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Abstract
BACKGROUND 
Synthetic messenger RNA (mRNA) vaccines have raised concerns regarding 
prolonged spike protein expression, immune activation, and potential off-target 
effects.

AIM 
To investigate transcriptomic alterations in individuals with new-onset adverse 
events or cancer following mRNA coronavirus disease 2019 vaccination.

METHODS 
Bulk RNA sequencing was performed on peripheral blood from two patient 
groups: (1) Individuals with new-onset nonmalignant adverse events; and (2) 
Individuals newly diagnosed with cancer post-vaccination. A control group of 
normal individuals was used for comparison. Differential gene expression was 
analyzed using DESeq2, and Gene Set Enrichment Analysis was conducted using 
the MSigDB database and custom gene sets.
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RESULTS 
Both vaccine patient groups displayed widespread transcriptional dysregulation. In the nonmalignant adverse 
event group, hallmark enrichments included mitochondrial dysfunction, proteasome-mediated stress, 
transcriptomic instability, and systemic inflammation. The cancer group exhibited additional hallmarks of genomic 
instability and epigenetic reprogramming. Nonsense-mediated decay, ribosomal stress, and myelocytomatosis 
oncogene activation were prominent in both groups, while immune signaling via toll-like receptors and type I 
interferons was particularly elevated in cancer patients. The observed transcriptomic profiles indicate cellular 
stress responses, mitochondrial dysfunction, and immune dysregulation following exposure to mRNA vaccines, 
potentially in susceptible individuals.

CONCLUSION 
Shared and distinct molecular signatures in both cohorts demonstrate underlying mechanisms contributing to post-
vaccine symptomatology and complications, including oncogenesis and or progression of malignant disease. These 
findings underscore the need for a deeper investigation into the long-term safety of mRNA vaccines and host 
response variability.

Key Words: Coronavirus disease; Vaccine; RNA-seq; Immune dysregulation; Cancer

©The Author(s) 2025. Published by Baishideng Publishing Group Inc. All rights reserved.

Core Tip: This study demonstrates that individuals experiencing new-onset adverse events or cancer after messenger RNA 
(mRNA) coronavirus disease 2019 vaccination exhibit widespread transcriptomic dysregulation. Bulk RNA sequencing 
revealed hallmarks of mitochondrial dysfunction, systemic inflammation, proteasome and ribosomal stress, and nonsense-
mediated decay, with additional genomic instability and epigenetic reprogramming in cancer patients. Notably, myelocyto-
matosis oncogene activation and heightened immune signaling via toll-like receptors and type I interferons were observed. 
These findings highlight shared and distinct molecular signatures, underscoring the need for further investigation into long-
term mRNA vaccine safety and host variability.
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INTRODUCTION
Synthetic messenger RNA (mRNA) vaccines represent a novel immunization platform that delivers chemically modified 
mRNA, encapsulated in lipid nanoparticles (LNPs), to encode and express viral antigens in human cells. The accelerated 
development of mRNA vaccines was primarily driven by the urgency of the coronavirus disease 2019 (COVID-19) 
pandemic, supported by emergency authorizations, platform-based manufacturing, and the parallel rather than 
sequential conduct of clinical trial phases. While initially promoted for their rapid production and strong immuno-
genicity, a growing body of evidence has identified a range of adverse events, including myocarditis, thrombosis, 
cerebrovascular accidents, amyloidogenesis, arthralgia, menstrual disorders, reproductive concerns, and new-onset 
malignancies[1-5]. These events have prompted renewed scrutiny of the molecular mechanisms triggered by synthetic 
mRNA constructs and their intracellular fate[6,7].

Unlike endogenous mRNA, vaccine-derived transcripts incorporate non-natural features such as N1-methyl-
pseudouridine (m1Ψ) substitution, extended poly(A) tails, and optimized untranslated regions to enhance stability and 
translational efficiency. These same modifications may alter RNA metabolism and surveillance, contributing to ribosomal 
infidelity, +1 frameshifting, and defective protein folding[8,9]. Independent studies have reported reverse transcription of 
vaccine mRNA into DNA via endogenous long interspersed nuclear element-1 (LINE-1) elements, highlighting issues 
over genomic integration and persistent expression[8,10]. Recent analyses of BNT162b2 vaccine vials revealed residual 
plasmid DNA, including SV40 enhancer and antibiotic resistance genes, raising concerns over potential oncogenic risk 
from unintended genomic exposure[11-15]. Moreover, recent research has shown that spike protein translated from 
mRNA vaccines can persist in the circulation for extended periods, far beyond initial pharmacokinetic expectations, 
potentially sustaining inflammatory signaling and immune activation[16-18]. Finally, some studies suggest that severe 
acute respiratory syndrome coronavirus 2 (SARS-CoV-2) bears molecular signatures consistent with synthetic genome 
assembly, raising further concerns about engineered RNA platforms and their potential unforeseen biological 
consequences[19]. These features collectively raise concerns regarding unintended cellular consequences of synthetic 
mRNA exposure.

https://www.wjgnet.com/2220-315x/full/v15/i4/113869.htm
https://dx.doi.org/10.5493/wjem.v15.i4.113869
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To address this gap, we conducted a comparative transcriptomic analysis using bulk RNA-sequencing data from whole 
blood of patients with new-onset adverse events (group 1) and patients with new-onset cancers (group 2) following 
COVID-19 mRNA vaccination, alongside normal controls. Differential expression analysis and Gene Set Enrichment 
Analysis (GSEA) were performed to identify hallmark-specific molecular pathways perturbed in each group. By 
comparing these two profiles, this study aims to highlight potential transcriptomic disturbances associated with vaccine-
related pathology and explore whether distinct or shared molecular hallmarks may underlie different post-vaccination 
clinical trajectories.

MATERIALS AND METHODS
Patient population characteristics and sample collection
We enrolled adult participants (≥ 18 years) who developed new-onset symptoms following administration of mRNA-
based COVID-19 vaccines [BNT162b2 (pfizer) or mRNA-1273 (moderna)]. All participants provided written informed 
consent prior to inclusion.

