<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>OPINION REVIEW</td>
<td>1</td>
<td>Necessary problems in re-emergence of COVID-19</td>
<td>Chen S, Ren LZ, Ouyang HS, Liu S, Zhang LY</td>
</tr>
<tr>
<td>REVIEW</td>
<td>8</td>
<td>COVID-19: An overview and a clinical update</td>
<td>Krishnan A, Hamilton JP, Alqahtani SA, Woreta TA</td>
</tr>
<tr>
<td>ORIGINAL ARTICLE</td>
<td>24</td>
<td>Log odds of positive lymph nodes is a better prognostic factor for oesophageal signet ring cell carcinoma than N stage</td>
<td>Wang F, Gao SG, Xue Q, Tan FW, Gao YS, Mao YS, Wang DL, Zhao J, Li Y, Yu XY, Cheng H, Zhao CG, Ma JW</td>
</tr>
<tr>
<td></td>
<td>47</td>
<td>Angiotensin converting enzymes inhibitors or angiotensin receptor blockers should be continued in COVID-19 patients with hypertension</td>
<td>Tian C, Li N, Bai Y, Xiao H, Li S, Ge QG, Shen N, Ma QB</td>
</tr>
<tr>
<td>Retrospective Study</td>
<td>61</td>
<td>Massively prolapsed intervertebral disc herniation with interlaminar endoscopic spine system Delta endoscope: A case series</td>
<td>Meng SW, Peng C, Zhou CL, Tao H, Wang C, Zhu K, Song MX, Ma XX</td>
</tr>
<tr>
<td></td>
<td>71</td>
<td>Primary lung cancer with radioiodine avidity: A thyroid cancer cohort study</td>
<td>Lu YL, Chen ST, Ho TY, Chan WH, Wong RJ, Hsueh C, Lin SF</td>
</tr>
<tr>
<td></td>
<td>81</td>
<td>Is traumatic meniscal lesion associated with acute fracture morphology changes of tibia plateau? A series of arthroscopic analysis of 67 patients</td>
<td>Chen YD, Chen SX, Liu HG, Zhao XS, Ou WH, Li HX, Huang HX</td>
</tr>
<tr>
<td>Observational Study</td>
<td>91</td>
<td>Role of relaxin in diastasis of the pubic symphysis peripartum</td>
<td>Wang Y, Li YQ, Tian MR, Wang N, Zheng ZC</td>
</tr>
<tr>
<td>SYSTEMATIC REVIEWS</td>
<td>102</td>
<td>Chinese medicine formulas for nonalcoholic fatty liver disease: Overview of systematic reviews</td>
<td>Dai L, Zhou WJ, Zhong LLD, Tang XD, Ji G</td>
</tr>
</tbody>
</table>
Contents

Thrice Monthly Volume 9 Number 1 January 6, 2021

<table>
<thead>
<tr>
<th>Page</th>
<th>Title</th>
</tr>
</thead>
</table>
| 118 | Comparative profile for COVID-19 cases from China and North America: Clinical symptoms, comorbidities and disease biomarkers
Badawi A, Vasileva D |
| 133 | META-ANALYSIS
Polymerase chain reaction-based tests for detecting *Helicobacter pylori* clarithromycin resistance in stool samples: A meta-analysis
Gong RJ, Xu CX, Li H, Liu XM |
| 148 | CASE REPORT
Surgery-first for a patient with mild hemifacial microsomia: A case report and review of literature
| 163 | Late-onset non-islet cell tumor hypoglycemia: A case report
| 170 | Risk of group aggregative behavior during COVID-19 outbreak: A case report
Zuo H, Hu ZB, Zhu F |
| 175 | Low-grade fibromyxoid sarcoma of the liver: A case report
Dugalic V, Ignjatovic II, Kovac JD, Ilic N, Sopta J, Ostojic SR, Vasin D, Bogdanovic MD, Dunic I, Milovanovic T |
| 183 | Treatment of Stanford type A aortic dissection with triple pre-fenestration, reduced diameter, and three-dimensional-printing techniques: A case report
| 190 | Hyperprolactinemia due to pituitary metastasis: A case report
| 197 | Pulmonary thromboembolism after distal ulna and radius fractures surgery: A case report and a literature review
Lv B, Xue F, Shen YC, Hu FB, Pan MM |
| 204 | Myeloid neoplasm with eosinophilia and rearrangement of platelet-derived growth factor receptor beta gene in children: Two case reports
Wang SC, Yang WY |
| 211 | Sclerosing angiomatoid nodular transformation of the spleen: A case report and literature review
Li SX, Fan YH, Wu H, Lv GY |
| 218 | Late recurrence of papillary thyroid cancer from needle tract implantation after core needle biopsy: A case report
Kim YH, Choi IH, Lee JE, Kim Z, Han SW, Hur SM, Lee J |
Contents

Thrice Monthly Volume 9 Number 1 January 6, 2021

<table>
<thead>
<tr>
<th>Page</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>232</td>
<td>Type A aortic dissection developed after type B dissection with the presentation of shoulder pain: A case report</td>
<td>Yin XB, Wang XK, Xu S, He CY</td>
</tr>
<tr>
<td>236</td>
<td>Hemosuccus pancreaticus caused by gastroduodenal artery pseudoaneurysm associated with chronic pancreatitis: A case report and review of literature</td>
<td>Cui HY, Jiang CH, Dong J, Wen Y, Chen YW</td>
</tr>
<tr>
<td>245</td>
<td>Endoscopic treatment for acute appendicitis with coexistent acute pancreatitis: Two case reports</td>
<td>Du ZQ, Ding WJ, Wang F, Zhou XR, Chen TM</td>
</tr>
<tr>
<td>252</td>
<td>Residual tumor and central lymph node metastasis after thermal ablation of papillary thyroid carcinoma: A case report and review of literature</td>
<td>Hua Y, Yang JW, He L, Xu H, Huo HZ, Zhu CF</td>
</tr>
<tr>
<td>262</td>
<td>Endoscopic salvage treatment of histoacryl after stent application on the anastomotic leak after gastrectomy: A case report</td>
<td>Kim HS, Kim Y, Han JH</td>
</tr>
<tr>
<td>267</td>
<td>Immunosuppressant treatment for IgG4-related sclerosing cholangitis: A case report</td>
<td>Kim JS, Choi WH, Lee KA, Kim HS</td>
</tr>
<tr>
<td>274</td>
<td>Intraparenchymal hemorrhage after surgical decompression of an epencephalon arachnoid cyst: A case report</td>
<td>Wang XJ</td>
</tr>
<tr>
<td>278</td>
<td>Krukenberg tumor with concomitant ipsilateral hydronephrosis and spermatic cord metastasis in a man: A case report</td>
<td>Tsao SH, Chuang CK</td>
</tr>
<tr>
<td>284</td>
<td>Simultaneous bilateral acromial base fractures after staged reverse total shoulder arthroplasty: A case report</td>
<td>Kim DH, Kim BS, Cho CH</td>
</tr>
</tbody>
</table>
ABOUT COVER

