EDITORIAL

5839 Orthopedic manifestations of Li-Fraumeni syndrome: Prevention and treatment of a polymorphic spectrum of malignancies
Cenci G, Pace V

5845 Confocal laser endomicroscopy as a new diagnostic tool for poorly differentiated gastric adenocarcinoma
Evola G, Vacante M, Evola FR

5850 Proteomics for early prenatal screening of gestational diabetes mellitus
Wu L, Wang XP, Zhu YX, Tan YP, Li CM

5854 Paired box proteins as diagnostic biomarkers for endocervical adenocarcinoma
Zhou JH, Zhang XN

5859 Endoscopic ultrasound-guided biliary drainage using electrocautery-enhanced lumen-apposing metal stent for malignant biliary obstruction: A promising procedure
Wu SZ

5863 Cardiac implications in myasthenia gravis
Elmati PR, Jagirdhar GSK, Sarani S

ORIGINAL ARTICLE

Case Control Study

5868 Multivariate analysis of oral mucosal ulcers during orthodontic treatment
Chang J, Li X

5877 Impact of web-based positive psychological intervention on emotions, psychological capital, and quality of life in gastric cancer patients on chemotherapy
Xin YY, Zhao D

Retrospective Cohort Study

5885 Risk factors and clinical significance of posterior slip of the proximal vertebral body after lower lumbar fusion

Retrospective Study

5893 Predictive value of diaphragm ultrasound for mechanical ventilation outcome in patients with acute exacerbation of chronic obstructive pulmonary disease
Qu LL, Zhao WP, Li JP, Zhang W
Contents

World Journal of Clinical Cases

Thrice Monthly Volume 12 Number 26 September 16, 2024

<table>
<thead>
<tr>
<th>Page</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>5901</td>
<td>Influence of perinatal factors on full-term low-birth-weight infants and construction of a predictive model</td>
<td>Xu L, Sheng XJ, Gu LP, Yang ZM, Feng ZT, Gu DF, Gao L</td>
</tr>
<tr>
<td>5908</td>
<td>Magnetic resonance imaging-based radiomics model for preoperative assessment of risk stratification in endometrial cancer</td>
<td>Wei ZY, Zhang Z, Zhao DL, Zhao WM, Meng YG</td>
</tr>
<tr>
<td>5922</td>
<td>Application of real-time shear wave elastography to Achilles tendon hardness evaluation in older adults</td>
<td>He X, Wei X, Hou J, Tan W, Luo P</td>
</tr>
<tr>
<td>5930</td>
<td>Study of the intensive care unit activity scale in the early rehabilitation of patients after direct cardiac surgery</td>
<td>Wang L, Lu JY, Ma XX, Ma LO</td>
</tr>
<tr>
<td>5937</td>
<td>Modifiable factors mediating the effects of educational attainment on gestational diabetes mellitus: A two-step Mendelian randomization study</td>
<td>Ma MY, Zhao YS</td>
</tr>
<tr>
<td>5946</td>
<td>Periorbital purpura can be the only initial symptom of primary light chain amyloidosis: A case report</td>
<td>Wang XF, Li T, Yang M, Huang Y</td>
</tr>
<tr>
<td>5960</td>
<td>Stage IV non-small cell lung cancer with multiple metastases to the small intestine leading to intussusception: A case report</td>
<td>Niu QG, Huang MH, Kong WQ, Yu Y</td>
</tr>
<tr>
<td>5974</td>
<td>Organizing pneumonia secondary to pulmonary tuberculosis: A case report</td>
<td>Liu M, Dong XY, Ding ZX, Wang QH, Li DH</td>
</tr>
<tr>
<td>5983</td>
<td>Sclerosing epithelioid fibrosarcoma of the pancreas: A case report</td>
<td>Sun MQ, Guo LN, You Y, Qiu YY, He XD, Han XL</td>
</tr>
</tbody>
</table>
LETTER TO THE EDITOR