The study population was divided into two groups: (1) Group 1: Consisting of three individuals who experienced post-
vaccination non-malignant adverse events with symptoms emerging within one month of vaccination; and (2) Group 2: 
Comprising seven individuals diagnosed with new-onset malignancies within one year of vaccination. None of the 
participants in either group had a prior history of chronic disease or known genetic predisposition before vaccination and 
symptom onset. The clinical manifestations of each patient are summarized in Table 1. As a reference, RNA-seq data from 
803 unvaccinated individuals were retrieved from the GTEx dataset[20]. These control samples were collected prior to the 
development of COVID-19 vaccines, ensuring that all control individuals were unvaccinated[21].

Peripheral blood samples were collected by licensed nurses at Neo7Bioscience-affiliated clinical sites, following institu-
tional biosafety protocols. Venipuncture was performed using standard sterile technique, and whole blood was drawn 
into pre-labelled streck tubes and stored at 4 °C. Samples from group 1 (post-vaccination symptom group) were 
transported the same day in cooled containers to the Genomics Center at the University of North Texas for processing. 
Samples from group 2 (post-vaccination malignancy group) were collected into PAXgene Blood RNA Tubes (Qiagen) and 
transported at controlled temperature to Psomagen-Multiomics services and data analysis for downstream processing.

RNA extraction
Total RNA was extracted from whole blood using column-based purification workflows compatible with downstream 
RNA-seq. For group 1, RNA was extracted with the Quick-DNA/RNA Viral Kit (Zymo Research), including on-column 
DNase treatment to remove genomic DNA contamination. For group 2, RNA was extracted from the entire blood volume 
of a single PAXgene Blood RNA Tube using the PAXgene Blood RNA Kit (Qiagen), following the manufacturer’s 
protocol. Extracted RNA was quantified and stored at -20 °C until further use. For both groups, RNA quality was 
assessed by electrophoretic profiling (Agilent TapeStation 4200 or equivalent), and only samples meeting quality 
thresholds (e.g., RNA integrity number ≥ 7.0 or equivalent QC metrics) were advanced to library preparation.

Library preparation and complementary DNA synthesis and high-throughput sequencing
RNA-seq libraries were generated using strand-specific protocols with ribosomal RNA (rRNA) depletion to maximize 
detection of coding transcripts. For group 1, libraries were prepared using the Illumina TruSeq Stranded Total RNA Kit 
with Ribo-Zero depletion chemistry (Illumina). RNA was enzymatically fragmented, reverse-transcribed to comple-
mentary DNA (cDNA), end-repaired, A-tailed, adapter-ligated, and polymerase chain reaction (PCR)-amplified. Libraries 
were quantified fluorometrically, fragment sizes were verified by electrophoresis, and sequencing was performed on an 
Illumina NextSeq 550 (High Output v2.5, 300 cycles) with paired-end 150 bp reads.

For group 2, libraries were prepared using the Illumina Stranded Total RNA Ribo-Zero Plus Kit (Illumina), 
incorporating rRNA depletion and strand-specific cDNA synthesis. RNA was enzymatically fragmented, reverse-
transcribed to first-strand cDNA, converted to double-stranded cDNA, end-repaired, adenylated, ligated to Illumina-
specific adapters, and PCR-amplified. Library quality and fragment size distribution were assessed using D5000 
ScreenTape on the Agilent TapeStation 4200. Libraries were stored at -20 °C before sequencing. Normalized and pooled 
libraries were sequenced on the Illumina NovaSeq X platform (NovaSeq X Series 25B Reagent Kit, 300 cycles), generating 
151 bp paired-end reads to a target yield of 3.02 Gb per sample (approximately 20 million reads). PhiX was added at 1% 
as an internal control, and sequencing quality metrics (Q30 scores, %PF) were monitored in real time using Illumina’s 
Sequencing Analysis Viewer.

Data preprocessing, quality control, and alignment
The raw sequencing data, in the form of paired-end fastq files, were first organized by sample and read type (R1 and R2). 
These fastq files were stored in a dedicated directory, and the cat command was used to group them based on their 
sample identifiers. The R1 and R2 files for each sample were then merged into a single file for each read type, resulting in 
forward and reverse merged files that were ready for downstream analysis.

Quality control checks were performed before the alignment step to ensure the integrity of the data. The sequencing 
reads were aligned to the human reference genome (hg38) using STAR[22], a widely used aligner for RNA sequencing 
data. STAR efficiently handles read alignment in a multi-threaded environment, optimizing processing time. The aligned 
reads were then outputted as BAM files, sorted by coordinate, which is standard practice for subsequent analysis steps.
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Table 1 Summary of study participants, clinical manifestations, and diagnostic groupings

Patient ID Group Condition/symptoms

P1 1: Non-malignant adverse events Brain fog and chronic fatigue

P2 1: Non-malignant adverse events Cardiovascular injury, thrombosis, and chronic fatigue

P3 1: Non-malignant adverse events Cardiovascular injury, thrombosis, and chronic fatigue

P4 2: Cancer Glioblastoma multiforme

P5 2: Cancer Prostate adenocarcinoma

P6 2: Cancer Bladder tumor

P7 2: Cancer Follicular lymphoma

P8 2: Cancer Prostate cancer

P9 2: Cancer Glioblastoma multiforme

P10 2: Cancer Follicular lymphoma

Differential expression analysis and volcano plot visualization
To investigate transcriptomic alterations associated with mRNA vaccine–related outcomes, we performed two distinct 
differential expression analyses, each comparing one patient group to a common pool of normal controls (n = 803)[20]. 
The first comparison included individuals from group 1, who developed nonmalignant new-onset symptoms following 
mRNA vaccination (n = 3), while the second comprised individuals from group 2, diagnosed with cancer as a new-onset 
condition shortly after vaccination (n = 7). For both analyses, raw gene counts generated from Salmon[23] were input into 
DESeq2[24], which applied internal normalization and modeled dispersion using the negative binomial distribution. 
Shrinkage of log2 fold changes was performed using the “apeglm” method to improve effect size estimation, particularly 
for genes with low read counts.