Editorial Board Member of World Journal of Clinical Cases, Dr. Antonio Corvino is a PhD in the Motor Science and Wellness Department of University of Naples “Parthenope”. After obtaining his MD degree from the School of Medicine, Second University of Naples (2008), he completed a residency in Radiology at the University of Naples Federico II (2014). Following post-graduate training at the Catholic University of Rome, yielding a second level Master’s degree in “Internal Ultrasound Diagnostic and Echo-Guided Therapies” (2015), he served on the directive board of Young Directive of Italian Society of Ultrasound in Medicine and Biology (2016-2018). His ongoing research interests involve ultrasound and ultrasound contrast media in abdominal and non-abdominal applications, mainly in gastrointestinal, hepatic, vascular, and musculoskeletal imaging. (L-Editor: Filipodia)

AIMS AND SCOPE

The primary aim of World Journal of Clinical Cases (WJCC, World J Clin Cases) is to provide scholars and readers from various fields of clinical medicine with a platform to publish high-quality clinical research articles and communicate their research findings online.

WJCC mainly publishes articles reporting research results and findings obtained in the field of clinical medicine and covering a wide range of topics, including case control studies, retrospective cohort studies, retrospective studies, clinical trials studies, observational studies, prospective studies, randomized controlled trials, randomized clinical trials, systematic reviews, meta-analysis, and case reports.

INDEXING/ABSTRACTING

The WJCC is now indexed in Science Citation Index Expanded (also known as SciSearch®), Journal Citation Reports/Science Edition, PubMed, and PubMed Central. The 2020 Edition of Journal Citation Reports® cites the 2019 impact factor (IF) for WJCC as 1.013; IF without journal self cites: 0.991; Ranking: 120 among 165 journals in medicine, general and internal; and Quartile category: Q3.

RESPONSIBLE EDITORS FOR THIS ISSUE

Production Editor: Yan-Xia Xing; Production Department Director: Yun-Xiaojian Wu; Editorial Office Director: Jin-Lei Wang.

NAME OF JOURNAL
World Journal of Clinical Cases

ISSN
ISSN 2307-8960 (online)

LAUNCH DATE
April 16, 2013

FREQUENCY
Thrice Monthly

EDITORS-IN-CHIEF
Dennis A Bloomfield, Sandro Vento, Bao-gan Peng

EDITORIAL BOARD MEMBERS
https://www.wjgnet.com/2307-8960/editorialboard.htm

PUBLICATION DATE
January 6, 2021

COPYRIGHT
© 2021 Baishideng Publishing Group Inc

INSTRUCTIONS TO AUTHORS
https://www.wjgnet.com/bpg/gerinfo/204

GUIDELINES FOR ETHICS DOCUMENTS
https://www.wjgnet.com/bpg/GerInfo/287

GUIDELINES FOR NON-NATIVE SPEAKERS OF ENGLISH
https://www.wjgnet.com/bpg/gerinfo/240

PUBLICATION ETHICS
https://www.wjgnet.com/bpg/GerInfo/288

PUBLICATION MISCONDUCT
https://www.wjgnet.com/bpg/gerinfo/208

ARTICLE PROCESSING CHARGE
https://www.wjgnet.com/bpg/gerinfo/242

STEPS FOR SUBMITTING MANUSCRIPTS
https://www.wjgnet.com/bpg/gerinfo/239

ONLINE SUBMISSION
https://www.f6publishing.com

© 2021 Baishideng Publishing Group Inc. All rights reserved. 7041 Koll Center Parkway, Suite 160, Pleasanton, CA 94566, USA
E-mail: bpgoffice@wjgnet.com https://www.wjgnet.com
Retrospective Cohort Study

Angiotensin converting enzymes inhibitors or angiotensin receptor blockers should be continued in COVID-19 patients with hypertension

Ci Tian, Nan Li, Yi Bai, Han Xiao, Shu Li, Qing-Gang Ge, Ning Shen, Qing-Bian Ma

ORCID number: Ci Tian 0000-0002-6569-9364; Nan Li 0000-0003-4231-8853; Yi Bai 0000-0002-2605-3800; Han Xiao 0000-0003-4142-9411; Shu Li 0000-0002-6073-6285; Qing-Gang Ge 0000-0003-2068-6217; Ning Shen 0000-0003-2352-0677; Qing-Bian Ma 0000-0002-0123-3522.

Author contributions: Tian C conceived and designed the study; Tian C and Bai Y collected the data of this study; Li N performed the data analysis; Tian C wrote the manuscript; Li S reviewed and edited the manuscript; Ma QB designed research; all authors read and approved the manuscript. Tian C, Li N and Bai Y contributed equally to the manuscript.

Institutional review board statement: This study was approved by Institutional Review Board of Peking University Third Hospital, China (No. IRB00006761-M2020060).

Informed consent statement: The study was approved by Institutional Review Board of Peking University Third Hospital and got waiver of written informed consent.

Conflict-of-interest statement: The authors declare that there is no conflict of interest.

Abstract

BACKGROUND
Recent studies have revealed that sustained ingestion of angiotensin converting enzymes inhibitors or angiotensin receptor blockers (ACEIs/ARBs) had no harmful effects on coronavirus disease 2019 (COVID-19) patients complicated with hypertension.

AIM
To investigate the impact on COVID-19 patients complicated with hypertension who discontinued using ACEIs/ARBs.

