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Abstract

Given the frequent co-existence of an aggressive tumor and underlying chronic liver
disease, the management of hepatocellular carcinoma (HCC) patients requires
experienced multidisciplinary team discussion. Moreover, imaging plays a key role in
the diagnosis, staging, restaging, and surveillance of HCC. Currently, imaging
assessment of HCC entails the assessment of qualitative characteristics which are prone
to inter-reader variability. Radiomics is an emerging field that extracts high-
dimensional mineable quantitative features that cannot be assessed visually with the
naked eye from medical imaging. The main potential applications of radiomic models
in HCC are to predict histology, response to treatment, genetic signature, recurrence,
and survival. Despite the encouraging results to date, there are challenges and
limitations that need to be overcome before radiomics implementation in clinical
practice. The purpose of this article is to review the main concepts and challenges
pertaining to radiomics, and to review recent studies and potential applications of

radiomics in HCC.
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Core Tip: Radiomics is an emerging field that extracts high-dimensional mineable
quantitative features that cannot be assessed visually with the naked eye from medical
imaging. The main potential applications of radiomic models in hepatocellular
carcinoma (HCC) are to predict histology, predict respénse to treatment, predict genetic
signature, predict recurrence, and predict survival. The purpose of this article is to
review the main concepts and challenges pertaining to radiomics, and to review recent

studies and potential applications of radiomics in HCC.
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TRODUCTION

Hepatocellular carcinoma (HCC) is the third most common cause of cancer-related
deaths worldwidel'l. Liver cancer is especially common in Asia, where 72.5% of all new
liver cancer cases worldwide are diagnosed[2. HCC accounts for over 90% of all
primary liver cancer casesl®l. The main risk factors for HCC in the West is viral hepatitis
(hepatitis C virus in the West and hepatitis B virus in Asia and in developing countries)
and alcohol intake. In addition, non-alcoholic steatohepatitis is becoming a common
risk factor, particularly in the Westl>4. HCC patient prognosis depends on the stage of
HCC at the time of diagnosisl®; and advanced-staged patients at the time of diagnosis
have a poor prognosis!>7l,

The treatment of HCC is based on tumor burden, clinical performance of the patient,
and liver functionBl. Given the frequent co-existence of an aggressive tumor and
underlying chronic liver disease, the management of HCC requires experienced
multidisciplinary team discussionll. Moreover, radiology plays a key role in the
screening, diagnosis, staging, restaging, and surveillance of HCC. Currently, imaging
assessment is based on qualitative characteristics, such as size and enhancement
pattern, which are prone to inter-reader variability. Reliable tools that can potentially
address this variability as well as deal with the vast amount of imaging data are
warranted(10l. Over the last decade, radiomics has become a popular quantitative tool
that can potentially address these challenges and provide information not previously
available for precision decision-making/l.

Radiomics is an emerging field that extracts high-dimensional mineable quantitative
features that cannot be assessed visually with the naked eye from medical imaging/'?l.
The main potential applications of radiomic models in HCC are to predict histology,
response to treatment, genetic signature, recurrence, and survivall3l. Despite the
encouraging results to date, there are several challenges and limitations_that need to be

overcome before the implementation of radiomics in clinical practice. The purpose of
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this study is to review the main concepts, challenges pertaining to radiomics and recent

studies and potential applications of radiomics in HCC.

RADIOMICS

Main concepts

In the new era of precision medicine, artificial intelligence (AI) and in its various
branches, such as machine learning (ML) and deep learning (DL), have provided new
imaging biomarkers that can potentially provide new data that are useful for clinical
decision-making. ML is related to a set of computational systems that improve with
experience. DL is a subset of ML based on series of layers (trainable nonlinear
operations), each of which transforms input data into a representation that facilitates
pattern recognition!'4l.