To visualize the global patterns of gene expression, volcano plots were generated for each comparison. In these plots, 
the X-axis represents the log2 fold change, and the Y-axis represents the negative log10 of the adjusted P value. Genes with 
log2 fold change greater than +1 and an adjusted P value (Padj) below 0.05 were considered significantly upregulated and 
were colored red, while those with log2 fold change less than -1 and Padj < 0.05 were considered significantly downreg-
ulated and were colored blue. All remaining genes that did not meet these criteria were displayed in gray.

GSEA
To investigate transcriptomic disruptions associated with mRNA vaccine exposure, we analyzed RNA-seq data from two 
case groups: (1) Group 1: Comprising three individuals who developed new-onset vaccine-related adverse effects; and (2) 
Group 2: Consisting of seven individuals diagnosed with new-onset cancer following mRNA COVID-19 vaccination. Both 
groups were compared to a shared reference cohort of 803 individuals in a normal control group, whose RNA-seq data 
were retrieved from the GTEx dataset[20]. Differential gene expression analysis was conducted using DESeq2[24], and 
genes were ranked by log2 fold change to generate the input file for enrichment analysis.

We then performed GSEA using the preranked mode of the Broad Institute’s GSEA 4.4.0 tool[25]. This approach was 
selected due to the significant class imbalance (3 samples vs 803 samples), as it improves the stability and interpretability 
of enrichment results. The “weighted” enrichment statistic was applied to incorporate both gene ranking and expression 
magnitude, enhancing sensitivity to biologically relevant perturbations. We used 1000 gene set permutations to estimate 
statistical significance and selected the “no collapse” option to retain gene symbols without alias mapping.

GSEA was systematically conducted across multiple MSigDB[26] collections: (1) H (Hallmark); (2) C2 (Kyoto 
Encyclopedia of Genes and Genomes and REACTOME); (3) C5 (Gene Ontology Biological Processes); (4) C7 
(immunologic signatures); and (5) Custom gene sets including Gavish and curated grape seed extract-derived expression 
signatures. Enrichment results were interpreted based on the Normalized Enrichment Score (NES) and false discovery 
rate (FDR) (q value), selecting gene sets that were strongly enriched (positive NES) or suppressed (negative NES), which 
indicated upregulated or downregulated biological functions, respectively. For downstream analysis, only gene sets with 
FDR < 0.25 and absolute NES ≥ 1.5 were retained. The top enriched and suppressed gene sets were manually grouped 
into higher-order molecular pathway categories related to the patient’s group symptoms.

To improve biological relevance, we excluded gene sets associated with non-blood tissues (e.g., brain, retina, skin) and 
embryonic development, as these are unlikely to reflect transcriptional activity in peripheral blood. This filtering 
minimized noise and focused the analysis on pathways relevant to immune, inflammatory, and systemic responses.

Protein-protein interaction map
For constructing protein-protein interaction (PPI) networks, interaction information of differentially expressed genes from 
the Search Tool for the Retrieval of Interacting Genes/Proteins (STRING) database was loaded onto the Cytoscape 
software platform[27,28]. The STRING database is a comprehensive online resource that compiles and predicts PPIs 
across numerous organisms[29,30]. It integrates known and predicted associations derived from experimental data, 
computational prediction methods, co-expression analyses, text mining, and curated databases. Each interaction is scored 
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and visualized in an interactive network, helping researchers explore functional associations between proteins within 
cellular pathways or biological processes[31]. The network can be viewed within STRING or can be exported directly to 
Cytoscape. Cytoscape combines biomolecular interaction networks with high-throughput expression data and other 
molecular states into an integrated conceptual network model.

RESULTS
To characterize the global transcriptional impact of mRNA vaccination in individuals with post-vaccination adverse 
outcomes, we conducted differential gene expression analyses comparing each patient group to the normal control 
cohort. As shown in Figure 1, the volcano plots visualize the distribution of gene expression changes for both group 1, 
new-onset nonmalignant post-vaccination symptoms (Figure 1A), and group 2, new-onset cancer diagnoses (Figure 1B). 
In both groups, a clear transcriptomic shift is observed, with hundreds of genes showing significant dysregulation. 
Notably, the cancer group exhibits a broader distribution of downregulated genes, including several with extreme fold 
change magnitudes, suggesting a profound suppression of key regulatory pathways.

GSEA was performed separately for both study groups: (1) Group 1: Comprising individuals with new-onset adverse 
events following mRNA COVID-19 vaccination; and (2) Group 2: Comprising individuals diagnosed with new-onset 
cancer after vaccination, to characterize transcriptomic disruptions associated with vaccine exposure. GSEA was 
conducted using the predefined MSigDB gene set collections, and the enriched gene sets were systematically grouped 
according to their relevance to higher-order molecular hallmark pathways (Tables 2 and 3). This pathway-based grouping 
enabled integrative interpretation of transcriptomic alterations across systems biology domains.

In group 1, the top enriched gene sets clustered into six key hallmark categories: (1) Mitochondrial electron transport 
dysfunction and reactive oxygen species (ROS); (2) Proteasome-mediated protein degradation stress; (3) Transcriptomic 
instability and translational stress; (4) Systemic inflammatory and immune response; (5) Endothelium dysfunction; and 
(6) Proliferative signaling and suppressed tumor control. In contrast, group 2 exhibited a distinct but overlapping 
enrichment pattern. The hallmarks identified in this group include: (1) Transcriptomic instability and translational stress; 
(2) Systemic inflammatory and immune response; (3) Endothelium dysfunction; (4) Proliferative signaling and 
suppressed tumor control; and (5) Genomic instability and epigenetic shift. As shown in Table 1, multiple gene sets 
within each hallmark category demonstrated strong enrichment scores (NES > 1.5 or < -1.5) and statistically significant 
FDR q values (FDR < 0.25), supporting the presence of coordinated molecular dysregulation. Representative enrichment 
score curves are provided in Supplementary Figures 1 and 2 to illustrate the distribution of gene ranks contributing to 
each hallmark. In addition, Supplementary Tables 1 and 2 provide the systematic names, standard names, and external 
links or source publications for all enriched gene sets.