5998 Fragile hearts: Unveiling the crucial layers of frailty in elderly patients undergoing percutaneous coronary interventions
 Mitsis A, Myrianthefs M

6001 T lymphocyte proportion in Alzheimer’s disease prognosis
 Willman M, Patel G, Lucke-Wold B
ABOUT COVER
Peer Reviewer of World Journal of Clinical Cases, Ralph Victor Yap, MD, RN, Assistant Professor, Surgeon, Department of Surgery, Cebu Doctors' University Hospital, Cebu 6000, Philippines. rvyapmd@gmail.com

AIMS AND SCOPE
The primary aim of World Journal of Clinical Cases (WJCC, World J Clin Cases) is to provide scholars and readers from various fields of clinical medicine with a platform to publish high-quality clinical research articles and communicate their research findings online.

WJCC mainly publishes articles reporting research results and findings obtained in the field of clinical medicine and covering a wide range of topics, including case control studies, retrospective cohort studies, retrospective studies, clinical trials studies, observational studies, prospective studies, randomized controlled trials, randomized clinical trials, systematic reviews, meta-analysis, and case reports.

INDEXING/ABSTRACTING
The WJCC is now abstracted and indexed in PubMed, PubMed Central, Reference Citation Analysis, China Science and Technology Journal Database, and Superstar Journals Database. The 2024 Edition of Journal Citation Reports® cites the 2023 journal impact factor (JIF) for WJCC as 1.0; JIF without journal self cites: 0.9; 5-year JIF: 1.1; JIF Rank: 168/325 in medicine, general and internal; JIF Quartile: Q3; and 5-year JIF Quartile: Q3.

RESPONSIBLE EDITORS FOR THIS ISSUE
Production Editor: Wen-Bo Wang; Production Department Director: Xu Gao; Cover Editor: Jin-Lei Wang.

NAME OF JOURNAL
World Journal of Clinical Cases

ISSN
ISSN 2307-8960 (online)

LAUNCH DATE
April 16, 2013

FREQUENCY
Thrice Monthly

EDITORS-IN-CHIEF
Bao-Gan Peng, Salim Surani, Jerzy Tadeusz Chudek, George Kontogeorgos, Maurizio Serati

EDITORIAL BOARD MEMBERS
https://www.wjgnet.com/2307-8960/editorialboard.htm

PUBLICATION DATE
September 16, 2024

COPYRIGHT
© 2024 Baishideng Publishing Group Inc

INSTRUCTIONS TO AUTHORS
https://www.wjgnet.com/bpg/gerinfo/204

GUIDELINES FOR ETHICS DOCUMENTS
https://www.wjgnet.com/bpg/gerInfo/287

GUIDELINES FOR NON-NATIVE SPEAKERS OF ENGLISH
https://www.wjgnet.com/bpg/gerinfo/240

PUBLICATION ETHICS
https://www.wjgnet.com/bpg/gerinfo/288

PUBLICATION MISCONDUCT
https://www.wjgnet.com/bpg/gerinfo/208

ARTICLE PROCESSING CHARGE
https://www.wjgnet.com/bpg/gerinfo/242

STEPS FOR SUBMITTING MANUSCRIPTS
https://www.wjgnet.com/bpg/gerinfo/239

ONLINE SUBMISSION
https://www.ffpublishing.com

© 2024 Baishideng Publishing Group Inc. All rights reserved. 7041 Koll Center Parkway, Suite 160, Pleasanton, CA 94566, USA E-mail: office@baishideng.com https://www.wjgnet.com
Concurrent occurrence of adenocarcinoma and urothelial carcinoma of the prostate gland: A case report

Jhe Yuan Hsu, Yi Sheng Lin, Li Hua Huang, Tang Yi Tsao, Chao Yu Hsu, Yen Chuan Ou, Min Che Tung

Abstract

BACKGROUND
Adenocarcinoma is the most common subtype of prostate cancer. Prostatic urothelial carcinoma (UC) typically originates from the prostatic urethra. The concurrent occurrence of adenocarcinoma and UC of the prostate gland is uncommon.

