OPINION REVIEW

7620 Whipple’s operation with a modified centralization concept: A model in low-volume Caribbean centers

Cawich SO, Pearce NW, Naraynsingh V, Shukla P, Deshpande RR

REVIEW

7631 Role of micronutrients in Alzheimer's disease: Review of available evidence

Fei HX, Qian CF, Wu XM, Wei YH, Huang JY, Wei LH

MINIREVIEWS

7642 Application of imaging techniques in pancreaticobiliary maljunction

Wang JY, Mu PY, Xu YK, Bai YY, Shen DH

7653 Update on gut microbiota in gastrointestinal diseases

Nishida A, Nishino K, Ohno M, Sakai K, Ohwaki Y, Noda Y, Imaeda H

7665 Vascular complications of pancreatitis

Kalas MA, Leon M, Chavez LO, Canalizo E, Sarani S

ORIGINAL ARTICLE

Clinical and Translational Research

7674 Network pharmacology and molecular docking reveal zedoary turmeric-trisomes in Inflammatory bowel disease with intestinal fibrosis

Zheng L, Ji YY, Dai YC, Wen XL, Wu SC

Case Control Study

7686 Comprehensive proteomic signature and identification of CDKN2A as a promising prognostic biomarker and therapeutic target of colorectal cancer

Wang QQ, Zhou YC, Zhou Ge YJ, Qin G, Yin TF, Zhao DY, Tan C, Yao SK

Retrospective Cohort Study

7698 Is anoplasty superior to scar revision surgery for post-hemorrhoidectomy anal stenosis? Six years of experience

Weng YT, Chu KJ, Lin KH, Chang CK, Kang JC, Chen CY, Hu JM, Pu TW

Retrospective Study

7708 Short- (30-90 days) and mid-term (1-3 years) outcomes and prognostic factors of patients with esophageal cancer undergoing surgical treatments