To further explore the molecular landscape associated with vaccine-induced transcriptomic disruptions, PPI network 
analysis was conducted for the most significantly dysregulated genes in each study group. As shown in Figure 2, the PPI 
map for group 1 (individuals with new-onset adverse events post-vaccination) and Figure 3 shows the PPI map for group 
2 (individuals with new-onset cancer following vaccination)

DISCUSSION
The rapid global rollout of RNA-based COVID-19 vaccines introduced a novel therapeutic platform involving synthetic 
mRNA and LNP delivery systems. While initially deployed to mitigate the spread of SARS-CoV-2, the long-term 
biological effects were unknown. Unlike conventional vaccines, these formulations induce host cells to express a viral 
spike glycoprotein from exogenous mRNA templates, raising concerns about unintended cellular responses[32]. 
Emerging clinical reports of persistent symptoms following vaccination – including neurological, cardiovascular, and 
immunological disturbances – have prompted scientific scrutiny into the molecular mechanisms potentially triggered by 
prolonged exposure to synthetic mRNA, its translation products, and associated immune activation[2,3,33,34]. To 
investigate these concerns, we performed GSEA on transcriptomic data from two distinct patient cohorts: (1) Individuals 
with new-onset post-vaccination adverse effects (group 1); and (2) Patients who developed cancer following mRNA 
vaccination (group 2). A summary of the transcriptomic alterations observed in each group is illustrated in Figure 4.

In the group 1 cohort, enrichment of gene sets related to mitochondrial electron transport indicates transcriptional 
disruption in core components of oxidative phosphorylation, particularly at complex I. The presence of variant-related 
enrichments involving PTEN-induced putative kinase 1, amyloid-beta, and alpha-synuclein suggests convergence 
associated with impaired mitophagy, neurodegeneration, and defective electron flow. These findings suggest that spike-
mediated inflammation disrupts mitochondrial homeostasis. Indeed, previous studies indicate that the spike protein 
alters mitochondrial fusion-fission dynamics, suppressing the biogenesis of its regulators (nuclear respiratory factor 1/2, 
peroxisome proliferator-activated receptor gamma coactivator 1-alpha, mitochondrial transcription factor A), and 
increasing mitochondrial damage[35]. In addition, numerous studies have independently reported persistent 
mitochondrial dysfunction as a hallmark of long COVID[36-38], further supporting a mechanistic link between spike 
protein exposure and bioenergetic imbalance. Mitochondrial electron transport and ROS-related shifts are depicted in the 
PPI network (Figure 2D), highlighting key interconnected hub genes.

In the group 1 cohort, enrichment of proteasome-associated gene sets indicated activation of components of the 
ubiquitin-proteasome system. Upregulated proteins such as ubiquitin-40S ribosomal protein S27a (RPS27A), 26S 
proteasome subunit SEM1, polyubiquitin-B (UBB), and ubiquitin-60S ribosomal protein L40 (UBA52), along with several 

https://f6publishing.blob.core.windows.net/0b9ebf5f-5c18-477d-912c-1eb28cc7bd76/113869-supplementary-material.pdf
https://f6publishing.blob.core.windows.net/0b9ebf5f-5c18-477d-912c-1eb28cc7bd76/113869-supplementary-material.pdf
https://f6publishing.blob.core.windows.net/0b9ebf5f-5c18-477d-912c-1eb28cc7bd76/113869-supplementary-material.pdf
https://f6publishing.blob.core.windows.net/0b9ebf5f-5c18-477d-912c-1eb28cc7bd76/113869-supplementary-material.pdf
https://f6publishing.blob.core.windows.net/0b9ebf5f-5c18-477d-912c-1eb28cc7bd76/113869-supplementary-material.pdf
https://f6publishing.blob.core.windows.net/0b9ebf5f-5c18-477d-912c-1eb28cc7bd76/113869-supplementary-material.pdf
https://f6publishing.blob.core.windows.net/0b9ebf5f-5c18-477d-912c-1eb28cc7bd76/113869-supplementary-material.pdf
https://f6publishing.blob.core.windows.net/0b9ebf5f-5c18-477d-912c-1eb28cc7bd76/113869-supplementary-material.pdf
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Table 2 Gene set enrichment results for group 1 categorized by molecular pathway

Molecular pathways MSigDB standard name Normalized Enrichment Score False discovery rate