METHODS
All COVID-19 patients complicated with hypertension admitted to our isolated unit were consecutively recruited in this study. Some patients switched from ACEIs/ARBs to calcium channel blocker (CCBs) after admission, while others continued using non-ACEIs/ARBs. We compared characteristics and clinical outcomes between these two groups of patients.
INTRODUCTION

Coronavirus disease 2019 (COVID-19) has become a critical global health issue. It was first reported in December 2019, and the epidemic of the disease spread extremely rapid since its discovery[1].

Patients might suffer from mild, self-limiting upper airway respiratory infection, severe deteriorating pneumonia, or even fatal complications. Epidemiological surveys have shown that the proportion of patients with COVID-19 who have hypertension is between 10% and 35%, making hypertension the most common comorbidity[2-4]. Specifically, angiotensin converting enzyme (ACE) inhibitors (ACEIs) or angiotensin receptor blockers (ARBs) are taken by 25%-50% of patients with hypertension for blood pressure control[5-8]. As the first-line inhibitors of renin-angiotensin-aldosterone system (RAAS)[9], they always act as a cornerstone in treatment of cardiovascular disease.

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) that causes COVID-19 infects the human body in a similar pattern as SARS coronavirus (SARS-CoV) does. They bind ACE2 in the lung via S protein, and subsequently enter the host alveolar cells, where they replicate and activate the immune system. The release of inflammatory factors and cytokines causes lung injury and even fatal complications in critical cases[10-12]. Additionally, several studies[13-15] have shown that ACEIs or angiotensin receptor blockers (ACEIs/ARBs) might upregulate level of ACE2 expression. This may confer increased susceptibility and aggravation of COVID-19. Therefore, some researchers considered that ACEIs/ARBs should be discontinued in COVID-19 patients with hypertension[16]. However, the American Heart Association/
American College of Cardiologists and the European Society of Cardiology pointed out that there was no clinical evidence on worse outcomes in COVID-19 patients with previous ACEIs/ARBs prescription, and they did not recommend discontinuing ACEIs/ARBs. Moreover, most research had revealed that sustained ingestion of ACEIs/ARBs had no significant harmful effects on COVID-19 patients complicated with hypertension during hospitalization. However, few studies investigated the effect of discontinuing ACEIs/ARBs in COVID-19 patients with hypertension. Therefore, we conducted a study to investigate whether the discontinuation of ACEIs/ARBs in COVID-19 patients with hypertension had a negative impact on patient prognosis.

In the present study, we aimed to collect retrospectively the clinical data of patients with both COVID-19 and hypertension and to explore the differences between patients who discontinued using ACEIs/ARBs and those who kept using other types of anti-hypertensive medications.

MATERIALS AND METHODS

Study subjects

This study was based on the COVID-19 cohort from a patient registry of all COVID-19 patients admitted to an isolated unit in a tertiary hospital from February 8, 2020 to February 24, 2020. All patients were diagnosed with COVID-19 pneumonia according to national guidelines.

The exclusion criteria were as follows: (1) Uncured malignant tumors; (2) Regular dialysis; (3) Immunosuppression therapy post transplantation; (4) Steroids or immunosuppressive agents for autoimmune diseases; (5) Chronic pulmonary diseases; (6) Active hepatitis or liver cirrhosis; (7) Pregnancy and lactation; (8) Sequelae of cerebrovascular disease; (9) Hematological diseases; and (10) Age < 18 years.

All patients were given standard care. However, due to limited resources during the initial stage of the epidemic, there was shortage of ACEIs/ARBs supply. Thus, all patients who had previously taken ACEIs/ARBs were prescribed other antihypertensive drugs, mostly calcium channel blocker (CCBs). There were 53 moderate or severe patients enrolled, 27 of which switched from ACEIs/ARBs to CCBs and 26 continued with their usual non-ACEIs/ARBs anti-hypertensive drugs.

In the majority of critical patients with multi-organ dysfunction syndrome or hemodynamic instability, oral anti-hypertensive drugs could not be administered. The prognosis of those patients was profoundly affected by severity of illness. In order to avoid potential bias, 13 critical cases were excluded from the final analysis (see Figure 1).

Study methods

The present study described the baseline characteristics of patients with moderate and severe COVID-19 who were using anti-hypertensive drugs, including their gender, age, disease severity classification, quick sequential organ failure assessment (qSOFA) score, clinical and radiological manifestations, inflammatory factors, labs, and other disease-related characteristics. In addition, those patients switched from ACEIs/ARBs to CCBs after admission were assigned to the discontinued ACEIs/ARBs group. The remaining patients who have taken non-ACEIs/ARBs anti-hypertensive drugs who maintained the previous therapeutic regime were enrolled in other anti-hypertensive drugs group. When exploring the association between the discontinuation of ACEIs/ARBs and disease prognosis, we compared baseline characteristics between the two groups.

The blood pressure on the day of admission and the 2nd, 3rd, 5th, 8th, and 12th d after admission were recorded, evaluating the consistency of blood pressure control for both groups.

The follow-up study continued until March 24, 2020. Discharged or in-hospital death were also considered end-point of study. The discharge criteria were as follows: (1) Normal body temperature for more than 3 d; (2) Respiratory symptoms significantly improved; (3) Chest imaging remission; and (4) Negative nucleic acid tests of sputum, nasopharyngeal swabs, or other respiratory tract samples for two consecutive times sampled with at least 24-h interval. The deceased patients were recorded as right censored, as no discharge outcome had occurred.

The study was approved by the Institutional Review Board of Peking University Third Hospital (IRB00006761-M2020060), and a waiver of written informed consent was obtained.
76 patients confirmed to have both COVID-19 and hypertension

10 patients excluded, as follows:
3 with chronic renal insufficiency undergoing dialysis;
2 with renal transplantation taking anti-rejection drugs;
2 with chronic obstructive pulmonary disease;
1 with sequelae of cerebral infarction;
2 with unknown medication history

66 patients enrolled

13 patients excluded due to critical illness at admission

Discontinued ACEIs/ARBs group
\(n = 27 \)

Other anti-hypertensive drugs group
\(n = 26 \)

Figure 1 Enrollment and randomization of patients. COVID-19: Coronavirus disease 2019; ACEIs/ARBs: Angiotensin converting enzymes inhibitors or angiotensin receptor blockers.