CASE SUMMARY
We present the case of an 82-year-old male patient with simultaneous adenocarcinoma and UC of the prostate gland. The patient underwent a transrectal ultrasound-guided biopsy, and the pathology test revealed UC. Subsequently, transurethral laser prostatectomy was performed, and the pathology test indicated adenocarcinoma of the prostate with a Gleason score of 3 + 4 and high-grade UC. Therefore, the patient was treated with androgen deprivation therapy, systemic chemotherapy, and immunotherapy. Magnetic resonance imaging performed during follow-up revealed a prostate tumor classified as cT2cN1M0, stage IVA. Therefore, the patient underwent robotic-assisted radical prostatectomy and bilateral pelvic lymph node dissection. The final pathology test of the prostate gland revealed acinar-type adenocarcinoma, Gleason pattern 4 + 3, pT2N0M0, and high-grade UC. The patient regularly presented to the clinic for postoperative follow-up evaluations. He did not experience any urinary discomfort.

CONCLUSION
According to our literature review, this is the first reported case of coexisting adenocarcinoma and UC of the prostate gland.
Key Words: Adenocarcinoma; Urothelial carcinoma; Prostate; Coexist; Case report

©The Author(s) 2024. Published by Baishideng Publishing Group Inc. All rights reserved.

Core Tip: This report of synchronous adenocarcinoma and urothelial carcinoma (UC) of the prostate gland describes the unique prostate cancer manifestations in a male patient as well as the clinical journey from his initial symptoms of urinary retention and gross hematuria to the final treatment comprising robotic-assisted radical prostatectomy and bilateral pelvic lymph nodes dissection. This rare co-occurrence of two distinct cancer subtypes of the prostate gland without a history of UC of the urinary bladder and evident recurrence after treatment emphasizes the need for heightened diagnostic awareness and suggests novel oncogenic pathways and genetic predispositions.

URL: https://www.wjgnet.com/2307-8960/full/v12/i26/5952.htm
DOI: https://dx.doi.org/10.12998/wjcc.v12.i26.5952

INTRODUCTION
Prostate cancer is the second most common cancer among men worldwide, and its incidence increases with age. The predominant subtype of carcinoma of the prostate is adenocarcinoma. Adenocarcinoma is graded using the Gleason scoring system. Prostate urothelial carcinoma (UC) is a subtype that usually develops from the urothelium lining the prostatic urethra and the proximal sections of the prostatic ducts [1]. As far as we are aware, this is the first documented report of adenocarcinoma and UC co-occurring in the prostate gland.

CASE PRESENTATION

Chief complaints
An 82-year-old male patient presented to the urology clinic with a 5-day history of acute urinary retention and gross hematuria.

History of present illness
The patient experienced gross hematuria and intermittent acute urinary retention for 5 days before presentation.

History of past illness
The patient was initially evaluated at another hospital because he experienced acute urinary retention and gross hematuria. A digital rectal examination (DRE) revealed firm prostate nodules and an increased prostate-specific antigen (PSA) level of 53 ng/mL. In October 2020, the patient underwent a transrectal ultrasound-guided biopsy that revealed UC. Subsequently, he underwent transurethral laser prostatectomy. The pathology test indicated prostatic adenocarcinoma with a Gleason score of 3 + 4 and high-grade UC. Cystoscopy revealed no papillary tumors in the prostatic urethra or urinary bladder. No evidence of bone metastasis was observed during a bone scan. Therefore, the patient was treated with androgen deprivation therapy (ADT) with leuprorelin and bicalutamide in December 2020. In January and February 2021, the patient was treated with systemic chemotherapy with gemcitabine and cisplatin. In February 2021, the patient was treated with immunotherapy with nivolumab at another hospital (Figure 1).