KEGG_MEDICUS_REFERENCE_MI
TOCHONDRIAL_COMPLEX_UCP1
_IN_THERMOGENESIS

1.86 0.11

KEGG_MEDICUS_REFERENCE_EL
ECTRON_TRANSFER_IN_COMPLE
X_I

1.70 0.10

KEGG_MEDICUS_VARIANT_MUT
ATION_INACTIVATED_PINK1_TO
_ELECTRON_TRANSFER_IN_COM
PLEX_I

1.73 0.09

KEGG_MEDICUS_VARIANT_MUT
ATION_CAUSED_ABERRANT_AB
ETA_TO_ELECTRON_TRANSFER_I
N_COMPLEX_I

1.69 0.09

KEGG_MEDICUS_VARIANT_MUT
ATION_CAUSED_ABERRANT_SN
CA_TO_ELECTRON_TRANSFER_I
N_COMPLEX_I

1.66 0.11

Mitochondrial electron transport 
dysfunction and reactive oxygen 
species

HALLMARK_OXIDATIVE_PHOSP
HORYLATION

1.43 > 0.001

KEGG_MEDICUS_VARIANT_MUT
ATION_CAUSED_ABERRANT_AB
ETA_TO_26S_PROTEASOME_MED
IATED_PROTEIN_DEGRADATION

1.78 0.12

KEGG_MEDICUS_VARIANT_MUT
ATION_INACTIVATED_VCP_TO_2
6S_PROTEASOME_MEDIATED_PR
OTEIN_DEGRADATION

1.74 0.13

KEGG_MEDICUS_VARIANT_MUT
ATION_CAUSED_ABERRANT_SO
D1_TO_26S_PROTEASOME_MEDI
ATED_PROTEIN_DEGRADATION

1.73 0.09

Proteasome-mediated protein 
degradation stress

GOBP_PROTEIN_CONTAINING_C
OMPLEX_REMODELING

-2.11 > 0.001

REACTOME_EUKARYOTIC_TRAN
SLATION_INITIATION

3.11 > 0.001

REACTOME_SRP_DEPENDENT_C
OTRANSLATIONAL_PROTEIN_TA
RGETING_TO_MEMBRANE

3.08 > 0.001

REACTOME_NONSENSE_MEDIAT
ED_DECAY_NMD

2.9 > 0.001

KEGG_MEDICUS_REFERENCE_TR
ANSLATION_INITIATION

3.0 > 0.001

GOBP_CYTOPLASMIC_TRANSLAT
ION

2.60 > 0.001

GOBP_RIBOSOMAL_SMALL_SUBU
NIT_BIOGENESIS

2.35 > 0.001

Transcriptomic instability and 
translational stress

GOBP_RIBOSOMAL_LARGE_SUBU
NIT_BIOGENESIS

2.34 > 0.001

GSE22886_NAIVE_TCELL_VS_DC_
UP

2.43 > 0.001

GSE2405_0H_VS_9H_A_PHAGOCY
TOPHILUM_STIM_NEUTROPHILS
_UP

2.36 > 0.001

GSE7400_CTRL_VS_CSF3_IN_VIVO
_TREATED_PBMC_UP

2.27 > 0.001

GSE7400_CTRL_VS_CSF3_IN_VIVO
_TREATED_PBMC_DN

-1.93 > 0.001

GSE6269_E_COLI_VS_STREP_PNE
UMO_INF_PBMC_DN

-1.9 > 0.001

Systemic inflammatory and immune 
response



Von Ranke NL et al. New-onset adverse events post-vaccination

WJEM https://www.wjgnet.com 7 December 20, 2025 Volume 15 Issue 4

GOBP_ANTIMICROBIAL_HUMOR
AL_RESPONSE

-1.95 > 0.001

GOBP_HUMORAL_IMMUNE_RES
PONSE

-1.91 0.006

Endothelium dysfunction HALLMARK_ANGIOGENESIS -1.94 > 0.001

HALLMARK_MYC_TARGETS_V1 1.64 > 0.001

GAVISH_3CA_MALIGNANT_MET
APROGRAM_3_CELL_CYLCE_HM
G_RICH

1.77 0.005

HALLMARK_KRAS_SIGNALING_
DN

-1.68 > 0.001

HALLMARK_P53_PATHWAY -1.50 0.038

Proliferative signaling and 
suppressed tumor control

KEGG_MEDICUS_REFERENCE_W
NT_SIGNALING_MODULATION_
WNT_INHIBITOR

-1.56 0.89

The Table 2 displays the top gene sets within each category, along with their corresponding MSigDB identifiers, Normalized Enrichment Score (NES), and 
false discovery rate (FDR) q value. Positive NES values indicate upregulation, while negative NES values indicate downregulation of the gene sets in 
vaccinated samples (group 1) relative to controls. Gene sets were selected based on biological relevance and NES >|15| with FDR q < 0.25. Group 1 
includes patients with new-onset adverse events following messenger RNA coronavirus disease 2019 vaccination (n = 3), compared with normal controls (n 
= 803 unvaccinated individuals from the GTEx dataset).

Figure 1 Transcriptome-wide differential expression profiles in vaccine-affected individuals. A: Volcano plot showing differential gene expression 
in individuals with new-onset adverse events following messenger RNA (mRNA) coronavirus disease 2019 (COVID-19) vaccination (n = 3) compared to normal 
controls (n = 803); B: Volcano plot showing differential gene expression in individuals diagnosed with new-onset cancer shortly after receiving mRNA COVID-19 
vaccination (n = 7) compared to the same control cohort. Each point represents a single gene plotted by log2 fold change (X-axis) and -log10 adjusted P value (Padj) (Y-
axis). Genes with significant upregulation (log2FC > 1, Padj < 0.05) are marked in red, while significantly downregulated genes (log2FC < -1, Padj < 0.05) are shown in 
blue. Non-significant genes appear in gray. These plots reveal widespread transcriptional dysregulation in both patient groups, serving as the foundation for 
subsequent pathway enrichment analysis.

core subunits of the 20S and 19S proteasome complexes, including PSMA2-5, PSMA8, PSMC1, and PSMD7 reflect 
increased transcriptional demand for protein degradation machinery, likely in compensation for misfolded or aggregated 
proteins. The enrichment of variant-associated gene sets linked to valosin-containing protein and super oxide dismutase 1 
dysfunction further supports convergence with proteostasis disruption, a phenomenon commonly observed in neurode-
generative and proteinopathy-associated conditions. One potential driver of this sustained proteasomal activation is the 
prolonged presence of synthetic mRNA in circulation, which has been shown to persist beyond initial translation and 
may continuously stimulate the production of spike protein or aberrant translation products[16-18]. Moreover, 
persistence of vaccine-derived RNA has been demonstrated in human samples, including placental tissue up to 10 days 
post-vaccination[39] and plasma up to 28 days[40,41]. Identified persistence of vaccine-derived RNA in human heart 
tissue up to 30 days post-vaccination[42], demonstrated retention within lymph nodes for as long as 60 days, and Ota et al
[43] recently reported mRNA detection in cerebral arteries 17 months post-vaccination[44]. Collectively, these findings 
underscore that synthetic mRNA and its byproducts may linger in diverse tissues for prolonged periods, continually 
engaging proteostatic and immune surveillance pathways. Additionally, emerging evidence suggests that the SARS-CoV-
2 spike protein contains prion-like domains that are prone to misfolding and aggregation. These properties may be 
amplified in vaccine-induced expression, leading to persistent proteotoxic stress and neurodegenerative-like transcrip-
tional profiles[8].