Statistical analysis

Continuous variables were described by median and quartile, and the Mann-Whitney U test was used for comparison between groups. For categorical variables, the chi-square test, continuity-corrected chi-square test, or Fisher’s exact test was used. Patients receiving ACEIs/ARBs before hospitalization might have experienced blood pressure fluctuations after medication switching. We used repeated-measures analysis of variance (repeated-measures ANOVA) to compare the changes in blood pressure level after admission, as well as the overall blood pressure level, between the discontinued ACEIs/ARBs group and the other anti-hypertensive drugs group. In the repeated-measures ANOVA, the choice to use ACEIs/ARBs was defined as a between-subject factor, while blood pressure on the day of admission was defined as a covariant (see Figure 2). Cox proportional hazard model was used to estimate the hazard ratio (HR) and its 95% confidence interval (CI) for significant factor screening. Factors with a \(P \) value < 0.1 were selected as potential confounders in the comparison of baseline characteristics between the discontinued ACEIs/ARBs group and the other anti-hypertensive drugs group, as well as in the univariant Cox proportional hazards model. Cox risk ratio model was used to explore whether the previous use of ACEIs/ARBs, after deducting confounding factors, was related to the prognosis of the disease. The qSOFA score was closely related to COVID-19 disease severity, so it was included in the multi-factor Cox proportional hazard model to indicate severity of disease.

To clarify further the impact of ACEIs/ARBs on prognosis in patients with different severities on admission, multivariate Cox proportional hazard models of moderate and severe patients were established to explore the association between the discontinuous usage of ACEIs/ARBs and disease severity. A two-sided \(\alpha \) of less than 0.05 was considered statistically significant. The researchers used the SPSS version 24.0 program for statistical analysis (IBM Corp., Armonk, NY, United States).

RESULTS

Baseline characteristics

A total of 53 patients met the inclusion criteria, of whom 27 (51%) switched from ACEIs/ARBs to CCBs and 26 continued with their usual non-ACEIs/ARBs anti-
hypertensive drugs. The patients’ median age was 67 years, and the median time from symptoms onset to hospital admission was 14 d. There were 24 moderate cases (45.3%) and 29 severe cases (54.7%) in the cohort. The initial symptom commonly experienced was fever in 35 cases (66%) and cough in 12 cases (22.6%). Bilateral ground-glass opacity was the most commonly seen chest imaging findings.

As shown in Table 1, age, qSOFA score, and the levels of albumin and interleukin-10 (IL-10) differed significantly between the discontinued ACEIs/ARBs group and the other anti-hypertensive drugs group (P < 0.05). There was no significant difference between the two groups in other labs or clinical management strategy (see Supplementary Table 1).

The results of repeated-measures ANOVA showed that the models of both systolic and diastolic blood pressure met the spherical test (systolic pressure: P = 0.287, diastolic pressure: P = 0.653). There was no significant difference between the groups in terms of the trends in systolic and diastolic blood pressure over time (Mauchly’s test of Sphericity; systolic: P = 0.533, diastolic: P = 0.308). The tests of between-subject effects showed that systolic and diastolic blood pressure were not significantly different between the two groups (P = 0.355 and 0.822, respectively). The blood pressure levels of the two groups after admission were generally similar.

The univariate Cox proportional risk model showed that the hospital stay between those two groups was 23 d [interquartile range (IQR) 16.0-31.0] and 21.5 d (IQR 15.0-27.0), respectively. In subgroup analysis, the median time of hospital stay in moderate patients was 21 d (IQR 17.0-25.5) and 16.5 d (IQR 12.0-19.5), respectively. In severe patients, it was 23 d (IQR 15.0-32.0) and 24.5 d (IQR 23.0-31.0), respectively. Among patients who had not been discharged, those who had discontinued ACEIs/ARBs were 42.4% less likely to be discharged (HR = 0.424, 95%CI is 0.187-0.962, P = 0.040) compared to those who had been using other anti-hypertensive drugs. The results are shown in Table 2 and Figure 3A.

After control for other potential confounding factors, the multivariate Cox proportional risk model showed that patients who discontinued ACEIs/ARBs underwent longer hospital stay; the difference was statistically significant (P < 0.05).

The effect of discontinue using ACEIs/ARBs was stronger in patients with moderate disease than among all patients [HR = 0.224 (0.005, 0.998); P = 0.0497]. The results are shown in Table 3 and Figure 3B.

In patients with severe disease, no association between discontinue using ACEIs/ARBs and disease prognosis was found [HR = 0.793 (0.215, 2.926); P = 0.728]. The results are shown in Table 3 and Figure 3C.