Radiomics has recently emerged as a translational research field that proposes to
discover new associations between clinical data and quantitative data extracted from
medical images using conventional biostatistics or AI methods!'2l and become popular,
particularly in oncologic imaging. Radiomics involves mineable high-dimensional data
extraction, characterizing intensity, shape, size, and/or texture from images to create
big-data datasets that are then useddo identify distinct sub-visual imaging patternsli5l.
Radiomics models usually use magnetic resonance imaging (MRI), computed
tomography (CT) and positron emission tomography (PET) images data.
Fundamentally, radiomics is motivated by the observation that these imaging
characteristics reflect phenotype and genotype of underlying tissue and thus can help in
clinical decision making1®l.

Radiomic can be subdivided into texture, size and shape, and transformed based
features. The most common radiomic features is texture. It can be subdivided into first-
order, second-order and higher-order statistical features. First-order features reflect the
distribution of values of individual voxels without concern for spatial relationships;
they are generally histogram-based, such as mean (average intensity), entropy (quantify

randomness of intensity), kurtosis (flatness) and skewness (asymmetry). Second-order
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features reflect the statistical interrelationships between voxels with similar (or

issimilar) contrast valuesl'2l and some of the commonly used 2nd order features are:
Grey level co-occurrence matrix, grey level run length matrix, and grey level size zone
matrix features. Taking into account the repetitive patterns in radiological images,

igher-order statistical methods use sophisticated filter grids on the images - such as
Minkowski_functionals (to evaluate voxels whose intensity is above a determined
threshold), Wavelet and Laplacian transforms (to identify coarse texture patterns) and
fractal analysis (to assess the irregularity of a surface)'2. In practice, standard libraries
with predefined feature configurations and validated reference values (such as

PyRadiomics) are frequently used to increase the reproducibility of radiomic models.

Workflow
Radiomic analysis is a multistep process involving the processing of medical images to
generate different features from segmented images. The typical radiomics workflow can

be summarized in the following steps (Figure 1):

Image acquisition and preprocessing: Standardized imaging protocols should be used
to avoid reproducibility issues related to noise and confounding. However,
standardized imaging protocols also decrease the generalizability of the results. Once a
patient dataset has been identified, images should be anonymized as well as exported
as Digital Imaging and Communication in Medicine files['7l. De-noising and motion

correction steps may be needed.

Segmentation: Segmentation involves the delineation of region of interests (ROIs) on
the tumor or peritumoral zones. ROIs can be delineated manually, semiautomatically,
or automatically (using ML tools) in either two-dimensional (2D) or three-dimensional
(3D) views. Whenever possible, segmentations should be checked by a radiologist to

ensure accuracy.
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E
Feature extraction, feature selection and model building: A wide range of statistical

models are commonly used to choose a subset of optimal features that correlate with
the predenid outcomel®®.. Many of the extracted features are in fact redundant and
supervised or unsupervised approaches can be applied to achieve dimension reduction.
ML and DL techniques are emerging as useful tools to achieve more accurate feature
selectionl819], The features should be selected only based on the training data to avoid
bias.
2

Of note, the number of extracted features is commonly larger than the study sample,
which can contribute to overfitting of the model and to overoptimistic results. Some
strategies can be done, for example, select the features in such a way to maintain the
ratio or regularization methods are used to minimize the complexity of the respective
models[2’l. Once the optimal features areaidentiﬁed, a statistical model can be proposed
to predict a specific clinical question using different classifiers such as generalized

linear models, random forests, support vector machines, or neural networks!20.21].

Validation: Validation is essential to estimate el performance and can be done
using subsets of the original training dataset (i.e., cross-validation) or using a separate

hold-out dataset containing either internal or external datal'’].

Main challenges
To date, radiomic models reproducibility is often poor, due to insufficient reporting or
limited open-source code and data, which undermines external validation and increases
the subsequent risk of false-positive results?2. Further, researchers often face great
difficulty in acquiring unbiased and homogeneous datasets across multiple institutions,
thus hampering multi-institutional collaborations involving large multi-institutional
datasets for the training and validation of radiomic models[*4]. For successful multi-
institutional cooperation for building large multi-institutional datasets for radiomic

models training and validation, radiomics workflow standardization, clear reporting of

study methodology, and data sharing across different institutions are needed!'’l.
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3
Additionally, an effective means to interpret the vast and varied data derived from

radiomics analysis is another key obstacle to the clinical implementation of radiomic
models. Therefore, a balanced interpretation of results and an increased focus on
interpretable models are essential to their successful integration into clinical practicel23l.
Finally, manual segmentation is a time-consuming process and one of the most
common limitations that should be managed with automatic or semiautomatic

strategies before widespread use of radiomics tools.