Shi MK, Mei YQ, Shi JL
<table>
<thead>
<tr>
<th>Page</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>7720</td>
<td>Effectiveness of pulsed radiofrequency on the medial cervical branches for cervical facet joint pain</td>
<td>Chang MC, Yang S</td>
</tr>
<tr>
<td>7738</td>
<td>Correlation between the warning symptoms and prognosis of cardiac arrest</td>
<td>Zheng K, Bai Y, Zhai QR, Du LF, Ge HX, Wang GX, Ma QB</td>
</tr>
<tr>
<td>7749</td>
<td>Serum ferritin levels in children with attention deficit hyperactivity disorder and tic disorder</td>
<td>Tang CY, Wen F</td>
</tr>
<tr>
<td>7760</td>
<td>Application of metagenomic next-generation sequencing in the diagnosis of infectious diseases of the central nervous system after empirical treatment</td>
<td>Chen YY, Guo Y, Xue XH, Pang F</td>
</tr>
<tr>
<td>7785</td>
<td>Prospective single-center feasible study of innovative autorelease bile duct supporter to delay adverse events after endoscopic papillectomy</td>
<td>Liu SZ, Chai NL, Li HK, Feng XX, Zhai YQ, Wang NJ, Gao Y, Gao F, Wang SS, Linghu EQ</td>
</tr>
<tr>
<td>7794</td>
<td>Performance of Dexcom G5 and FreeStyle Libre sensors tested simultaneously in people with type 1 or 2 diabetes and advanced chronic kidney disease</td>
<td>Ólafsdóttir AF, Andelin M, Saeed A, Sofizadeh S, Hamoodi H, Jansson PA, Lind M</td>
</tr>
<tr>
<td>7808</td>
<td>Complications of chronic pancreatitis prior to and following surgical treatment: A proposal for classification</td>
<td>Murruste M, Kirsimägi Ü, Kase K, Veršinina T, Talving P, Lepner U</td>
</tr>
<tr>
<td>7825</td>
<td>Effects of comprehensive nursing on postoperative complications, mental status and quality of life in patients with glioma</td>
<td>Dong H, Zhang XL, Deng CX, Luo B</td>
</tr>
<tr>
<td>7832</td>
<td>Predictors of long-term anxiety and depression in discharged COVID-19 patients: A follow-up study</td>
<td>Boyraz RK, Şahan E, Boylu ME, Korponar İ</td>
</tr>
<tr>
<td>Page</td>
<td>Title</td>
<td>Authors</td>
</tr>
<tr>
<td>------</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>7859</td>
<td>Rectal nonsteroidal anti-inflammatory drugs, glyceryl trinitrate, or combinations for prophylaxis of post-endoscopic retrograde cholangiopancreatography pancreatitis: A network meta-analysis</td>
<td>Shi QQ, Huang GX, Li W, Yang JR, Ning XY</td>
</tr>
<tr>
<td>7872</td>
<td>Effect of celecoxib on improving depression: A systematic review and meta-analysis</td>
<td>Wang Z, Wu Q, Wang Q</td>
</tr>
<tr>
<td>7883</td>
<td>CASE REPORT</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Rectal mature teratoma: A case report</td>
<td>Liu JL, Sun PL</td>
</tr>
<tr>
<td>7890</td>
<td>Antibiotic and glucocorticoid-induced recapitulated hematological remission in acute myeloid leukemia: A case report and review of literature</td>
<td>Sun XY, Yang XD, Yang XQ, Ju B, Xu NN, Xu J, Zhao XC</td>
</tr>
<tr>
<td>7899</td>
<td>Non-secretory multiple myeloma expressed as multiple extramedullary plasmacytoma with an endobronchial lesion mimicking metastatic cancer: A case report</td>
<td>Lee SB, Park CY, Lee HJ, Hong R, Kim WS, Park SG</td>
</tr>
<tr>
<td>7906</td>
<td>Latamoxef-induced severe thrombocytopenia during the treatment of pulmonary infection: A case report</td>
<td>Zhang RY, Zhang JJ, Li JM, Xu YY, Xu YH, Cai XJ</td>
</tr>
<tr>
<td>7931</td>
<td>Primary hypertension in a postoperative paraganglioma patient: A case report</td>
<td>Wei JH, Yan HL</td>
</tr>
<tr>
<td>7936</td>
<td>Long-term survival of gastric mixed neuroendocrine-non-neuroendocrine neoplasm: Two case reports</td>
<td>Woo LT, Ding YF, Mao CY, Qian J, Zhang XM, Xu N</td>
</tr>
<tr>
<td>7944</td>
<td>Percutaneous transforaminal endoscopic decompression combined with percutaneous vertebroplasty in treatment of lumbar vertebral body metastases: A case report</td>
<td>Ran Q, Li T, Kuang ZP, Guo XH</td>
</tr>
<tr>
<td>7950</td>
<td>Atypical imaging features of the primary spinal cord glioblastoma: A case report</td>
<td>Liang XY, Chen YP, Li Q, Zhou ZW</td>
</tr>
<tr>
<td>7960</td>
<td>Resection with limb salvage in an Asian male adolescent with Ewing’s sarcoma: A case report</td>
<td>Lai CY, Chen KJ, Ho TY, Li LY, Kuo CC, Chen HT, Fong YC</td>
</tr>
</tbody>
</table>
Delayed arterial symptomatic epidural hematoma on the 14th day after posterior lumbar interbody fusion: A case report
Hao SS, Gao ZF, Li HK, Liu S, Dong SL, Chen HL, Zhang ZF

Clinical and genetic analysis of nonketotic hyperglycinemia: A case report
Ning JJ, Li F, Li SQ

Ectopic Cushing's syndrome in a patient with metastatic Merkel cell carcinoma: A case report
Ishay A, Touma E, Vornicova O, Dodiuk-Gad R, Goldman T, Bisharat N

Occurrence of MYD88L265P and CD79B mutations in diffuse large b cell lymphoma with bone marrow infiltration: A case report
Huang WY, Weng ZY

Rare case of compartment syndrome provoked by inhalation of polyurethane agent: A case report
Choi JH, Oh HM, Hwang JH, Kim KS, Lee SY