Personal and family history
The patient had a history of hypertension and arrhythmia that were controlled with medication. He did not have a family history of malignant tumors.

Physical examination
During the physical examination, the external genitalia appeared normal. The DRE revealed a firm prostate with an estimated volume of 25 cm³.

Laboratory examinations
The preoperative blood test revealed a white blood cell count of $8.2 \times 10^3/\mu L$, hemoglobin level of 12.3 g/dL, platelet count of $263 \times 10^3/\mu L$, glutamic oxaloacetic transaminase level of 21 IU/L, blood urea nitrogen level of 21 mg/dL, creatinine level of 1.01 mg/dL, estimated glomerular filtration rate of 75, and PSA level of 8.877 ng/dL. The urinalysis results were within normal ranges.
Imaging examinations

Ultrasonography was performed to estimate the volume of the prostate gland (25 cm³). The postvoid volume was 29 mL. Magnetic resonance imaging was performed during follow-up and revealed a prostate tumor classified as cT2cN1M0, stage IVA (Figure 2).

MULTIDISCIPLINARY EXPERT CONSULTATION

A technetium-99 m methylene diphosphonate whole-body bone scan revealed no evidence of bone metastasis (Figure 3). An 18F-fluorodeoxyglucose positron emission tomography examination revealed no evidence of metastasis (Figure 4). Cystoscopy revealed no papillary tumors in the urinary bladder or urethra.

FINAL DIAGNOSIS

The final diagnosis was adenocarcinoma and high-grade UC of the prostate classified as cT2cN1M0, stage IVA.

TREATMENT

The patient presented to our hospital for a second opinion regarding the diagnosis. Radical cystoprostatectomy was suggested; however, the patient refused this procedure. Therefore, he underwent robotic-assisted radical prostatectomy (RaRP) and bilateral pelvic lymph node dissection (BPLND) on May 11, 2021 (Figure 5).

OUTCOME AND FOLLOW-UP

The results of the final pathology test of the prostate gland indicated acinar-type adenocarcinoma, gleason pattern 4 + 3 (grade group 3), pT2N0M0, and high-grade UC (Figure 6). The surgical margins were clear, and extraprostatic extension was not observed. The immunohistochemical staining results were as follows: Negative CK5; Positive α-methylacyl coenzyme A racemase; Positive synaptophysin (20%); and Positive GATA binding protein 3 (GATA3). These findings indicated concurrent adenocarcinoma and UC of the prostate gland. The patient was discharged 6 days postoperatively. He experienced good recovery and did not report any major complications. Outpatient evaluations comprising PSA monitoring and cystoscopy were performed every 3 months. The PSA levels remained less than 0.008 ng/dL. Urinary discomfort and signs of recurrence were not observed during the most recent clinical evaluation. The patient expressed that he was highly satisfied with the surgical outcome and that his quality of life had significantly improved with treatment.

DISCUSSION

To our knowledge, this is the first reported case of simultaneous adenocarcinoma and UC of the prostate gland in Taiwan. Typically, prostate cancer manifests as adenocarcinoma. Although there have been case reports of adenocar-
Figure 2 Image of the pelvis obtained during follow-up with magnetic resonance imaging. A: A 2.4-cm lesion with low T2 signal is observed in the posterolateral portion of the left transitional zone; B: Apparent diffusion coefficient of the lesion with low signal; C: Increased diffusion tensor imaging signals are observed.

Figure 3 Technetium-99m methylene diphosphonate whole-body bone scan. Focal areas of increased radioactivity uptake are noted in the lumbar spine at levels L1/2, L3/4, and L4/5, as well as in the left elbow and bilateral acromioclavicular joints. These findings suggest a benign etiology.

carcinoma and tubulovillous adenoma of the urinary bladder, UC predominantly occurs in the urinary bladder or ureter[2, 3]. One of the primary objectives of this study was to stimulate further research into the mechanisms underlying the coexistence of these conditions.