APPLICATIONS OF RADIOMICS IN HCC
Prediction of HCC histology

Table 1 summarizes the studies in the literature to date that have evaluated the use of

radiomics to preoperatively predict HCC histology.

Distinguishing between HCC and other malignant or benign lesions: The distinction
between HCC and other primary hepatobiliary malignancies can be challenging on
imaging, because of the overlap of some features, especially for combined tumors!24l. In
light of this, many studies have investigated radiomics performance in differentiating
HCC from other malignant and benign hepatic lesions. For instance, Liu et all24] studied
the use of MRI- and CT-based radiomics to differentiate between HCC,
cholangiocarcinoma, and combined HCC-cholangiocarcinoma. Using MRI, radiomic
features derived from contrast-enhanced phases demonstrated excellent performance to
differentiate HCC from non-HCC [area under the curve (AUC) 2 0.79], with the highest
AUC obtained from the agterial phase (AUC of 0.81); meanwhile, using CT, radiomic
features derived from the pre-contrast and portal venous phase yielded AUC values of
0.81 and 0.71, respectively. In another study, Lewis et all®! found that the combination
of the apparent diffusion coefficient 5% percentile radiomic feature with Liver Imaging
Reporting and Data System classification and male gender achieved an accuracy of
80%-81.5% in distinguishing HCC from intrahepatic cholangiocarcinoma (ICC) and

combined HCC-ICC, and outperformed either measure alone. Other studies showed
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that radiomics is helpful to distinguish between HCC and benign tumors in non-
cirrhotic livers, e.g., from hepatocellular adenoma (AUC of 0.96 in the training set and
0.94 in the test set)?], from focal nodular hyperplasig (AUC of 0.979 in the training set
and 0.917 in the test set)[?], and from hemangioma (AUC: 0.86 in the training set and
0.89 in the test set)[28l. Mokrane ef al?°l validated a radiomics signature to diagnose HCC

in patients with cirrhosis and increased radiologists’ confidence.

Prediction of histologic grade: Histologic grade is an important prognostic factor in
patients with HCC and is only available preoperatively in patients who undergo
biopsy. Therefore, studies have aimed to identify non-invasive imaging features such as
radiomic features that could potentially predict the tumor grade. Wu et al°! found that
MRI-based radiomics can successfully categorize low-grade and high-grade HCC, with
the radiomic model outperforming the clinical model (AUC 0.742 for the combined T1-
weighted and T2-weighted MRI-based radiomic model vs AUC 0.6 for the clinical one)
and the combined radiomic and clinical model (AUC 0.8) outperforming both models
alone. Mao et all®!l also investigated MRI-based radiomic features, with Gd-EOB-DTPA
contrast administered for the MRI exams, finding that the artificial neural network
combining radiomic features from the contrast-enhanced arterial phase and
hepatobiliary phase yielded the highest AUC of 0.944. Moreover, they found that the
artificial neural network models were superior to the logistic regression models. In
other studies, CT-based radiomics has been found to have high performance in
distinguishing between low- and high-grade tumorsl®>-3]; for instance, Chen et all*]

found an AUC of 0.937 for a ML-based radiomics model based on the CT portal phase.

Prediction of microvascular invasion: Microvascular invasion (MVI) is found in about
15%-57% of patients with HCC who undergo surgery353l and is associated with higher
rates of recurrence and shorter survival after surgeryl®1. Although imaging can be used
to diagnose macrovascular invasion (or tumor in vein), preoperative imaging