Acute ischemic Stroke combined with Stanford type A aortic dissection: A case report and literature review
He ZY, Yao LP, Wang XK, Chen NY, Zhao JJ, Zhou Q, Yang XF

Compound-honesuckle-induced drug eruption with special manifestations: A case report
Zhou LF, Lu R

Spontaneous internal carotid artery pseudoaneurysm complicated with ischemic stroke in a young man: A case report and review of literature
Zhong YL, Feng JP, Luo H, Gong XH, Wei ZH

Microcystic adnexal carcinoma misdiagnosed as a "recurrent epidermal cyst": A case report
Yang SX, Mou Y, Wang S, Hu X, Li FQ

Accidental discovery of appendiceal carcinoma during gynecological surgery: A case report
Wang L, Dong Y, Chen YH, Wang YN, Sun L

Intra-ampullary papillary-tubular neoplasm combined with ampullary neuroendocrine carcinoma: A case report
Zavrtanik H, Luzar B, Tomažič A

LETTER TO THE EDITOR

Commentary on "Primary orbital monophasic synovial sarcoma with calcification: A case report"
Tokur O, Aydin S, Karavas E
ABOUT COVER
Editorial Board Member of World Journal of Clinical Cases, Bennete Aloysius Fernandes, MDS, Professor, Faculty of Dentistry, SEGi University, Kota Damansara 47810, Selangor, Malaysia. drben17@yahoo.com

AIMS AND SCOPE
The primary aim of World Journal of Clinical Cases (WJCC, World J Clin Cases) is to provide scholars and readers from various fields of clinical medicine with a platform to publish high-quality clinical research articles and communicate their research findings online.

WJCC mainly publishes articles reporting research results and findings obtained in the field of clinical medicine and covering a wide range of topics, including case control studies, retrospective cohort studies, retrospective studies, clinical trials studies, observational studies, prospective studies, randomized controlled trials, randomized clinical trials, systematic reviews, meta-analysis, and case reports.

INDEXING/ABSTRACTING
The WJCC is now abstracted and indexed in Science Citation Index Expanded (SCIE, also known as SciSearch®), Journal Citation Reports/Science Edition, Current Contents®/Clinical Medicine, PubMed, PubMed Central, Scopus, Reference Citation Analysis, China National Knowledge Infrastructure, China Science and Technology Journal Database, and Superstar Journals Database. The 2022 Edition of Journal Citation Reports® cites the 2021 impact factor (IF) for WJCC as 1.534; IF without journal self cites: 1.491; 5-year IF: 1.599; Journal Citation Indicator: 0.28; Ranking: 135 among 172 journals in medicine, general and internal; and Quartile category: Q4. The WJCC’s CiteScore for 2021 is 1.2 and Scopus CiteScore rank 2021: General Medicine is 443/826.

RESPONSIBLE EDITORS FOR THIS ISSUE
Production Editor: Xu Guo; Production Department Director: Xiang La; Editorial Office Director: Jin-Lei Wang.

NAME OF JOURNAL
World Journal of Clinical Cases

ISSN
ISSN 2307-8960 (online)

LAUNCH DATE
April 16, 2013

FREQUENCY
Thrice Monthly

EDITORS-IN-CHIEF
Bao-Gan Peng, Jerzy Tadeusz Chudek, George Kontogeorgos, Maurizio Serati, Ja Hyeon Ku

EDUCATIONAL BOARD MEMBERS
https://www.wjgnet.com/2307-8960/editorialboard.htm

PUBLICATION DATE
August 6, 2022

COPYRIGHT
© 2022 Baishideng Publishing Group Inc

INSTRUCTIONS TO AUTHORS
https://www.wjgnet.com/bpg/gerinfo/204

GUIDELINES FOR ETHICS DOCUMENTS
https://www.wjgnet.com/bpg/GerInfo/287

GUIDELINES FOR NON-NATIVE SPEAKERS OF ENGLISH
https://www.wjgnet.com/bpg/gerinfo/240