DISCUSSION

In the present study, we analyzed the clinical characteristics of 53 COVID-19 patients with hypertension and found that the median time of hospital stay was longer in the discontinued ACEIs/ARBs group than the other anti-hypertensive drugs. Moreover,
<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Total (n = 53)</th>
<th>Discontinued ACEIs/ARBs (n = 27)</th>
<th>Other anti-hypertensive drugs (n = 26)</th>
<th>χ²/z</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Male sex, n (%)</td>
<td>26 (49.1)</td>
<td>15 (57.7)</td>
<td>11 (42.3)</td>
<td>0.930</td>
<td>0.335</td>
</tr>
<tr>
<td>Age, median yr (IQR)</td>
<td>67 (59, 73)</td>
<td>64 (55, 72)</td>
<td>70 (66, 73)</td>
<td>-2.369</td>
<td>0.018</td>
</tr>
<tr>
<td>Initial symptom, n (%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fever (temperature ≥ 37.3 °C)</td>
<td>35 (66)</td>
<td>19 (54.3)</td>
<td>16 (45.7)</td>
<td>6.895</td>
<td>0.186</td>
</tr>
<tr>
<td>Cough</td>
<td>12 (22.6)</td>
<td>4 (33.3)</td>
<td>8 (66.7)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dyspnea</td>
<td>1 (1.9)</td>
<td>0 (0)</td>
<td>1 (100)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chest tension</td>
<td>1 (1.9)</td>
<td>0 (0)</td>
<td>1 (100)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Exhausted</td>
<td>1 (1.9)</td>
<td>1 (100)</td>
<td>0 (0)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anorexia</td>
<td>1 (1.9)</td>
<td>1 (100)</td>
<td>0 (0)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diarrhea</td>
<td>2 (3.8)</td>
<td>2 (100)</td>
<td>0 (0)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Severity of illness, n (%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Moderate</td>
<td>24 (45.3)</td>
<td>12 (50)</td>
<td>12 (50)</td>
<td>0.016</td>
<td>0.901</td>
</tr>
<tr>
<td>Severe</td>
<td>29 (54.7)</td>
<td>15 (51.7)</td>
<td>14 (48.3)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>qSOFA score, n (%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>26 (49.1)</td>
<td>17 (65.4)</td>
<td>9 (34.6)</td>
<td>4.259</td>
<td>0.039</td>
</tr>
<tr>
<td>≥ 1</td>
<td>27 (50.9)</td>
<td>10 (37)</td>
<td>17 (63)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CURB-65 score, n (%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>17 (32.1)</td>
<td>12 (70.6)</td>
<td>5 (29.4)</td>
<td>3.874</td>
<td>0.145</td>
</tr>
<tr>
<td>1</td>
<td>28 (52.8)</td>
<td>12 (42.9)</td>
<td>16 (57.1)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>≥ 2</td>
<td>8 (15.1)</td>
<td>3 (37.5)</td>
<td>5 (62.5)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Comorbidities, n (%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diabetes</td>
<td>21 (39.6)</td>
<td>10 (47.6)</td>
<td>11 (52.4)</td>
<td>0.154</td>
<td>0.695</td>
</tr>
<tr>
<td>Coronary heart disease-</td>
<td>13 (24.5)</td>
<td>8 (61.5)</td>
<td>5 (38.5)</td>
<td>0.774</td>
<td>0.379</td>
</tr>
<tr>
<td>Duration of hypertension, median-yr (RQR)</td>
<td>10 (5,16)</td>
<td>10 (6, 20)</td>
<td>10 (5, 10)</td>
<td>1.811</td>
<td>0.707</td>
</tr>
<tr>
<td>Chest CT results, n (%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bilateral lesions</td>
<td>48 (90.6)</td>
<td>24 (50)</td>
<td>24 (50)</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Ground glass</td>
<td>32 (60.4)</td>
<td>15 (46.9)</td>
<td>17 (53.1)</td>
<td>0.535</td>
<td>0.465</td>
</tr>
<tr>
<td>Consolidation</td>
<td>6 (11.3)</td>
<td>4 (66.7)</td>
<td>2 (33.3)</td>
<td>0.148</td>
<td>0.701</td>
</tr>
<tr>
<td>Hydrothorax</td>
<td>5 (9.4)</td>
<td>2 (40)</td>
<td>3 (60)</td>
<td>0.002</td>
<td>0.965</td>
</tr>
<tr>
<td>Patch shadow</td>
<td>37 (69.8)</td>
<td>19 (51.4)</td>
<td>18 (48.6)</td>
<td>0.008</td>
<td>0.928</td>
</tr>
<tr>
<td>Laboratory tests, median (RQR)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>White blood cell count, × 10^9 /L</td>
<td>5.23 (4.56, 6.46)</td>
<td>5.22 (4.28, 6.99)</td>
<td>5.41 (4.76, 6.01)</td>
<td>-0.285</td>
<td>0.776</td>
</tr>
<tr>
<td>Lymphocyte count, × 10^9/L</td>
<td>0.99 (0.68, 1.49)</td>
<td>0.81 (0.61, 1.3)</td>
<td>1.05 (0.78, 1.49)</td>
<td>-1.228</td>
<td>0.219</td>
</tr>
<tr>
<td>Platelet count, × 10^9/L</td>
<td>247 (209, 285)</td>
<td>250 (202, 319)</td>
<td>247 (217, 280)</td>
<td>1.087</td>
<td>0.852</td>
</tr>
<tr>
<td>Hemoglobin, g/L</td>
<td>122 (115, 130)</td>
<td>122 (115, 129)</td>
<td>122 (115, 132)</td>
<td>-0.142</td>
<td>0.887</td>
</tr>
<tr>
<td>Alanine transaminase, U/L</td>
<td>21 (15, 31)</td>
<td>21 (14, 31)</td>
<td>20 (15, 30)</td>
<td>-0.027</td>
<td>0.979</td>
</tr>
</tbody>
</table>
Albmin, g/L 34.9 (31.3, 38.3) 33.4 (30.1, 35.9) 36.4 (31.7, 39) 2.127 0.033
Total bilirubin, μmol/L 9.5 (7, 13.4) 9.1 (6.4, 13.4) 10.2 (7.4, 14.1) -0.881 0.378
LDH, μmol/L 265 (228, 313) 290 (228, 367) 262 (224, 300) 1.174 0.240
BUN, mmol/L 4.6 (3.4, 5.9) 4.6 (3.9, 6) 4.5 (3.2, 5.7) 0.854 0.393
Creatinm, μmol/L 71 (58, 90) 68 (59, 90) 71.5 (58, 90) 0.089 0.929
Prothrombin time, s 13.9 (13.2, 14.4) 13.8 (13.2, 14.3) 14 (13.2, 14.6) -0.633 0.527
APTT, s 40.2 (35.6, 47.3) 40.8 (36.8, 44.6) 37.7 (35.3, 43.5) 1.148 0.251
Fibrous protein, g/L 4.81 (4, 6.18) 4.73 (4, 6.98) 4.85 (3.72, 6) 0.534 0.593
D-dimer, μg/L 0.93 (0.48, 1.77) 0.75 (0.47, 1.69) 1.11 (0.48, 1.81) -0.409 0.682
hs-CRP, mg/L 21.2 (1.2, 81.4) 27.2 (5, 97.5) 16.6 (8, 57.9) 1.130 0.258
Procalcitonin, ng/ml 0.04 (0.02, 0.08) 0.04 (0.02, 0.06) 0.04 (0.02, 0.09) 0.290 0.772
Serum ferritin, µg/L 486 (328.35, 1023.85) 601.15 (387, 1177.3) 438.35 (321.4, 767.2) 1.244 0.213
IL-2R, U/ml 669 (445.5, 1013.5) 684.5 (488, 1172) 669 (407, 1010) 0.522 0.602
IL-6, pg/ml 8.76 (3.08, 37.12) 10.23 (3.91, 40.54) 7.66 (3.08, 34.24) 0.439 0.660
IL-8, pg/ml 13.35 (5.75, 23.2) 17.55 (7.4, 27.2) 10.4 (5.3, 18.9) 1.395 0.163
IL-10, pg/ml 5 (5, 5.45) 5 (5.7, 6) 5 (5, 5) 2.463 0.0142
hs-TnT, pg/ml 3.6 (2.9, 5.3) 4.5 (2.3, 7.6) 3.6 (3.6, 3.6) 1.090 0.267
Myoglobin, ng/ml 51.6 (37.8, 90) 50.7 (40.1, 134.6) 55.5 (31.8, 86.3) 0.365 0.715
CKMB, ng/ml 1.1 (0.5, 1.7) 1.2 (0.5, 1.9) 0.8 (0.5, 1.5) 0.508 0.611
NT-ProBNP, pg/ml 142.0 (71.0, 308.0) 113.8 (57.0, 311.0) 179.5 (75.0, 290.0) -1.005 0.315
Time from onset to admission, median day (IQR) 14 (10, 18) 15 (10, 18) 12 (9, 18) 0.919 0.358