identification of MVTI is difficult. Studies have evaluated the performance of radiomics
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as a tool to predict MVI, with most predictive models combining radiomics and clinical
biomarkers[3l. For instance, Xu et all3 proposed a model combining CT-based radiomic
features with radiologic and clinical ameters; the model was not only an
independent predictor of histologic MVI (AUC of 0.909 in the training/validation set
and 0.889 in the test set) but was also an independent predictor of worse prognosis
(disease-specific recurrence and disease-specific mortality). Of note, the radiomics-only
model did not add significant value to radiologist scores alone. Since MVI occurs
primarily at the tumor periphery (approximately 85% of MVI is located within one
centimeter from the tumor margin), studies have investigated radiomic features derived
from the peritumoral tissue. For instance, Feng et all%] demonstrated that a model
combining intratumoral and peritumoral radiomic features was superior in predicting
MVI using Gd-EOB-DTPA-enhanced MRI compared to the model containing only
intratumoral radiomics features. Additionally, Zheng ef all*ll demonstrated that
peritumoral textural features had an AUC of 0.80 and a multivariate model combining
alfa-fetoprotein, tumor size, hepatitis status and quantitative features achieved an AUC

of 0.88.

Prediction of HCC genetic expression

Compared to the prediction of histology, fewer researches in the literature have
evaluated the use of radiomics to predict genetic expression in patients with HCC
(Table 2). Overall, studies on the use of radiomics to predict genetic expression have
focused on using radiomics to predict Ki67 expression as well as cytokeratin 19 (CK19),
P53, and phosphatidylinositol-3 kinase (PI3K) status. Of note, in 2007, Segal et all*
investigated for the first time the correlation between HCC genetic expression and CT
imaging traits, finding 32 CT imaging traits that were correlated with the expression

levels of 116 genetic markers.

Ki67 expression: High Ki-67 expression in HCC patients is associated with fast

progression and poor prognosis[‘BI. To determine if radiomics can be useful to predict
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Ki67 expression, Wu et all*l developed and validated a radiomic nomogram based on
the combination of CT-based radiomic features and clinical factors. Using Gd-EOB-
DTPA-enhanced MRI, Li et all®5] found that texture analysis of the hepatobiliary phase,
arterial phasg and portal vein phase were helpful for predicting Ki67 expression. In
their study, a single slice with the largest proportion of the lesion was delineated, and
the predictive performance of models were compared by misclassification rate. In
another study by Fan et all%l using Gd-EOB-DTPA-enhanced MRI, the authors
delineated the whole lesion, and the predictive performance of different models were
compared using the receiver operating curve, calibration curve, and decision cure
analysis. The optimal model combining the arterial phase radiomic score and serum
alpha-fetoprotein (AFP) levels showed high AUCs (AUC of 0.922 and 0.863 in the
training and validation cohorts, respectively) for the preoperative Ki-67 expression
prediction. In yet another study using Gd-EOB-DTPA-enhanced MRI, Ye et all47]
showed that the nomogram combining the texture signature (using the segmentation of
the whole lesion) and clinical factors demonstrated a high discrimination ability (C-
index of 0.936) for predicting Ki-67 group (high vs low). Finally, Hu et all*l explored the
added value of viscoelasticity measured by magnetic resonance elastography to predict
Ki-67 expression, showing that shear wave speed and phase angle significantly

improved the performance of the radiomic model.

CK19 expression: CK19 expression is associated with aggressive tumor behavior,
resistance to therapy, and poor outcomes including worse overall survival and
recurrencel®l. To date, three studies have focused on developing radiomic models to
predict CK19 expressionl®32, all using MRI. Wang et all®®! showed that their texture
model independently predicted CK19-positive HCC cases and improved the diagnostic
performance of AFP level > 400 ng/mL and arterial rim enhancement. The two
remaining studies developed a radiomics model based on Gd-EOB-DTPA-enhanced
MRI, with external validation AUC varying from 0.78-0.79; of note, one of the studies

was a multicenter study with over 250 patients!>>2I,
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P53, PI3K, and other genetic expression: P53 can be used as a tumor biomarker, since it
plays an important role in the pathogenesis of HCCI%3l, P53 mutation has also been
suggested as a feasible target for antitumor therapy54l. Wu et all55! demonstrated a direct
relationship between P53 mutations in patients with HCC and the gray-level co-
occurrence matrix on CT. PI3K signaling is a key pathway regulating HCC
aggressiveness and is associated with response to sorafenib. Liao et all5¢] developed a
CT-based radiomics model that yielded an AUC of 0.73 in the external validation set for
prediction of PI3K status.