PUBLICATION ETHICS
https://www.wjgnet.com/bpg/gerinfo/288

PUBLICATION MISCONDUCT
https://www.wjgnet.com/bpg/gerinfo/208

ARTICLE PROCESSING CHARGE
https://www.wjgnet.com/bpg/gerinfo/242

STEPS FOR SUBMITTING MANUSCRIPTS
https://www.wjgnet.com/bpg/gerinfo/239

ONLINE SUBMISSION
https://www.f6publishing.com

© 2022 Baishideng Publishing Group Inc. All rights reserved. 7041 Koll Center Parkway, Suite 160, Pleasanton, CA 94566, USA
E-mail: bpgoffice@wjgnet.com https://www.wjgnet.com
Atypical imaging features of the primary spinal cord glioblastoma: A case report

Xin-Yu Liang, Yao-Ping Chen, Qiao Li, Ze-Wang Zhou

BACKGROUND
Primary spinal cord (PSC) glioblastoma (GB) is an extremely rare but fatal primary tumor of the central nervous system and associated with a poor prognosis. While typical tumor imaging features are generally easy to recognize, glioblastoma multiforme can have a wide range of imaging findings. Atypical GB is often misdiagnosed, which usually delays the optimal time for treatment. In this article, we discuss a clinical case of pathologically confirmed PSC GB under the guise of benign tumor imaging findings, as well as the most recent literature pertaining to PSC GB.

CASE SUMMARY
A 70-year-old female complained of limb weakness lasting more than 20 d. Irregular masses were observed inside and outside the left foramina of the spinal canal at C7-T1 on medical imaging. Based on the imaging features, radiologists diagnosed the patient with schwannoma. Tumor resection was performed under general anesthesia. The final histopathological findings revealed a final diagnosis of PSC GB, world health organization Grade IV. The patient subsequently underwent a 4-wk course of radiotherapy (60 Gy in 20 fractions) combined with temozolomide chemotherapy. The patient was alive at the time of submission of this manuscript.

CONCLUSION
Atypical GB presented unusual imaging findings, which led to misdiagnosis. Therefore, a complete recognition of imaging signs may facilitate early accurate diagnosis.
INTRODUCTION
Glioblastoma (GB) is the most common malignancy of the nervous system. Primary spinal cord (PSC) GB is a fairly rare tumor, accounting for 1% to 5% of all GB and 1.5% of all spinal cord neoplasms[1]. Due to its rare occurrence, most reported studies are either case reports or focused on its treatment and prognosis. Apart from histopathological findings, a precise imaging diagnosis also plays an essential role in the prognosis of GB. Furthermore, as it presents a variety of imaging features, it is difficult to differentiate this tumor from ependymoma and astrocytoma as well as neurogenic neoplasms[2,3]. To the best of our knowledge, this is the first literature review to summarize the imaging findings of this rare disease. Due to a misdiagnosed case of pathologically confirmed PSC GB with atypical imaging features in our clinical practice(Figure 1), we reviewed and summarized the imaging and clinical features of PSC GB from 2011 to 2021. By aggregating these data, we intend to improve the diagnostic accuracy of PSC GB for radiologists and clinicians.

CASE PRESENTATION

Chief complaints
A 70-year-old female, with no history of previous illnesses, complained of limb weakness and an inability to walk lasting more than 20 d.

History of present illness
The patient reported feeling weak in her limbs, especially her left arm and leg. She described that, in the previous 2 wk, she had been unable to walk as before.

History of past illness
The patient had no chronic illnesses or history of surgery.

Personal and family history
The patient did not have any significant family history.

Physical examination
Physical examination revealed no deformity in the spine and limbs, with a normal cranial nerve sensation detected. However, there was decreased needling reflection below the bilateral nipples and a muscle strength score of Grade 0 in both lower limbs. Additionally, bilateral abdominal reflexes, anal sphincter reflex, bilateral knee tendon, and Achilles tendon reflexes were absent.