According to the World Health Organization GLOBOCAN database, prostate cancer is a significant medical concern because of its prevalence, impact on the quality of life, and mortality. Risk factors include age, ethnicity, genetics, diet, hormones, obesity, and others[4-8]. Patients are often asymptomatic initially. Bone pain is a common clinical presentation among patients with metastatic prostate cancer at the time of diagnosis because the bones are the predominant sites of dissemination[9].

Prostate cancer is typically suspected when increased PSA levels or abnormal DRE findings are observed. There is no single threshold for abnormal PSA levels. However, age-specific reference PSA levels, which increase faster in older men,
Figure 4 Images obtained during an 18F-fluorodeoxyglucose positron emission tomography evaluation of the region comprising the head to the upper thigh. From left to right: Ill-defined fluorodeoxyglucose (FDG) avidity is observed in the prostate; No FDG-avid regional or distant lymph nodes are apparent; Ill-defined FDG avidity is noted in the right buccal region after the dental prosthesis; and Ill-defined FDG avidity in the right T1, T4, T8, T12, and left upper ilia with sclerotic changes, suggesting a benign etiology.

Figure 5 Gross examination of the prostate tumor after robotic-assisted radical prostatectomy. 4 cm × 3 cm × 4 cm prostate gland with a volume of 24.96 mL and weight of 29 g; The 19 cm × 1.3 cm × 0.7 cm adenocarcinoma is located in the left anterior lateral lobe and, specifically, in the middle area transitioning to the peripheral zone. The 1 cm × 0.6 cm × 0.6 cm carcinoma of the urethra is observed in the right posterior lobe, middle area, and near the periurethra.

and the velocity of increase in the PSA level, which often has a cutoff of more than 0.75 ng/dL within 1 year, are considered significant findings[10].

A definitive diagnosis requires the evaluation of tissue samples obtained during a transrectal or transperineal biopsy [11]. Most malignant prostatic neoplasms are carcinomas that originate from and are differentiated from epithelial tissue. Adenocarcinoma, which accounts for more than 95% of all cases, is characterized by its glandular structure, absence of basal cells, and distinct nuclear characteristics of the glandular epithelial cells[12]. Compared to benign glands, malignant glands present more frequently with intraluminal crystalloids, amorphous secretions, or blue-tinged mucin. Adenocarcinomas are mostly acinar; the ductal types are less common[13]. UC, which is another less common subtype, typically occurs concurrently with bladder carcinoma; however, it can arise as the primary disease. Immunohistochemical findings that differentiate UC from adenocarcinoma of the prostate include thrombomodulin, GATA3, p63, and high-molecular-weight cytokeratins[14].
The staging and evaluation of adenocarcinoma of the prostate as well as its treatment strategies are based on its risk stratification determined by the DRE results, serum PSA levels, pathology results of the prostate biopsy sample, and imaging results. Treatment options for very low-risk disease include active surveillance and, if necessary, definitive local therapy such as radiation therapy (RT) and radical prostatectomy[15]. Definitive treatment options for patients with low-risk prostate cancer and a life expectancy of more than 10 years include RT, radical prostatectomy, and active surveillance[16]. Intermediate-risk disease can be treated with RT and radical prostatectomy. Clinically localized high-risk prostate cancer is typically managed with external beam RT combined with brachytherapy, ADT, or radical prostatectomy[15]. Treatments for locally advanced and very high-risk prostate cancer include external beam RT with or without brachytherapy, long-term ADT, and radical prostatectomy[17]. The outcomes of these treatments depend on the disease stage and patient compliance.