The phosphorylation status of B-arrestinl is associated with sorafenib resistancel57-59.
Che et all®®l developed a model combining a CT-based radiomics score with clinico-
radiological risk factors which yielded an AUC of 0.898 in predicting [-arrestinl

osphorylation, and the predicted p-arrestinl phosphorylation was in turn
significantly associated with overall survival in both the training and validation cohorts

(P <0.05).

Prediction of recurrence, treatment response, and liver failure
Tumor recurrence, liver failure and treatment response rates are major concerns during
HCC treatment. Radiomics has emerged as a promising tool to predict recurrence and
treatment response beyond the current predictive criterial61.62l. Table 3 summarizes the
studies to date that have evaluated the use of radiomic models to predict recurrence
and treatment response. Most of these studies were single-center studies performed in
China, with only a few studies incorporating external validationlt3¢4]. Segmentation
strategies were predominantly manual strategies, including manual segmentation of the
tumor region or area of interest, with only a few studies involving the segmentation of
the peritumoral liver parenchymal636567]. Overall, the radiomic models yielded an AUC
between 0.59 and 0.94 (see Table 3).

Of the studies evaluating the use of radiomics to predict recurrence, most involved

the prediction of recurrence after surgical resection on CT or MRI, demonstrating a
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validation AUC between 0.59 and 0.84 (Table 3). Zhou et all®sl demonstrated that
combining the radiomic signature with conventional preoperative variables
significantly improved clinical model accuracy in early recurrence prediction (ALIC of
0.84). Ji et all*Yl developed and externally validated a radiomic model with better
prognostic ability (C index = 0.77, AUC of 0.78), lower prediction error (Brier score <
0.14), and better clinical use compared with other staging systems and models. A few
other studies evaluating the use of radiomics to predict recurrence involved the
prediction of recurrence after liver transplant!®], transarterial chemoembolization
(TACE)I6770], and radiofrequency ablation (RFA)Fl, demonstrating a validation AUC
between 0.71 and 0.82.

Of the studies evaluating the use of radiomics to predict treatment response, a few
involved the prediction of treatment response post-TACE[®7273], In Canada, Ivanics et
al@! developed a CT-based radiomic model and achieved an AUC of 0.87 on the
internal validation set. A large multi-center Chinese study by Chen et all®3] evaluating
treatment response after TACE performed semi-automatic segmentation of the tumor
and of the peritumoral region on contrast-enhanced CT in 585 patients, and the
validation AUC was 0.90. One small study by Horvat et all”*] assessed treatment
response after RFA using tumor 3D volumes of interest on MRI, yielding an AUC of
0.76 for the radiomics model, although the model lacked validation. Finally, two studies
from China evaluated the use of radiomics to predict liver failure after surgical

resection!”>.76l,

Prediction of survival

Table 4 summarizes the studies to date that have evaluated the use of radiomics to
predict survival in patients with HCC. Four studies evaluated the use of CT-based
radiomics to predict survival after hepatic resection, demonstrating an AUC between
0.71 and 0.81, with two of the four studies performing internal validation**77-7°l, A few
other studies evaluated the use of radiomics to predict survival after TACEI$%, TAREIS1],

and RFAB2, all without validation.
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Of the studies that involved the prediction of survival after hepatic resection, Xu et
all®! had the largest sample size. In their study, a risk model integrating clinico-
radiological factors and a high CT-based radiomic score was independently associated
with long-term mortality and disease-specific recurrea:e. Kim et all80] evaluated the use
of CT-based radiomics in survival prediction in patients after TACE. They
demonstrated a combined model integrating radiomic features and clinical data (HCC
size, Child-Pugh score and AFP) outperformed the clinical sore model or the radiomic
score model. Petukhova-Greenstein et all® found that a higher MRI-based radiomic
signature based on nodular and perinodular radiomic features predicted poorer
survival after RFA. A study evaluated the survival prediction after TARE, using 18-
fuoro-deoxyglucose PET-based radiomics!®!l. They observed that whole-liver radiomics
textural features were an independent negative predictor of survival. Furthermore,
radiomic scoring system did not differ after stratification by tumor size and Barcelona

Clinic Liver Cancer staging.