Imaging examination
In the cervical computed tomography and magnetic resonance imaging (MRI) scans (Figures 2 and 3), irregular masses were observed inside and outside of the left foramina of the spinal canal, at C7-T1.
margins between the medial part and the spinal cord were not clear, whereas the lateral margin was rough, and the foramina was enlarged, with a significantly heterogeneous enhancement.

MULTIDISCIPLINARY EXPERT CONSULTATION

According to the results of physical examinations and imaging features, the physicians and radiologists made an initial diagnosis of a benign tumor, like schwannoma. A section surgery was recommended.

FINAL DIAGNOSIS

Based on the imaging features, radiologists, and multidisciplinary expert conclusion, the final diagnosis was schwannoma.
Figure 2 Computed tomography images of lesions of the present case. A and B: The tumor was irregular in shape, growing across and beyond the left foramina; C: The left intervertebral foramina was enlarged with inhomogeneous enhancement; D: The lesion was intramedullary and indistinctly demarcated from the surrounding spinal cord.

Figure 3 Magnetic resonance images of the present case. A-C: The tumor was irregular in shape with a rough margin, and having slightly lower signal intensity on T1-weighted imaging and slightly higher signal intensity on T2-weighted imaging; D: The mass had heterogeneous enhancement.

TREATMENT

After the primary diagnosis, C7-T1 spinal canal tumor resection was performed under general anesthesia. During the procedure, the surgeons noticed edema from the C7-T1 spinal cord, with the residing tumor on the left side, which was obscuring the boundary of the spinal cord. The tumor crossed the foramina and was in proximity to the vertebral and internal carotid arteries and left lung tip. The C7 nerve root was observed passing through it, with a visible small amount of subarachnoid hemorrhage. After resection of the tumor (Figure 4A), histopathological findings revealed a primary spinal cord glioblastoma, World Health Organization (WHO) Grade IV (Figure 4B and C).

The patient underwent MRI re-examination 1 wk after surgery (Figure 5). She subsequently underwent a 4-wk course of radiotherapy (60 Gy in 20 fractions) combined with temozolomide chemotherapy.

OUTCOME AND FOLLOW-UP

For the next 6 mo, the patient’s upper limb muscle strength was Grade II, although lower limb muscle strength was Grade 0, with no relief in incontinence. However, the patient is still alive at this time (day of submission of this manuscript).

DISCUSSION

Significance

This is one of the rare cases of PSC GB that was characterized by tumor growth across and beyond the
spinal canal, like a benign tumor, which led to the misdiagnosis of neurogenic tumors. To the best of our knowledge, an intramedullary glioma that extends beyond the spinal canal has not been reported before. Also, lesions reported previously were located in the spinal canal exclusively.

Literature review

For conducting the extensive literature review, articles were selected in PubMed and Google Scholar for the most recent 10 years (2011-2021) by using search terms of “spinal cord glioblastoma,” “spinal cord malignant glioma,” and “spinal cord malignant neoplasm.” The search resulted in 79 publications, which were carefully screened by two authors (Liang XY and Zhou ZW) based on the following criteria: (1) Patients with surgically and pathologically confirmed PSC GB; (2) Patients with whole clinical information and high-quality preoperative computed tomography/MR images; and (3) Only literature available in English language. However, publications were excluded from the study if they reported: (1) PSC GB with other malignant or benign tumors; (2) Patients with secondary spinal cord GB who had previously undergone low-grade glioma resection; or (3) Patients who had been diagnosed with primary cerebral GB secondary metastases. The publications were also examined for patient clinical details and reported department to rule out duplicates. After the screening, 8 studies (involving 11 patients) fulfilled our requirements and were included in the analysis. The clinical and imaging characteristics of these 11 lesions are listed in Table 1. The detailed screening flow chart is shown in Figure 6.

