; (2) Since all data were retrieved from online databases, biological experiments are needed in the future to verify our research results; and (3) More detailed molecular mechanisms need to be elucidated.

CONCLUSION

The expression level of MYL6B in LIHC was significantly higher than in normal liver tissues, and it was correlated with

Baishidena® WJCO | https://www.wjgnet.com

Figure 5 Expression of MYL6B-related genes and protein network. A: Analysis of top 50 upregulated and downregulated genes related to MYL6B using LinkedOmic data; B: Analysis of MYL6B protein network using STRING database.

the degree of differentiation survival rate, and immune infiltration. MYL6B is a potential target for LIHC treatment.

FOOTNOTES

Author contributions: Lv HB and Wu QY designed experiments, formal analysis, methodology and writing original draft; Zhang YJ and Quan SW contributed to data curation and methodology; Ma N provided resources; Dai YQ contributed to methodology; Sun Y contributed to conceptualization, project administration, supervision and writing; All authors read and approved the final manuscript.

Conflict-of-interest statement: The authors declare that they have no conflict of interest.

Open-Access: This article is an open-access article that was selected by an in-house editor and fully peer-reviewed by external reviewers. It is distributed in accordance with the Creative Commons Attribution NonCommercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: https://creativecommons.org/Licenses/by-nc/4.0/

Country of origin: China

ORCID number: Yan Sun 0000-0001-8440-7868.

S-Editor: Fan M L-Editor: A P-Editor: Xu ZH

REFERENCES

- 1 Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, Bray F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J Clin 2021; 71: 209-249 [PMID: 33538338 DOI: 10.3322/caac.21660]
- Lencioni R, Crocetti L. Local-regional treatment of hepatocellular carcinoma. Radiology 2012; 262: 43-58 [PMID: 22190656 DOI: 2 10.1148/radiol.11110144
- 3 Wedd JP, Nordstrom E, Nydam T, Durham J, Zimmerman M, Johnson T, Thomas Purcell W, Biggins SW. Hepatocellular carcinoma in

patients listed for liver transplantation: Current and future allocation policy and management strategies for the individual patient. Liver Transpl 2015; 21: 1543-1552 [PMID: 26457885 DOI: 10.1002/lt.24356]