Only one patient's organ failure assessment (QSOFA) was 2, QSOFA for all other patients was 0 or 1. Therefore, QSOFA was involved as a binary variable (0, ≥1) in univariate and multivariate Cox proportional hazard model. 1Chi-square test for continuity correction. 2Mean rank in the discontinued angiotensin converting enzymes inhibitors or angiotensin receptor blockers (ACEIs/ARBs) group = 30.73—slightly higher than that in the other anti-hypertensive drugs group (22.27). COVID-19: Coronavirus disease 2019; ACEIs/ARBs: Angiotensin converting enzymes inhibitors or angiotensin receptor blockers; QSOFA: Quick sequential organ failure assessment; LDH: Lactate dehydrogenase; BUN: Blood urea nitrogen; APTT: Activated partial thromboplastin time; hs-CRP: High-sensitive C-reactive protein; IL-2R: Interleukin-2 receptor; IL-6: Interleukin-6; IL-8: Interleukin-8; IL-10: Interleukin-10; ACEIs/ARBs: Angiotensin converting enzymes inhibitors or angiotensin receptor blockers; qSOFA: Quick sequential organ failure assessment; LDH: Lactate dehydrogenase; BUN: Blood urea nitrogen; APTT: Activated partial thromboplastin time; hs-CRP: High-sensitive C-reactive protein; IL-2R: Interleukin-2 receptor; IL-6: Interleukin-6; IL-8: Interleukin-8; IL-10: Interleukin-10; hs-TnT: High sensitive cardiac troponin I; CKMB: Creatine phosphokinase isoenzyme; NT-ProBNP: N-terminal pro-brain natriuretic peptide; IQR: Interquartile range; CT: Computed tomography.

this phenomenon was more significant in moderate cases, which revealed the significant impact of ACEIs/ARBs in COVID-19 patients with confirmed hypertension.

Concerns raised about using ACEIs/ARBs in hypertensive patients with COVID-19 because SARS-CoV-2 enters and infects human through ACE2. ACE and ACE2 are key regulatory enzymes in RAAS network. ACEIs/ARBs are RAAS blockers that control blood pressure by antagonizing ACE and angiotensin receptors. [21-23] ACE2 is a counterregulatory enzyme that degrades Ang II to angiotensin 1-7 (Ang1-7) and reverses the vasoconstrictive effect of ACE to maintain the balance of RAAS system. Additionally, studies have shown that ACEIs/ARBs might increase ACE2 expression, which might facilitate infection by SARS-CoV-2 and aggravate the disease, thus leading to potential longer hospital stay. [24] But solid evidence is still lacking for confirming the effects of ACEIs and ARBs on lung-specific expression of ACE2 in animal models and humans, especially in COVID-19 patients.

On the other hand, several studies have shown that ACEIs/ARBs may also have a protective effect. It was reported that long-term ACEIs/ARBs treatment was associated with shorter length of hospital stay, lower rate of intubation/mechanical ventilation, and reduced 30-d mortality in patients with pneumonia. Further studies found that serum Ang II levels increased significantly in patients with acute lung injury, promoting the progress of acute lung injury through AT1R, which causes vasoconstriction, inflammation, fibrosis, and oxidation. [25-28] A study in COVID-19 patients published by Liu et al confirmed that plasma Ang II level increased significantly in these patients and that it was linearly correlated with virus titer and
Table 2: Univariate Cox proportional risk model associated with each indicator and prognosis