Imaging features

Generally, the typical imaging features of GB can be easily recognized by most radiologists. However, benign-looking masses, cystic lesions, multifocal/multicentric tumors, and spinal cord abnormalities may all represent features of GB.[2] Therefore, a precise preoperative neuroimaging diagnosis is much more difficult, owing to the high variability of PSC GB. MRI is widely used in early diagnosis and preoperative evaluation of PSC GBs as a non-destructive and high-qualified imaging modality.[2,3]. Usually, PSC GBs appear as infiltrative and expansile intramedullary lesions, with T2 hyperintensity and T1 isointensity or hypointensity with different heterogeneous enhancement post-contrast on T1.[2, 3]. Both the location and shape of the tumor play significant roles in the radiological differential
<table>
<thead>
<tr>
<th>Case No.</th>
<th>Ref.</th>
<th>Age/sex</th>
<th>Symptoms</th>
<th>Lesion location</th>
<th>Intramedullary only</th>
<th>Imaging findings</th>
<th>Surgery/therapy</th>
<th>Survival in month</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Ferrante et al.[3], 2021</td>
<td>34 yr/F</td>
<td>MW, SD</td>
<td>Nearly entire cervical spinal cord and medulla oblongata</td>
<td>Yes</td>
<td>Isointense to hypointense on T1WI, isointense to hyperintense on T2WI, homogeneous enhancement</td>
<td>None</td>
<td>NR</td>
</tr>
<tr>
<td>64 yr/M</td>
<td>MW, SD</td>
<td>Conus medullaris</td>
<td>Yes</td>
<td>Hyperintense on T2WI, peripheral enhancement, necrosis enhancing nodule</td>
<td>STR, radio/chemotherapy</td>
<td>33</td>
<td></td>
<td></td>
</tr>
<tr>
<td>47 yr/M</td>
<td>Paresthesia, pain, MW, SD</td>
<td>Cervical and thoracic</td>
<td>Yes</td>
<td>Multifocal lesion (C5-C7) and (T3-T5), peripheral enhancement, necrotic center</td>
<td>Biopsy, radio/chemotherapy</td>
<td>10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Shen et al.[4], 2020</td>
<td>47 yr/F</td>
<td>Paresthesia, paralysis</td>
<td>T12</td>
<td>Yes</td>
<td>T12 nodular, isointense to hypointense on T2WI, central significant enhancement</td>
<td>surgical resection, NR</td>
<td>NR</td>
</tr>
<tr>
<td>3</td>
<td>Delgado et al[5], 2019</td>
<td>21 yr/F</td>
<td>Pain, weakness, paresthesia</td>
<td>T10-T12, L1</td>
<td>Yes</td>
<td>60 mm expansile mass, T10-T12 down to L1, nodular significant enhancement</td>
<td>NTR, radio/chemotherapy</td>
<td>Recurrence in 4 mo</td>
</tr>
<tr>
<td>4</td>
<td>Chanchotisatien et al[6], 2019</td>
<td>27 yr/F</td>
<td>Dysuria, numbness, weakness, back pain</td>
<td>T4-T12, T5-T12, respectively</td>
<td>No</td>
<td>Homogeneous, hyperintense T2WI, intra-/extramedullary regions from T4-T12 and T5-T12, respectively, homogeneous enhancement</td>
<td>Biopsy, radio/chemotherapy</td>
<td>NR</td>
</tr>
<tr>
<td>5</td>
<td>Caro-Osorio et al[7], 2018</td>
<td>48 yr/F</td>
<td>Numbness, pain</td>
<td>C1-C3</td>
<td>Yes</td>
<td>Hypointense on T1WI, hyperintense on T2WI, heterogeneous enhancement</td>
<td>STR, radio/chemotherapy</td>
<td>8</td>
</tr>
<tr>
<td>6</td>
<td>Shen et al[1], 2017</td>
<td>15 yr/F</td>
<td>Numbness, weakness</td>
<td>C4-C7</td>
<td>Yes</td>
<td>Hyperintense on T2WI, inhomogeneous enhancement</td>
<td>NTR, radio/chemotherapy</td>
<td>13</td>
</tr>
<tr>
<td>7</td>
<td>Nunn et al[12], 2017</td>
<td>31 yr/M</td>
<td>MW, SD</td>
<td>T9-T2</td>
<td>Yes</td>
<td>Hyperintense on T2WI, spinal cord expanding, heterogeneous enhancement</td>
<td>Surgical resection, radio/chemotherapy</td>
<td>14</td>
</tr>
<tr>
<td>8</td>
<td>Prasad et al[13], 2012</td>
<td>15 yr/F</td>
<td>Paraparesis, dysesthesia, urinary incontinence, SD</td>
<td>C6-T7</td>
<td>Yes</td>
<td>Enlargement of cord, heterogeneously enhancing</td>
<td>STR, radio/chemotherapy</td>
<td>6</td>
</tr>
<tr>
<td>35 yr/M</td>
<td>Pain, paraplegia, urinary incontinence, SD</td>
<td>T11-L1</td>
<td>Yes</td>
<td>Enlargement of cord, heterogeneously enhancing</td>
<td>NTR, radio/chemotherapy</td>
<td>15</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