A review of the literature indicated that most patients with UC of the prostate had a history of UC of the urinary bladder[18]. Additionally, concurrent UC of the urinary bladder and prostate was diagnosed incidentally after cystoprostatectomy[19,20]. In this case, UC was not observed in the urinary bladder. However, the coexistence of UC and adenocarcinoma of the prostate was incidentally discovered after the prostate biopsy. According to previous research of the different immunohistochemical findings that distinguish prostate carcinoma from UC, the sensitivities of prostatic markers of prostate adenocarcinoma were as follows: 100% for PSA; 83.8% for prostate-specific membrane antigen; 91.9% for prostate acid phosphatase; 93.7% for PS101s; 88.3% for NKX 3.1; and 66.7% for α-methylacyl coenzyme A racemase. In contrast, the sensitivities of urothelial markers of UC were 75.4% for CK34βE12, 73.9% for p63, 45.7% for thrombomodulin, 22.5% for S100P, and 84.8% for GATA3[21]. The immunohistochemical staining results of the prostate samples from our patient were positive for both α-methylacyl coenzyme A racemase and GATA3; therefore, the coexistence of adenocarcinoma and UC was strongly suggested.

We proposed three hypotheses regarding the potential mechanisms of synchronous adenocarcinoma and UC of the prostate. First, metaplastic transformation may result in this phenomenon. Metaplastic transformation involves the conversion of one differentiated cell type to another. In this context, some glandular cells within the prostate may have undergone metaplastic transformation to urothelial cells, potentially driven by chronic inflammation or other local environmental factors[22]. Second, the presence of multipotent stem cells within the prostate could explain the coexistence of adenocarcinoma and UC. Multipotent stem cells can differentiate into various cell types, including glandular and urothelial cells. This pluripotency may lead to the simultaneous emergence of adenocarcinoma and UC in the same tissue[23,24]. Third, the intraluminal spread of UC cells from an occult site within the urinary tract to the prostate could cause this uncommon disease occurrence. Intraluminal spread can occur without a documented history of primary UC, particularly if the primary site is very small or has regressed[25]. Although these hypotheses provide various potential explanations for the simultaneous presence of adenocarcinoma and UC of the prostate, they have not been confirmed.

Our patient initially underwent ADT for adenocarcinoma of the prostate because he preferred nonsurgical intervention. Consequently, leuprorelin and bicalutamide were administered for several months. Although the PSA level of...
our patient decreased to 8.78 ng/mL after 4 months of treatment, he sought a second opinion at our hospital. Because the tumor was restricted to the prostate stroma without involvement of the prostatic urethra, as confirmed by cystoscopy and magnetic resonance imaging, and because the patient’s Eastern Cooperative Oncology Group performance status was good, radical cystoprostatectomy was recommended. However, after a thorough discussion and explanation, the patient chose RaRP and BPLND as bladder-sparing surgery. Additionally, four cycles of systemic chemotherapy with gemcitabine and cisplatin for UC of the prostate were initially administered at another hospital by a physician with clinical experience with UC of the prostate with stromal invasion. Subsequently, second-line systemic immunotherapy with Nivolumab was administered.

Despite the absence of a history of UC in the urinary bladder, cystoscopy revealed no recurrence following ADT, chemotherapy, and immunotherapy. Two years after RaRP and BPLND, the patient was recurrence-free. No reports of synchronous adenocarcinoma and UC of the prostate gland were found during our literature review.

CONCLUSION

To the best of our knowledge, this is the first reported case of synchronous adenocarcinoma and UC of the prostate gland. Although a correlation between adenocarcinoma and UC of the prostate gland has not been proven, this case highlights the potential for the coexistence of these two cancer subtypes in the prostate gland and suggests the need for further genetic studies and case reports to improve the understanding of the causes and mechanisms of their coexistence.

ACKNOWLEDGEMENTS

We extend our heartfelt appreciation to the patient for consenting to the publication of this case. We also express our special thanks to the staff of Tungs’ Taichung MetroHarbor Hospital for their exemplary care and dedication to patient service.