Other applications of radiomics in HCC

Immunotherapy reﬁresents a paradigm shift in the management of patients with
advanced HCC. Preoperatively assessing the immune status can assist the
multidisciplinary team to identify which patients are suitable for immunotherapy,
potentially improving treatment efficiency and overall survival rate. A few studies have
evaluated the use of radiomics to predict programmed cell death ligand 1 (PD-L1)
expressionl®3, CD8+ T cell infiltration!®!, immunoscorel®®l, and anti-PD-1 treatment
efficacyl®’l in patients with HCC, with none of them performing external validation.
Tian et all®®l were the first group to explore the efficacy of MRI-based radiomics to
predict PD-L1 status. They proposed a model integrating radiomic and DL features for
the quick and accurate assessment of PD-L1 expression levels in HCC patients before
immune checkpoint inhibitor therapy which yielded an AUC of 0.897. Chen et all*!
demonstrated in 207 patients that radiomic features including those from the

peritumoural region were associated with a validated “immunoscore”. This score
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characterizes the tumor infiltrating lymphocyte population and theoretically reflects the

immune phenotype of the tumor microenvironment.

RADIOMICS REPRODUCIBILITY IN HCC

Reproducibility refers to variations of the same patient across different imaging
scenarios (e.g., scanner or imaging parameters), while repeatability refers to variations
of the same patient using the same imaging protocol. Table 5 summarizes the 13 studies
to date that have studied the reproducibility of radiomics in HCC patients. Most of
these studies were conducted in China (8/13; 62%). Seven were performed using CT
(54%), 5 using MRI (38%), and 1 using both CT scan and MRI (8%). Different software
programs were used for segmentation and feature extraction. Most studies adopted
manual segmentation (11/13; 85%), and most evaluated first- and second-order
features, with a few including shape and higher-order features. In addition to intra and
inter-reader reproducibility, some also assessed the repeatability of radiomic features
obtained through two separate exams from the same scanner, different scanners from
different vendors and centers, 3D vs 2D segmentation, different contrast imaging
phases, injection rates and pixel resolutions on contrast-enhanced CT, and different b-
values on diffusion-weighted imaging on MRI.

Of note, one study showed that intra-reader tumoral and peritumoral reproducibility
were greatest in MRIBSI. Another study showed that for test-retest (same MRI system, 2
different MRI exams), the intraclass correlation coefficient varied from 0.53-0.99 and the
inter-platform reproducibility (MRI systems from 2 different vendors) varied from 0.58-
0.99189], Regarding different contrast phases, Ibrahim et all®l showed that 25% of
extracted features had a concordance correlation coefficient {CCC) > 0.9 across arterial
and portal venous phases. Perrin et all”ll demonstrated that the number of reproducible
features decreased with variations in contrast injection rate, pixel resolution, and

scanner model.

FUTURE DIRECTIONS OF RADIOMICS IN HCC
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Despite the increasing and encouraging results in the literature concerning radiomics in
patients with HCC, there are challenges and limitations to be overcome before its
clinical implementation, particularly related to reproducibility and repeatability, lesion
segmentation, model overfitting, multidisciplinary acceptance, and multi-modal data
integration(23l.

Patient selection, imaging data, segmentation strategy, image processing, feature
selection, and computational processing are some factors that may affect the
reproducibility and repeatability. Transparent patient accrual, data normalization,
standard image manipulation, and feature extraction data are some strategies that may
improve these challenges. Additionally, multi-center studies are recommended to
increase reproducibility of the results.

Overfitting occurs when the model performs better in the training set with limited
generalization of the results. The main factors contributing to overfitting are the number
of included features being higher than the number of events and overoptimistic feature
selection. Multiple strategies can be implemented to decrease overfitting, such as
increasing the number of patients and events, using regularization methods, and
including external validation cohorts. Multidisciplinary acceptance may improve with
clear methods and a close relationship between radiologists, surgeons, oncologists,
statistician, and data scientists to improve the interpretability of the results and to make
way for clinical translation.