F: Female; M: Male; MW: Motor weakness; NR: No relief; NTR: Near total resection; SD: Sensory disturbances; STR: Subtotal resection; WI: Weighted imaging.

In our case, the tumor was detected as a dumbbell mass, spanning the intramedullary and extramedullary region through the foramina. This disguised appearance led us to an erroneous diagnosis of the neurogenic tumor. However, in the reviewed publications, the tumor had an appearance of nodular[3,4], elongated lesions, growing along the spinal cord and confined to the intramedullary area[1,5-7]. The distinction of PSC GB from pathologies like myelitis or other types of intramedullary tumors, such as astrocytomas or ependymomas, are most difficult due to its nonspecific and often very similar diagnosis of intramedullary lesions.
manifestations. The majority of ependymomas are often hyperintense on T2-weighted imaging with inhomogeneous enhancement after injection of gadolinium. Usually, ependymomas show high uptake of 18F-fluorodeoxyglucose, while myxopapillary ependymomas have low uptake of fluorodeoxyglucose [4]. Pilocytic astrocytomas often appear as a well-circumscribed mass with a highly enhanced T2 signal. Nonconventional MRI sequences, such as diffusion tensor images and dynamic susceptibility contrast perfusion weighted imaging, may provide more comprehensive information, which can be useful to differentiate and grade the lesion [8].

A normalized (referenced to brain region of interest) relative cerebral blood volume threshold of 1.75 has been used to predict GB progression. An increase in normalized relative cerebral blood volume (> 1.75) with a decrease in fractional anisotropy of the corresponding region of the tumor might suggest a high-grade glioma [8]. In our case, the tumor demonstrated atypical MRI and computed tomography appearances of PSC GB, although prior familiarity with these imaging features may help to differentiate from other intramedullary tumors.

Clinical characteristics
PSC GB is extremely rare, reported in about 1.5% of all the spinal cord tumors [9]. Due to its rare occurrence, few studies focus on it. Most of the published literature on PSC GB are case reports. Therefore, due to the lack of properly related literature, the clinical features, optimal therapy, and prognosis of PSC GB remain controversial [10]. This tumor is more prone to grow in the cervical or cervicothoracic region and is associated with severe disability and poor prognosis in most patients [11]. The early symptoms of these patients are usually weakness of unilateral or bilateral limbs [1, 3, 5], sensorimotor disorders, and incontinence [6, 12, 13]. However, when accompanied by metastasis of other parts, the symptoms are usually different.

To the best of our knowledge, the largest sample study involving 190 PSC GB patients was reported by Moinuddin et al. [14]. They found that PSC GB had a higher incidence in the younger age group (age < 18). In contrast, our patient’s age (70 years old) contributes to the rarity of the present case. They also reported a better overall survival in the 18-year-old to 65-year-old group (13.2 mo) [14]. Previous studies have also suggested that genetic mutations may be a contributing factor for the onset of the disease. It has been observed that patients with constitutional mismatch repair deficiency are more prone to develop high-grade gliomas in the central nervous system [15].