Transcriptomic Instability and Translational Stress was a dominant hallmark in both patient groups. mRNA stabil-
ization, translation initiation, and protein synthesis rates are distinct yet interconnected regulatory nodes. The mRNA 
stabilization controls the substrate's half-life, determining the window of opportunity for translation. In contrast, 
translation initiation, often the rate-limiting step, involves the assembly of the ribosome and initiation factors (e.g., 
eukaryotic initiation factor 4F) at the 5' cap and is highly responsive to cellular signaling and stress. These processes can 
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Table 3 Gene set enrichment results for group 2 categorized by molecular pathway

Molecular 
pathways MSigDB standard name

Normalized 
Enrichment 
Score

False 
discovery 
rate

REACTOME_SIRT1_NEGATIVELY_REGULATES_RRNA_EXPRESSION 3.08 > 0.001

REACTOME_RNA_POLYMERASE_I_PROMOTER_ESCAPE 2.61 > 0.001

REACTOME_TRANSCRIPTIONAL_REGULATION_BY_SMALL_RNAS 2.63 > 0.001

REACTOME_B_WICH_COMPLEX_POSITIVELY_REGULATES_RRNA_EXPRESSION 2.60 > 0.001

REACTOME_POSITIVE_EPIGENETIC_REGULATION_OF_RRNA_EXPRESSION 2.54 > 0.001

Transcriptomic 
instability and 
translational 
stress

REACTOME_RRNA_MODIFICATION_IN_THE_NUCLEUS_AND_CYTOSOL 2.03 0.027

KEGG_MEDICUS_REFERENCE_TYPE_I_INTERFERON_TO_JAK_STAT_SIGNALING_PATHWAY 2.64 > 0.001

KEGG_MEDICUS_PATHOGEN_HIV_TAT_TO_TLR2_4_NFKB_SIGNALING_PATHWAY 2.73 > 0.001

KEGG_MEDICUS_REFERENCE_TYPE_I_IFN_SIGNALING_PATHWAY 2.64 > 0.001

KEGG_MEDICUS_REFERENCE_RIG_I_NFKB_SIGNALING_PATHWAY 2.54 > 0.001

KEGG_MEDICUS_REFERENCE_TLR3_IRF7_SIGNALING_PATHWAY 2.46 > 0.001

KEGG_MEDICUS_REFERENCE_TLR7_8_9_IRF5_SIGNALING_PATHWAY 2.29 > 0.001

KEGG_MEDICUS_REFERENCE_TLR7_9_IRF7_SIGNALING_PATHWAY 2.27 > 0.001

KEGG_MEDICUS_REFERENCE_MDA5_IRF7_3_SIGNALING_PATHWAY 2.0 0.006

KEGG_MEDICUS_REFERENCE_IFN_RIPK1_3_SIGNALING_PATHWAY 2.0 0.006

KEGG_MEDICUS_REFERENCE_RIG_I_IRF7_3_SIGNALING_PATHWAY 2.0 0.007

Systemic inflam-
matory and 
immune 
response

GAVISH_3CA_METAPROGRAM_CD8_T_CELLS_CHROMATIN 1.78 0.068

GOBP_NEGATIVE_REGULATION_OF_ENDOTHELIAL_CELL_PROLIFERATION -1.98 0.0017Endothelium 
dysfunction

GOBP_NEGATIVE_REGULATION_OF_COAGULATION -1.98 0.0017

Proliferative 
signaling and 
suppressed 
tumor control

REACTOME_ASSEMBLY_OF_THE_ORC_COMPLEX_AT_THE_ORIGIN_OF_REPLICATION 2.93 > 0.001

REACTOME_DNA_METHYLATION 3.18 > 0.001

REACTOME_CONDENSATION_OF_PROPHASE_CHROMOSOMES 2.93 > 0.001

KEGG_MEDICUS_REFERENCE_CGAS_STING_SIGNALING_PATHWAY 2.43 > 0.001

GAVISH_3CA_MALIGNANT_METAPROGRAM_4_CHROMATIN 1.91 0.05

Genomic 
instability and 
epigenetic shift

GOBP_NUCLEOSOME_ORGANIZATION 2.33 0.01

The Table 3 displays the top gene sets within each category, along with their corresponding MSigDB identifiers, Normalized Enrichment Score (NES), and 
false discovery rate (FDR) q value. Positive NES values indicate upregulation, while negative NES values indicate downregulation of the gene sets in 
vaccinated samples relative to controls. Gene sets were selected based on biological relevance and NES >|15| with FDR q < 0.25. Group 2 includes patients 
with new-onset cancers diagnosed shortly after messenger RNA coronavirus disease 2019 vaccination (n = 7), compared with normal controls (n = 803 
unvaccinated individuals from the GTEx dataset).

be uncoupled; a long-lived, stable mRNA may be poorly translated if initiation is blocked, while rapid synthesis can 
deplete short-lived mRNAs. Ultimately, the overall protein output is a product of both the mRNA's availability and the 
efficiency of the translational machinery[45-47]. Enrichment of gene sets related to translation initiation, ribosome 
biogenesis, and mRNA surveillance suggests sustained activation of the protein synthesis machinery. In group 1, 
upregulated pathways such as translation initiation, cytoplasmic translation, and ribosomal subunit biogenesis indicate 
persistent engagement of ribosomes and translational apparatus, likely driven by prolonged spike protein expression 
from stabilized synthetic mRNA[8,16,18]. Enrichment of nonsense-mediated decay (NMD) related genes in patients with 
new-onset vaccine-associated adverse events contrasts with previous findings that SARS-CoV-2 virus suppresses NMD to 
protect its RNA genome[48,49]. This suggests that, unlike the viral genome, synthetic mRNA used in vaccination may 
instead provoke a compensatory activation of RNA surveillance mechanisms, potentially due to persistent translation or 
accumulation of aberrant transcripts. The opposing patterns of NMD regulation in these two contexts point to distinct 
cellular responses and warrant further investigation. In group 2, as in the first group, we observed significant enrichment 
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Figure 2 Protein-protein interaction network of the most dysregulated genes in group 1. A: Genes related to proliferative signaling and tumor 
control; B: Genes related to systemic inflammatory immune; C: Genes related to transcriptomic instability; D: Genes related to mitochondrial electron transport 
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dysfunction and reactive oxygen species; E: Genes related to proteasome-mediated protein degradation stress. Group 1 includes patients with new-onset adverse 
events following messenger RNA coronavirus disease 2019 vaccination (n = 3), compared with normal controls (n = 803 unvaccinated individuals from the GTEx 
dataset). Node color intensity reflects the degree of interaction (connectivity), with darker nodes indicating higher connectivity or a hub status within the network.