- Doyle MB, Vachharajani N, Maynard E, Shenoy S, Anderson C, Wellen JR, Lowell JA, Chapman WC. Liver transplantation for hepatocellular 4 carcinoma: long-term results suggest excellent outcomes. J Am Coll Surg 2012; 215: 19-28; discussion 28 [PMID: 22608403 DOI: 10.1016/j.jamcollsurg.2012.02.022]
- Anwanwan D, Singh SK, Singh S, Saikam V, Singh R. Challenges in liver cancer and possible treatment approaches. Biochim Biophys Acta 5 Rev Cancer 2020; 1873: 188314 [PMID: 31682895 DOI: 10.1016/j.bbcan.2019.188314]
- Guglielmi A, Ruzzenente A, Conci S, Valdegamberi A, Vitali M, Bertuzzo F, De Angelis M, Mantovani G, Iacono C. Hepatocellular 6 carcinoma: surgical perspectives beyond the barcelona clinic liver cancer recommendations. World J Gastroenterol 2014; 20: 7525-7533 [PMID: 24976693 DOI: 10.3748/wjg.v20.i24.7525]
- 7 Ochiai T, Ikoma H, Okamoto K, Kokuba Y, Sonoyama T, Otsuji E. Clinicopathologic features and risk factors for extrahepatic recurrences of hepatocellular carcinoma after curative resection. World J Surg 2012; 36: 136-143 [PMID: 22051887 DOI: 10.1007/s00268-011-1317-y]
- Poon RT, Fan ST, O'Suilleabhain CB, Wong J. Aggressive management of patients with extrahepatic and intrahepatic recurrences of 8 hepatocellular carcinoma by combined resection and locoregional therapy. J Am Coll Surg 2002; 195: 311-318 [PMID: 12229937 DOI: 10.1016/s1072-7515(02)01226-7]
- Chen J, Wang H, Zhou L, Liu Z, Chen H, Tan X. A necroptosis-related gene signature for predicting prognosis, immune landscape, and drug 9 sensitivity in hepatocellular carcinoma. Cancer Med 2022; 11: 5079-5096 [PMID: 35560794 DOI: 10.1002/cam4.4812]
- Balogh J, Victor D 3rd, Asham EH, Burroughs SG, Boktour M, Saharia A, Li X, Ghobrial RM, Monsour HP Jr. Hepatocellular carcinoma: a 10 review. J Hepatocell Carcinoma 2016; 3: 41-53 [PMID: 27785449 DOI: 10.2147/JHC.S61146]
- Ouderkirk JL, Krendel M. Non-muscle myosins in tumor progression, cancer cell invasion, and metastasis. Cytoskeleton (Hoboken) 2014; 71: 11 447-463 [PMID: 25087729 DOI: 10.1002/cm.21187]
- Ouderkirk-Pecone JL, Goreczny GJ, Chase SE, Tatum AH, Turner CE, Krendel M. Myosin 1e promotes breast cancer malignancy by 12 enhancing tumor cell proliferation and stimulating tumor cell de-differentiation. Oncotarget 2016; 7: 46419-46432 [PMID: 27329840 DOI: 10.18632/oncotarget.10139]
- 13 Georgouli M, Herraiz C, Crosas-Molist E, Fanshawe B, Maiques O, Perdrix A, Pandya P, Rodriguez-Hernandez I, Ilieva KM, Cantelli G, Karagiannis P, Mele S, Lam H, Josephs DH, Matias-Guiu X, Marti RM, Nestle FO, Orgaz JL, Malanchi I, Fruhwirth GO, Karagiannis SN, Sanz-Moreno V. Regional Activation of Myosin II in Cancer Cells Drives Tumor Progression via a Secretory Cross-Talk with the Immune Microenvironment. Cell 2019; 176: 757-774.e23 [PMID: 30712866 DOI: 10.1016/j.cell.2018.12.038]
- Cao R, Chen J, Zhang X, Zhai Y, Qing X, Xing W, Zhang L, Malik YS, Yu H, Zhu X. Elevated expression of myosin X in tumours contributes 14 to breast cancer aggressiveness and metastasis. Br J Cancer 2014; 111: 539-550 [PMID: 24921915 DOI: 10.1038/bjc.2014.298]
- Cartón-García F, Brotons B, Anguita E, Dopeso H, Tarragona J, Nieto R, García-Vidal E, Macaya I, Zagyva Z, Dalmau M, Sánchez-Martín 15 M, van Ijzendoorn SCD, Landolfi S, Hernandez-Losa J, Schwartz S Jr, Matias-Guiu X, Ramón Y Cajal S, Martínez-Barriocanal Á, Arango D. Myosin Vb as a tumor suppressor gene in intestinal cancer. Oncogene 2022; 41: 5279-5288 [PMID: 36316444 DOI: 10.1038/s41388-022-02508-2]
- Sellers JR. Myosins: a diverse superfamily. Biochim Biophys Acta 2000; 1496: 3-22 [PMID: 10722873 DOI: 16 10.1016/s0167-4889(00)00005-7]
- 17 England J, Loughna S. Heavy and light roles: myosin in the morphogenesis of the heart. Cell Mol Life Sci 2013; 70: 1221-1239 [PMID: 22955375 DOI: 10.1007/s00018-012-1131-1]
- Maliga Z, Junqueira M, Toyoda Y, Ettinger A, Mora-Bermúdez F, Klemm RW, Vasilj A, Guhr E, Ibarlucea-Benitez I, Poser I, Bonifacio E, 18 Huttner WB, Shevchenko A, Hyman AA. A genomic toolkit to investigate kinesin and myosin motor function in cells. Nat Cell Biol 2013; 15: 325-334 [PMID: 23417121 DOI: 10.1038/ncb2689]
- Hartman MA, Finan D, Sivaramakrishnan S, Spudich JA. Principles of unconventional myosin function and targeting. Annu Rev Cell Dev Biol 19 2011; 27: 133-155 [PMID: 21639800 DOI: 10.1146/annurev-cellbio-100809-151502]
- Heissler SM, Sellers JR. Myosin light chains: Teaching old dogs new tricks. Bioarchitecture 2014; 4: 169-188 [PMID: 26155737 DOI: 20 10.1080/19490992.2015.1054092]
- Li JL, Wang ZQ, Sun XL. MYL6B drives the capabilities of proliferation, invasion, and migration in rectal adenocarcinoma through the EMT 21 process. Open Life Sci 2020; 15: 522-531 [PMID: 33817240 DOI: 10.1515/biol-2020-0031]
- 22 Feser R, Opperman RM, Nault B, Maiti S, Chen VC, Majumder M. Breast cancer cell secretome analysis to decipher miRNA regulating the tumor microenvironment and discover potential biomarkers. *Heliyon* 2023; 9: e15421 [PMID: 37128318 DOI: 10.1016/j.heliyon.2023.e15421]
- Zhu J, Tang B, Gao Y, Xu S, Tu J, Wang Y, Yang W, Fang S, Weng Q, Zhao Z, Xu M, Yang Y, Chen M, Lu C, Ji J. Predictive Models for 23 HCC Prognosis, Recurrence Risk, and Immune Infiltration Based on Two Exosomal Genes: MYL6B and THOC2. J Inflamm Res 2021; 14: 4089-4109 [PMID: 34466015 DOI: 10.2147/JIR.S315957]
- Xie X, Wang X, Liao W, Fei R, Wu N, Cong X, Chen Q, Wei L, Wang Y, Chen H. MYL6B, a myosin light chain, promotes MDM2-mediated 24 p53 degradation and drives HCC development. J Exp Clin Cancer Res 2018; 37: 28 [PMID: 29439719 DOI: 10.1186/s13046-018-0693-7]
- Li YR, Yang WX. Myosins as fundamental components during tumorigenesis: diverse and indispensable. Oncotarget 2016; 7: 46785-46812 25 [PMID: 27121062 DOI: 10.18632/oncotarget.8800]
- Naydenov NG, Lechuga S, Huang EH, Ivanov AI. Myosin Motors: Novel Regulators and Therapeutic Targets in Colorectal Cancer. Cancers 26 (Basel) 2021; 13 [PMID: 33670106 DOI: 10.3390/cancers13040741]

Published by Baishideng Publishing Group Inc 7041 Koll Center Parkway, Suite 160, Pleasanton, CA 94566, USA Telephone: +1-925-3991568 E-mail: office@baishideng.com Help Desk: https://www.f6publishing.com/helpdesk https://www.wjgnet.com