Pathology diagnosis
Due to its diverse and heterogeneous nature, PSC GB is difficult to diagnose merely by imaging techniques. Most PSC GB are confirmed by histopathological parameters, including nuclear atypia, mitotic activity, vascular proliferation, and necrosis [16, 17], along with immunohistochemical parameters, such as glial fibrillary acidic protein and S-100 protein (S-100) positivity with a high Ki-67 index [16-18].
The tissue section of our patient revealed many pleomorphic astrocytic cells with marked nuclear atypia and brisk mitotic activity, which was accompanied by necrosis and microvascular proliferation. The diagnosis of WHO Grade IV GB is mainly based on the routine histopathological findings\[16\]. Immunohistochemically, the cells were slightly positive for glial fibrillary acidic protein, p53, and vimentin but were negative for S-100, isocitrate dehydrogenase, and histone H3 lysine 27 methylation (H3K27M). The proliferation index (measured by Ki67) was about 30% in the resected tumor. High-grade glioma with isocitrate dehydrogenase gene mutation and positive for H3K27M is reported to have a significantly better prognosis\[17,19,20\]. However, H3K27M-positive PSC GBs are also at risk of developing local hemorrhage\[18\]. Before the submission of the current manuscript, our patient was still alive after surgery and radio-/chemotherapy. The survival of our patient might be attributed to an H3K27M mutation.

Treatments and prognosis

Although not implying causation, there is a trend towards improved overall survival with the use of chemotherapy and surgical resection for patients suffering from GB\[21\]. Despite the advancement in surgical techniques and postoperative adjuvant therapies, PSC GB still has an overall poor prognosis\[9, 21\]. The overall survival in patients with PSC GB is approximately 10-14 mo\[9\]. The disease often leads to severe neurological deficits and poor quality of life, even after treatment.

In our case, the patient underwent surgical resection with subsequent radiotherapy and chemotherapy. Unfortunately, neither treatment alleviated or improved her symptoms nor improved her quality of life. According to a single-center retrospective study by Cheng et al\[22\], the extent of surgical resection did not have any significance, but radiotherapy accompanied with postoperative chemotherapy was the major prognostic factor for longer survival in adult GB patients. However, the previous study reported that gross-total resection followed by radiotherapy had beneficial effects on the overall outcome of PSC GB in the pediatric age group\[23,24\]. More effective and targeted therapies need specific investigation in the future for helping patients with unique gene mutations achieve better prognosis\[25,26\]. Further, broadening treatment avenues would help improve the efficacy of therapies and help in recovery for these patients.

Limitations

Due to the large mass in C7-T1, the conventional cervical MR field of view was not able to cover the whole lesion.

CONCLUSION

A definitive PSC GB diagnosis requires histopathological confirmation. However, complete recognition of the imaging signs of the disease may facilitate early accurate diagnosis.

FOOTNOTES

Author contributions: Liang XY contributed to literature retrieval and screening, data reduction, and drafting of the manuscript; Chen YP contributed to literature retrieval and screening, and data analysis; Li Q contributed to acquisition of data and images, and data analysis; Zhou ZW contributed to study design and revising the manuscript critically for important intellectual content.

Supported by the “Excellent Doctoral Dissertation Incubation Grant of First Clinical School of Guangzhou University of Chinese Medicine”, No. YB201903.

Informed consent statement: The obtained informed consent is presented in the supplementary materials for the case report to be published.

Conflict-of-interest statement: All the authors report no relevant conflicts of interest for this article.

CARE Checklist (2016) statement: The authors have read the CARE Checklist (2016), and the manuscript was prepared and revised according to the CARE Checklist (2016).

Open-Access: This article is an open-access article that was selected by an in-house editor and fully peer-reviewed by external reviewers. It is distributed in accordance with the Creative Commons Attribution NonCommercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/.

Country/Territory of origin: China
Atypical imaging of PSC GB

REFERENCES

ORCID number: Xin-Yu Liang 0000-0002-0526-2048; Yao-Ping Chen 0000-0001-8570-3722; Qiao Li 0000-0002-4133-1258; Ze-Wang Zhou 0000-0002-2489-3291.