in gene sets related to ribosome biogenesis, cytoplasmic translation, and mRNA surveillance. However, the cancer group 
displayed more pronounced activation of ribosomal stress pathways, particularly those linked to RNA Polymerase I 
promoter escape, rRNA maturation, and positive epigenetic regulation of rRNA expression, indicating hyperactivation of 
nucleolar functions and elevated translational throughput. While these transcriptional programs are classically associated 
with tumor cells to support uncontrolled proliferation[50-52], their detection in peripheral blood samples likely reflects 
systemic consequences of underlying malignancy, such as systemic immune alterations or stress responses induced by 
tumor-related inflammation and signaling[53-55]. While the vaccine-adverse event group showed activation of NMD 
pathways, the cancer group displayed additional signals related to small RNA–mediated transcriptional regulation and 
epigenetic repression of ribosomal gene activity. The coexistence of transcriptional silencing and increased rRNA 
production may reflect underlying transcriptional stress affecting cellular balance.

Enrichments related to the hallmark of systemic inflammatory and immune response were identified in both groups 
analyzed in this work. In group 1, the most highly connected upregulated genes in the PPI network included LOX, CD28, 
CCR7, and SELL. Recent findings demonstrate that the use of m1Ψ in mRNA constructs can induce +1 ribosomal 
frameshifting, resulting in the production of off-target proteins that may elicit unintended cellular immune responses[9]. 
This aberrant antigen production may represent a novel mechanism contributing to systemic inflammation and immune 
dysregulation. In addition, emerging evidence suggests that cytoplasmic fragmentation of vaccine-derived mRNA may 
generate short RNA sequences with miRNA-like properties capable of hybridizing host immune transcripts, such as 
interferons and anti-inflammatory regulators. This unintended post-transcriptional interference could contribute to 
systemic immune dysregulation and inflammatory responses, particularly in individuals with predisposing comorbidities 
or impaired RNA degradation pathways[56]. In addition, numerous studies have previously demonstrated the inflam-
matory activity of mRNA LNPs[57-59]. Compared to group 1, where immune imbalance was more skewed toward 
aberrant cellular activation and humoral suppression, group 2 displayed a distinct pattern of innate immune activation. 
GSEA revealed the upregulation of pathways involving type I interferons, toll-like receptors, and nuclear factor kappa B 
(NF-κB)-driven inflammatory signaling. Enrichment of the RIG-I/MDA5–IRF7 axis, TLR3/7/8/9–IRF5/7, and the JAK-
STAT interferon cascade suggests persistent engagement of RNA-sensing mechanisms and their downstream proinflam-
matory transcriptional programs. While these responses are central to antiviral immunity, their chronic activation in the 
peripheral blood of cancer patients might be related to inflammation, immune exhaustion, and tumor immune editing[60-
62]. These immune alterations are consistent with previous findings in both elderly vaccine recipients and autoimmune 
patients, where IFN-JAK-STAT overactivation and RIG-I signaling were repeatedly identified as dominant signatures, 
underscoring that our observed systemic inflammation reflects a reproducible pattern across vaccinated cohorts[63].

For group 1, a negative NES for the angiogenesis hallmark suggests transcriptional downregulation or post-transcrip-
tional inhibition of key angiogenic mediators. This may be linked to the RNA fragmentation hypothesis supported by 
Demongeot and Fougère’s work[56], wherein miRNA-like fragments derived from cleaved vaccine mRNA hybridize with 
endothelial transcripts, suppressing their translation and contributing to systemic endothelial dysfunction and impaired 
vascular repair. In the cancer group, transcriptomic analysis revealed significant downregulation of gene sets involved in 
negative regulation of endothelial cell proliferation and negative regulation of coagulation. The suppression of these 
regulatory pathways may indicate uncontrolled endothelial activation or a vascular pro-thrombotic shift, conditions that 
can be linked to spike protein adverse events and tumor progression[64-67]. Proteome-mediated protein degradation 
stress, marked by impaired ubiquitin-proteasome and autophagy pathways, contributes to the accumulation of misfolded 
or damaged proteins that sustain inflammation and cellular dysfunction. This ongoing proteotoxic stress is thought to 
contribute to the chronic fatigue, neurological dysfunction, and multi-organ symptoms in vaccinated patients[68,69].

For both groups 1 and 2, we could note an enrichment in the Proliferative Signaling and Suppressed Tumor Control 
Hallmark genes signatures. For group 1, positive enrichment in gene sets regulated by myelocytomatosis oncogene 
(MYC) suggests an active oncogenic transcriptional program that favors tumor growth and adaptation. This proliferative 
bias is compounded by the downregulation of tumor-suppressive pathways, including the KRAS-inhibited signature, p53 
regulatory networks, and inhibitors of the Wnt pathway. Figure 2A depicts the PPI network for these hallmarks in group 
1, highlighting the key interconnected genes driving these processes. These findings suggest a microenvironment 
conducive to unchecked cellular expansion, loss of apoptotic surveillance, and diminished responsiveness to anti-prolif-
erative signals. Notably, many previous studies have reported that the spike protein can trigger the mitogen pathway, 
through the downregulation of angiotensin-converting enzyme 2 (ACE2) expression, which promotes an angiotensin II 
type I receptor (AT1R)-mediated signaling cascade, inducing the transcriptional regulatory molecules NF-κB and 
activator protein 1/c-Fos via mitogen-activated protein kinase activation[70-72]. In accordance with this molecular 
pathway, our investigated patients from group 1 and group 2 also presented a very downregulated ACE2 expression 
compared to normal control (logfold change: -4.3 and -4.8, respectively). In relation to this hallmark, group 2 showed 
enrichment of pathways involved in the DNA replication process, specifically the Assembly of the ORC Complex at the 
Origin of Replication, reflecting heightened replicative stress and uncontrolled proliferation potentially driven by tumor-
related systemic effects or prolonged immune activation[60-62].