FOOTNOTES

Author contributions: Hsu JY, Lin YS, Huang LH, and Tsao TY contributed to patient care, data collection, and manuscript writing and editing; Hsu CY, Ou YC, and Tung MC contributed to conceptualization and supervision; All authors have read and approved the final manuscript.

Informed consent statement: Written informed consent was obtained from the patient for the publication of this report and any accompanying images.

Conflict-of-interest statement: The authors declare that they have no conflict of interest.

CARE Checklist (2016) statement: The authors have read the CARE Checklist (2016), and the manuscript was prepared and revised according to the CARE Checklist (2016).

Open-Access: This article is an open-access article that was selected by an in-house editor and fully peer-reviewed by external reviewers. It is distributed in accordance with the Creative Commons Attribution NonCommercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: https://creativecommons.org/Licenses/by-nc/4.0/

Country of origin: Taiwan

ORCID number: Jhe Yuan Hsu 0000-0001-5006-0149; Yi Sheng Lin 0000-0003-0592-0036; Li Hua Huang 0000-0003-4337-7230; Chao Yu Hsu 0000-0001-9809-7442; Yen Chuan Ou 0000-0002-6080-7231; Min Che Tung 0000-0002-4136-7613.

S-Editor: Fan M
L-Editor: A
P-Editor: Che XX

REFERENCES

24 Prostate Cancer Have Significantly Worse Outcomes Compared to Patients with Gleason 8 Disease.

Costello AJ, Papenfuss AT, Hovens CM, Corcoran NM. Ductal variant prostate carcinoma is associated with a significantly shorter metastasis-free survival.

Prostate Cancer in men less than the age of 50: a comparison of

Putra-venturina M, Cho Y, Amin MB. Immunohistochemical evaluation of novel and traditional markers associated with urothelial differentiation in a spectrum of

16278466 DOI: 10.1016/j.humpath.2014.02.024

Donovan JL, Athene Lane J, Davis M, Neal DE, Hamdy FC, Mason M, Metcalfe AJ, Papenfuss AT, Hovens CM, Corcoran NM. Ductal variant prostate carcinoma is associated with a significantly shorter metastasis-free survival.

Hum Pathol 2014; 45: 1473-1482 [PMID: 24780825 DOI: 10.1016/j.humpath.2014.02.024]

Hum Pathol 2014; 45: 1473-1482 [PMID: 24780825 DOI: 10.1016/j.humpath.2014.02.024]

10.1101/cshperspect.a030411

JAMA 1993; 270: 860-864 [PMID: 7688054]

10.1111/j.1365-2559.2011.04039.x

Collin SM, Metcalfe C, Donovan JL, Athene Lane J, Davis M, Neal DE, Hamdy FC, Martin RM. Associations of sexual dysfunction symptoms with PSA-detected localised and advanced prostate cancer: a case-control study nested within the UK population-based ProtecT (Prostate testing for cancer and Treatment) study.

10.5858/2007-131-1122-ICOTPG

Elder MM, Cohen RJ, Collin SM, Dell’Atti L, Giovannucci E, Parmigiani G, Mucci EA. Family History of Breast or

Prostate Cancer: a collaborative analysis of 18 prospective studies.

Chen JM, Gann PH, Giovannucci EL. Role of diet in prostate cancer development and progression.

10.1093/jnci/djm323

Allott EH, Masko EM, Freedland SJ. Obesity and prostate cancer: weighing the evidence.

10.1111/j.1365-2559.2011.04039.x

10.1093/jnci/djm323

10.5858/2007-131-1122-ICOTPG

Elder MM, Cohen RJ, Collin SM, Dell’Atti L, Giovannucci E, Parmigiani G, Mucci EA. Family History of Breast or

Prostate Cancer: a collaborative analysis of 18 prospective studies.

Chen JM, Gann PH, Giovannucci EL. Role of diet in prostate cancer development and progression.