<table>
<thead>
<tr>
<th>Indicator</th>
<th>B</th>
<th>HR (95%CI)</th>
<th>Significance</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACEIs/ARBs</td>
<td>-0.289</td>
<td>0.749 (0.426, 1.319)</td>
<td>0.317</td>
</tr>
<tr>
<td>Gender</td>
<td>-0.516</td>
<td>0.597 (0.333, 1.070)</td>
<td>0.083</td>
</tr>
<tr>
<td>Age</td>
<td>-0.007</td>
<td>0.993 (0.961, 1.025)</td>
<td>0.650</td>
</tr>
<tr>
<td>Initial symptom</td>
<td></td>
<td></td>
<td>0.280</td>
</tr>
<tr>
<td>Fever (temperature ≥ 37.3 °C)</td>
<td>-0.225</td>
<td>0.799 (0.393, 1.623)</td>
<td>0.534</td>
</tr>
<tr>
<td>Cough</td>
<td>1.464</td>
<td>4.324 (0.547, 34.167)</td>
<td>0.165</td>
</tr>
<tr>
<td>Dyspnea</td>
<td>0.012</td>
<td>1.012 (0.137, 7.496)</td>
<td>0.991</td>
</tr>
<tr>
<td>Chest tension</td>
<td>1.811</td>
<td>6.115 (0.75, 49.843)</td>
<td>0.091</td>
</tr>
<tr>
<td>Exhaustion</td>
<td>1.811</td>
<td>6.115 (0.75, 49.843)</td>
<td>0.091</td>
</tr>
<tr>
<td>Anorexia</td>
<td>0.762</td>
<td>2.185 (0.286, 16.699)</td>
<td>0.451</td>
</tr>
<tr>
<td>Severity of illness</td>
<td>-0.541</td>
<td>0.582 (0.328, 1.032)</td>
<td>0.064</td>
</tr>
<tr>
<td>qSOFA score</td>
<td>-0.719</td>
<td>0.487 (0.272, 0.871)</td>
<td>0.015</td>
</tr>
<tr>
<td>CURB-65 score</td>
<td></td>
<td></td>
<td>0.178</td>
</tr>
<tr>
<td>CURB-65 (1)</td>
<td>-0.552</td>
<td>0.576 (0.305, 1.086)</td>
<td>0.088</td>
</tr>
<tr>
<td>CURB-65 (2)</td>
<td>-0.65</td>
<td>0.522 (0.211, 1.288)</td>
<td>0.158</td>
</tr>
<tr>
<td>Diabetes</td>
<td>-0.093</td>
<td>0.911 (0.512, 1.622)</td>
<td>0.752</td>
</tr>
<tr>
<td>Coronary heart disease</td>
<td>0.62</td>
<td>1.860 (0.953, 3.630)</td>
<td>0.069</td>
</tr>
<tr>
<td>Chest CT results (single and bilateral)</td>
<td>0.658</td>
<td>1.930 (0.681, 5.466)</td>
<td>0.216</td>
</tr>
<tr>
<td>Chest CT results (ground glass opacity)</td>
<td>-0.135</td>
<td>0.874 (0.487, 1.569)</td>
<td>0.652</td>
</tr>
<tr>
<td>Chest CT results (consolidation)</td>
<td>0.127</td>
<td>1.136 (0.481, 2.681)</td>
<td>0.772</td>
</tr>
<tr>
<td>Chest CT results (pleural effusion)</td>
<td>-0.976</td>
<td>0.377 (0.134, 1.060)</td>
<td>0.064</td>
</tr>
<tr>
<td>Chest CT results (patch shadow)</td>
<td>0.199</td>
<td>1.220 (0.651, 2.287)</td>
<td>0.534</td>
</tr>
<tr>
<td>Urine protein</td>
<td>-0.151</td>
<td>0.860 (0.466, 1.587)</td>
<td>0.630</td>
</tr>
<tr>
<td>Influenza antibody</td>
<td></td>
<td></td>
<td>0.607</td>
</tr>
<tr>
<td>Influenza A antibody</td>
<td>-0.305</td>
<td>0.737 (0.405, 1.341)</td>
<td>0.318</td>
</tr>
<tr>
<td>Influenza B antibody</td>
<td>-0.117</td>
<td>0.889 (0.305, 2.596)</td>
<td>0.830</td>
</tr>
<tr>
<td>Duration of hypertension</td>
<td>-0.008</td>
<td>0.992 (0.953, 1.032)</td>
<td>0.678</td>
</tr>
<tr>
<td>White blood cell count</td>
<td>-0.112</td>
<td>0.894 (0.749, 1.067)</td>
<td>0.216</td>
</tr>
<tr>
<td>Lymphocyte count</td>
<td>0.322</td>
<td>1.380 (0.774, 2.461)</td>
<td>0.275</td>
</tr>
<tr>
<td>Platelet</td>
<td>0.001</td>
<td>1.001 (0.997, 1.005)</td>
<td>0.651</td>
</tr>
<tr>
<td>Hemoglobin</td>
<td>-0.007</td>
<td>0.993 (0.969, 1.018)</td>
<td>0.576</td>
</tr>
<tr>
<td>Alanine transaminase</td>
<td>-0.015</td>
<td>0.985 (0.965, 1.005)</td>
<td>0.131</td>
</tr>
<tr>
<td>Albumin</td>
<td>0.138</td>
<td>1.148 (1.058, 1.246)</td>
<td>0.001</td>
</tr>
<tr>
<td>Total bilirubin</td>
<td>-0.031</td>
<td>0.969 (0.918, 1.024)</td>
<td>0.263</td>
</tr>
<tr>
<td>LDH</td>
<td>-0.004</td>
<td>0.996 (0.992, 0.999)</td>
<td>0.013</td>
</tr>
<tr>
<td>BUN</td>
<td>-0.088</td>
<td>0.916 (0.806, 1.041)</td>
<td>0.177</td>
</tr>
<tr>
<td>Creatinine</td>
<td>-0.01</td>
<td>0.990 (0.979, 1.002)</td>
<td>0.099</td>
</tr>
<tr>
<td>Prothrombin time</td>
<td>0.027</td>
<td>1.027 (0.895, 1.178)</td>
<td>0.701</td>
</tr>
<tr>
<td>APTT</td>
<td>-0.022</td>
<td>0.978 (0.944, 1.013)</td>
<td>0.217</td>
</tr>
<tr>
<td>Fibrous protein</td>
<td>-0.039</td>
<td>0.962 (0.794, 1.165)</td>
<td>0.689</td>
</tr>
<tr>
<td>BD-dimer</td>
<td>-0.056</td>
<td>0.945 (0.89, 1.004)</td>
<td>0.065</td>
</tr>
</tbody>
</table>
Table 3 Multivariate Cox proportional risk model to investigate the association between discontinuation of angiotensin converting enzymes inhibitors or angiotensin receptor blockers and prognosis

<table>
<thead>
<tr>
<th></th>
<th>All the objects</th>
<th>Stratified by admission severity</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Moderate</td>
</tr>
<tr>
<td></td>
<td>HR (95%CI)</td>
<td>P value</td>
</tr>
<tr>
<td>ACEIs/ARBs</td>
<td>0.424 (0.187, 0.962)</td>
<td>0.040</td>
</tr>
<tr>
<td>qSOFA score</td>
<td>0.455 (0.201, 1.026)</td>
<td>0.058</td>
</tr>
<tr>
<td>Gender</td>
<td>1.116 (0.527, 2.363)</td>
<td>0.774</td>
</tr>
<tr>
<td>Coronary heart disease</td>
<td>3.497 (1.475, 8.291)</td>
<td>0.004</td>
</tr>
<tr>
<td>Chest CT results pleural effusion</td>
<td>0.577 (0.187, 1.778)</td>
<td>0.338</td>
</tr>
<tr>
<td>Albumin</td>
<td>1.087 (0.969, 1.219)</td>
<td>0.153</td>
</tr>
<tr>
<td>LDH</td>
<td>0.997 (0.992, 1.002)</td>
<td>0.239</td>
</tr>
<tr>
<td>Creatinine</td>
<td>0.978 (0.959, 0.997)</td>
<td>0.026</td>
</tr>
<tr>
<td>D-dimer</td>
<td>0.972 (0.907, 1.043)</td>
<td>0.431</td>
</tr>
<tr>
<td>hs-CRP</td>
<td>0.999 (0.988, 1.009)</td>
<td>0.793</td>
</tr>
<tr>
<td>Serum ferritin</td>
<td>1.000 (0.999, 1.001)</td>
<td>0.998</td>
</tr>
<tr>
<td>IL2R</td>
<td>1.000 (0.999, 1.002)</td>
<td>0.485</td>
</tr>
<tr>
<td>Myoglobin</td>
<td>1.002 (0.995, 1.010)</td>
<td>0.489</td>
</tr>
</tbody>
</table>