Only group 2 presented enrichments related to the Genomic Instability and Epigenetic Shift hallmark. Key pathways 
enriched show aberrant regulation of histone modification, DNA packaging, and epigenetic silencing, which are 
commonly observed in oncogenic events. In parallel, enrichment of the cGAS–STING signaling pathway points to innate 
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Figure 3 Protein-protein interaction network of the most dysregulated genes in group 2. A: Genes related to transcriptomic instability, translational 
stress; B: Genes related to genomic instability and epigenetic shift; C: Genes associated with endothelial dysfunction; D: Genes related to systemic inflammatory and 
immune response; E: Genes that are related to proliferative signaling and suppressed tumor control. Group 2 includes patients with new-onset cancers diagnosed 
shortly after messenger RNA coronavirus disease 2019 vaccination (n = 7), compared with normal controls (n = 803 unvaccinated individuals from the GTEx dataset). 
Node color intensity reflects the degree of interaction (connectivity), with darker nodes indicating higher connectivity or a hub status within the network.
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Figure 4 Transcriptomic alterations following messenger RNA vaccination. This central illustration summarizes the experimental design, core findings, 
and proposed molecular mechanisms underlying transcriptomic dysregulation following synthetic messenger RNA (mRNA) coronavirus disease 2019 vaccination. 
Top left: Schematic of mRNA vaccination, showing lipid nanoparticle-encapsulated, chemically modified mRNA encoding spike protein delivered into host cells, 
initiating persistent translation and immunologic engagement. Top right: Volcano plots depict global differential gene expression in peripheral blood samples from two 
affected cohorts vs normal controls (n = 803). Left: Individuals with new-onset nonmalignant adverse events (n = 3). Right: Individuals with new-onset cancer (n = 7). 
Upregulated genes [log2FC > 1, adjusted P value (Padj) < 0.05] are shown in red; downregulated genes (log2FC < -1, Padj < 0.05) in blue; non-significant genes in gray. 
Bottom left (new-onset adverse events): Transcriptomic analysis reveals enrichment of pathways linked to mitochondrial electron transport dysfunction and reactive 
oxygen species, proteasome-mediated protein degradation stress, mRNA surveillance activation, and systemic inflammatory signaling. Bottom right (new-onset 
cancer): Cancer patients exhibit hallmarks of oncogenesis, including genomic instability, epigenetic reprogramming, nonsense-mediated decay, ribosomal stress, 
myelocytomatosis oncogene-driven proliferative signaling, and persistent immune activation via toll-like receptors and type I interferons. COVID-19: Coronavirus 
disease 2019; mRNA: Messenger RNA; MYC: Myelocytomatosis oncogene; ROS: Reactive oxygen species; TCA: Tricarboxylic acid; TLRs: Toll-like receptors;

immune recognition of cytoplasmic DNA fragments, a well-established marker of DNA damage and chromosomal 
instability[73]. This pathway is associated with tumor-promoting inflammation and immune editing[60-62]. Importantly, 
a recent longitudinal study of mRNA vaccination in octogenarians demonstrated that BNT162b2 administration elicited 
activation of the cGAS–STING pathway alongside robust immune and antibody responses, further supporting our 
transcriptomic findings[63]. Persistent genomic instability increases the likelihood of acquiring somatic mutations in key 
oncogenes and tumor suppressor genes, a process that can cumulatively drive malignant transformation. This is 
consistent with preclinical and in vitro evidence showing that exposure to the BNT162b2 mRNA vaccine can modulate 
endogenous reverse transcriptase activity (LINE-1), facilitate reverse transcription of vaccine mRNA into DNA, and alter 
nuclear localization of LINE-1 proteins[74], such events that could, in principle, contribute to insertional mutagenesis and 
genomic perturbations over time. Independent analyses have corroborated these concerns by identifying residual 
plasmid DNA contamination in both Pfizer and Moderna mRNA vaccines[75].

CONCLUSION
This study provides transcriptomic evidence of molecular disruptions in two patient populations – those with new-onset 
nonmalignant adverse events and those with newly diagnosed cancers. Using differential expression analysis and GSEA, 
we identified hallmark signatures of mitochondrial dysfunction, translational stress, immune dysregulation, endothelial 
disturbance, and proliferative signaling across both cohorts. Notably, while both groups shared transcriptional perturb-
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ations in immune and translational pathways, the cancer group exhibited additional signatures of genomic instability and 
epigenetic remodeling.

Persistent spike protein expression, prolonged synthetic mRNA activity, and RNA modifications such as m1Ψ appear 
to contribute to sustained aberrant ribosomal activity, proteostasis stress, and immune activation. Our findings also 
highlight transcriptional signals indicative of tumor-promoting conditions, including suppressed p53 networks, activated 
MYC targets, and altered interferon signaling, particularly in the context of epigenetic dysregulation in the cancer cohort. 
These observations suggest that vaccine-induced transcriptomic reprogramming may differentially affect individuals, 
genetically or immunologically, over a long period of time after vaccination. Despite the smaller sample size due to 
resource constraints (group 1 n = 3 vs n = 7 in group 2), the findings open an important avenue for understanding post-
vaccine biological responses and underscore the value of expanding future studies with larger cohorts.
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