Multi-omics data integration is an additional step to improve the clinical acceptance
of radiomics. Radiomics requires a multistep workflow process using different software
and expertise; technological investments to create integrated and user-friendly tools are
necessary to facilitate its widespread use in clinical practice. Finally, segmentation is a
time-consuming process, susceptible to intra and inter-observer variability. Automatic
and semi-automatic segmentations are required, particularly using DL strategies to
facilitate this crucial step.

Additionally, some heterogeneity related to patients with HCC should be take into

consideration. Since pathological confirmation is not always performed, the definition
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of clear and reproducible endpoints, like the LI-RADS criteria, are relevant strategies.
Combined data integrating imaging and clinical variables are important to address the
issue that patients with HCC are also dealing with systemic consequences related to
cirrhosis.

CONCLUSION

Radiomics is an evolving computer-assisted tool with the potential to improve the
multidisciplinary management of patients with HCC and to provide personalized
treatment optimizing the available resources. Multiple studies have evaluated the use of
radiomics in HCC with promising applications, including the prediction of pre-surgical
histology, genetic signature, recurrence, and treatment response, as well as survival
rates. Although promising, several challenges need to be overcome before radiomics
can achieve clinical translation, including workflow optimization, model validation in
multi-center studies, and the development of integrated models to facilitate clinical use

and acceptance.

16 / 16




80288 Auto Edited-check.docx

ORIGINALITY REPORT

175%

SIMILARITY INDEX

PRIMARY SOURCES

. : 0
www.ncbi.nlm.nih.gov 166 words — 4 /O

Internet

. : 0
link.springer.com 112 words — 2 /0

Internet

Jose Arimateia Batista Araujo-Filho, Maria Mayoral, 75 words — 2%

Natally Horvat, Fernando Santini, Peter Gibbs,

Michelle S. Ginsberg. "Radiogenomics in personalized
management of lung cancer patients: Where are we?", Clinical
Imaging, 2022

Crossref

Yuchi Tian, Temitope Emmanuel Komolafe,Jl.an 36 words — ’I %
Zheng, Guofeng Zhou, Tao Chen, Bo Zhou, Xiaodong

Yang. "Assessing PD-L1 Expression Level via Preoperative MRI

in HCC Based on Integrating Deep Learning and Radiomics

Features", Diagnostics, 2021

Crossref

. . - . . 0
Emlly-Hardmg Theobald, Jeremy Lowssa.lnt, Bharat 31 words — '] /0
Maraj, Edward Cuaresma et al. "Systematic review:

Radiomics for the diagnosis and prognosis of hepatocellular
carcinoma", Alimentary Pharmacology & Therapeutics, 2021

Crossref

P D . B 0
Xun Xy, Hai-Long Zhang, Qiu-Ping Liu, Shu-Wen 17 words — < 1 /0
Sun, Jing Zhang, Fei-Peng Zhu, Guang Yang, Xu



Yan, Yu-Dong Zhang, Xi-Sheng Liu. "Radiomic analysis of
contrast-enhanced CT predicts microvascular invasion and
outcome in hepatocellular carcinoma", Journal of Hepatology,
2019

Crossref

' 0
Etrerrwnitcancer.blomedcentral.com 17 words — < 1 /O
www.radiologiekongress.ch <1 0%
Internet 17 words —

Thomas Perrin, Abhishek Midya, Rikiya 14 words — < 1 /0

Yamashita, Jayasree Chakraborty et al. "Short-

term reproducibility of radiomic features in liver parenchyma
and liver malignancies on contrast-enhanced CT imaging",
Abdominal Radiology, 2018

Crossref

i 0
Joshua D. Shur, Simon J. Doran, Santosh Kumar, 12 words — < 1 /0

Derfel ap Dafydd et al. "Radiomics in Oncology: A
Practical Guide", RadioGraphics, 2021

Crossref

ON <12 WORDS
ON <12 WORDS