ACEIs/ARBs: Angiotensin converting enzymes inhibitors or angiotensin receptor blockers; qSOFA: Quick sequential organ failure assessment; LDH: Lactate dehydrogenase; hs-CRP: High-sensitive C-reactive protein; IL-2R: Interleukin-2 receptor; HR: Hazard ratio; CI: Confidence interval.
Tian C et al. COVID-19 and anti-hypertension treatment

Figure 3 The cumulative probability of discharge in patients. A: The cumulative probability of discharge (all patients); B: The cumulative probability of discharge (moderate cases); C: The cumulative probability of discharge (severe cases).

while the ACE2, Ang 1-7, and Mas receptor pathway might play protective roles. A study published by Imai et al.\[36\] showed that ACE2 knock-out mice had significantly higher levels of Ang II than normal wild-type control mice and that pulmonary vascular permeability and lung injury were significantly higher in the knock-out mice. In the same study, recombinant human ACE2 and AT1R inhibitors improved the symptoms of acute lung injury in the ACE2 knock-out mice. In a mouse model of acute lung injury induced using the Spike-Fc protein of SARS-CoV, the level of Ang II also increased significantly, while the expression of ACE2 was down-regulated, and applying ARBs effectively attenuated pulmonary edema\[11\]. These studies indicated that ACE2 converts Ang II to Ang1-7, which finally binds to Mas receptor and mediates many beneficial actions, including vasodilation and anti-inflammatory, antioxidant, and anti-apoptotic effects\[37-39\]. Therefore, potential explanation for longer hospital stays in our patients who discontinued ACEIs/ARBs might be down-regulation of ACE2 and subsequent deteriorated lung injury\[40,41\].

Furthermore, according to a recent study by Huang et al.\[42\] in hypertensive COVID-19 patients, there was no significant difference in length of hospital stay and clinical outcome between patients with both COVID-19 and hypertension who continued to take RAAS blockers and those who took non-RAAS blockers. Another study conducted by Zhang et al.\[43\] showed that it was unlikely that inpatient ACEIs/ARBs would be associated with an increased risk of mortality.

As we all know, COVID-19 is particularly severe in patients with underlying cardiovascular diseases. There is no extra benefit to withdraw RAAS inhibitors in patients in otherwise stable condition. RAAS inhibitors show renal and myocardial protective effects, and discontinuation may cause damage in high-risk patients who show decompensation\[44\]. Monteil et al.\[45\] show that SARS-CoV-2 can directly infect engineered human blood vessel organoids and human kidney organoids, which can be inhibited by ACE2. Combining the current study with other medical evidence\[5,6,46\], we would rather recommend not to change patients’ medication. However, the mechanism of drug interaction is complex, and the impact of drugs on patients may depend on the final equilibrium state. The effects of ACEIs/ARBs for COVID-19 patients complicated with hypertension requires further study.

There were several limitations of our study. First, our study was carried out in a single center, and sample size was limited by patient volume and strict recruitment criteria. Interpretation of our findings might be underestimated. However, our study was the first clinical study to explore the effect of ACEIs/ARBs withdrawal in COVID-19 patients. Second, we could not manage to enroll a third arm of patients who continued using ACEIs/ARBs after admission. Therefore, we could not objectively compare the differences among the patients who were using ACEIs/ARBs...
continuously, patients adjusted drugs after admission, and patients using non-ACEI/ARBs continuously.

CONCLUSION

Discontinuing ACEIs/ARBs in confirmed COVID-19 patients with hypertension resulted in a prolonged hospital stay. This phenomenon was more significant in moderate cases. Nonetheless, we believe that ACEIs/ARBs should be continued in patients with both COVID-19 and hypertension unless further evidence demonstrates adverse outcomes.

ARTICLE HIGHLIGHTS

Research background

During the coronavirus disease 2019 (COVID-19) pandemic, several studies have revealed that sustained ingestion of angiotensin converting enzymes inhibitors or angiotensin receptor blockers (ACEIs/ARBs) had no harmful effects on COVID-19 patients complicated with hypertension.

Research motivation

The role of angiotensin converting enzyme-2 (ACE2) receptor in COVID-19 pathophysiological process remains unclear. We expect to provide more important evidence for ACEIs/ARBs usage in clinical application.

Research objectives

To explore the impact of ACEIs/ARBs discontinued usage on COVID-19 patients complicated with hypertension.

Research methods

This study was based on a COVID-19 cohort from a patient registry of all COVID-19 patients admitted to an isolated unit in a tertiary hospital. All COVID-19 patients complicated with hypertension were recruited in our study and divided into discontinued ACEIs/ARBs group or other anti-hypertensive drugs group. We compared characteristics and clinical outcomes between those two different groups of patients.

Research results

A total of 53 patients were enrolled, 27 patients switched from ACEIs/ARBs to CCBs while 26 patients continued with non-ACEIs/ARBs. After controlling potential confounding factors using the Cox proportional hazards model, hospital stay was longer in patients who discontinued ACEIs/ARBs, with a hazard ratio (HR) of 0.424 [95% confidence interval (CI): 0.187-0.962; \(P = 0.040 \)], than in patients using other anti-hypertensive drugs. A sub-group analysis showed that the effect of discontinuing ACEIs/ARBs was stronger in moderate cases [HR = 0.224 (95%CI: 0.005-0.998; \(P = 0.0497 \)].

Research conclusions

Our data revealed that discontinuing ACEIs/ARBs treatment after COVID-19 diagnosis results in a prolonged hospital stay. This phenomenon was more significant in hospitalized patients with moderate COVID-19. Our research suggested that ACEIs/ARBs should be continued in patients with both COVID-19 and hypertension unless further evidence demonstrates adverse outcomes.

Research perspectives

The mechanism of ACE2 in COVID-19 patients complicated with hypertension remains unclear and may be more complex, requiring further research to explore this area in the future.
REFERENCES

