EDITORIAL

2453 Noninvasive molecular analysis of *Helicobacter pylori*: Is it time for tailored first-line therapy?
Ierardi E, Giorgio F, Iannone A, Losurdo G, Principi M, Barone M, Pisani A, Di Leo A

REVIEW

2459 Pathogenesis and clinical spectrum of primary sclerosing cholangitis
Gidwaney NG, Pawa S, Das KM

2470 Biliary tract cancer stem cells - translational options and challenges
Mayr C, Ocker M, Ritter M, Pichler M, Neureiter D, Kiesslich T

MINIREVIEWS

2483 Potential role of nutraceutical compounds in inflammatory bowel disease
Larussa T, Imeneo M, Luzza F

2493 Unusual gastric tumors and tumor-like lesions: Radiological with pathological correlation and literature review
Lin YM, Chiu NC, Li AFY, Liu CA, Chou YH, Chiong YY

2505 New progress in roles of nitric oxide during hepatic ischemia reperfusion injury
Zhang YQ, Ding N, Zeng YF, Xiang YY, Yang MW, Hong FF, Yang SL

ORIGINAL ARTICLE

Basic Study

2511 Berberine displays antitumor activity in esophageal cancer cells *in vitro*
Jiang SX, Qi B, Yao WJ, Gu CW, Wei XF, Zhao Y, Liu YZ, Zhao BS

Case Control Study

2519 Clinical utility of the platelet-lymphocyte ratio as a predictor of postoperative complications after radical gastrectomy for clinical T2-4 gastric cancer

2527 Colors of vegetables and fruits and the risks of colorectal cancer
Lee J, Shin A, Oh JH, Kim J
Retrospective Cohort Study
2539 Impact of vitamin D on the hospitalization rate of Crohn's disease patients seen at a tertiary care center
Venkata KVR, Arora SS, Xie FL, Malik TA

2545 Barcelona clinic liver cancer nomogram and others staging/scoring systems in a French hepatocellular carcinoma cohort

Retrospective Study
2556 Laparoscopic approach to suspected T1 and T2 gallbladder carcinoma
Ome Y, Hashida K, Yokota M, Nagahisa Y, Okabe M, Kawamoto K

2566 Clinical characteristics of peptic ulcer perforation in Korea
Yang YJ, Bang CS, Shin SP, Park TY, Suk KT, Baik GH, Kim DJ

2575 Effects of omeprazole in improving concurrent chemoradiotherapy efficacy in rectal cancer

Clinical Trials Study
2585 PIK3CA gene mutations in Northwest Chinese esophageal squamous cell carcinoma

2592 Endothelial progenitor cells in peripheral blood may serve as a biological marker to predict severe acute pancreatitis
Ha XQ, Song YJ, Zhao HB, Ta WW, Gao HW, Feng QS, Dong JZ, Deng ZY, Fan HY, Peng JH, Yang ZH, Zhao Y

2601 Comparative study of ROR2 and WNT5a expression in squamous/adenosquamous carcinoma and adenocarcinoma of the gallbladder
Wu ZC, Xiong L, Wang LX, Miao XY, Liu ZR, Li DQ, Zou Q, Liu KJ, Zhao H, Yang ZL

Observational Study
2613 Serum omentin and vaspin levels in cirrhotic patients with and without portal vein thrombosis

2625 Upper gastrointestinal cancer burden in Hebei Province, China: A population-based study
Li DJ, Liang D, Song GH, Li YW, Wen DG, Jin J, He YT
World Journal of Gastroenterology
Volume 23 Number 14 April 14, 2017

Contents

ABOUT COVER

Editorial board member of World Journal of Gastroenterology, Vicente Lorenzo-Zuniga, MD, PhD, Associate Professor, Chief Doctor, Staff Physician, Endoscopy Unit, Department of Gastroenterology, Hospital Universitari Germans Trias i Pujol/CIBERehd, Badalona 08916, Spain

AIMS AND SCOPE

World Journal of Gastroenterology (WJG), print ISSN 1007-9327, online ISSN 2219-2840, DOI: 10.3748) is a peer-reviewed open access journal. WJG was established on October 1, 1995. It is published weekly on the 7th, 14th, 21st, and 28th each month. The WJG Editorial Board consists of 175 experts in gastroenterology and hepatology from 68 countries.

The primary task of WJG is to rapidly publish high-quality original articles, reviews, and commentaries in the fields of gastroenterology, hepatology, gastrointestinal endoscopy, gastrointestinal surgery, hepatobiliary surgery, gastrointestinal oncology, gastrointestinal radiation oncology, gastrointestinal imaging, gastrointestinal interventional therapy, gastrointestinal infectious diseases, gastrointestinal pharmacology, gastrointestinal histology, evidence-based medicine in gastroenterology, gastrointestinal laboratory medicine, gastrointestinal molecular biology, gastrointestinal immunology, gastrointestinal microbiology, gastrointestinal genetics, gastrointestinal translational medicine, gastrointestinal diagnostics, and gastrointestinal therapeutics. WJG is dedicated to become an influential and prestigious journal in gastroenterology and hepatology, to promote the development of above disciplines, and to improve the diagnostic and therapeutic skill and expertise of clinicians.

INDEXING/ABSTRACTING

World Journal of Gastroenterology (WJG) is now indexed in Current Contents®/Clinical Medicine, Science Citation Index Expanded (also known as SciSearch®), Journal Citation Reports®, Index Medicus, MEDLINE, PubMed, PubMed Central, Digital Object Identifier, and Directory of Open Access Journals. The 2015 edition of Journal Citation Reports® released by Thomson Reuters (ISI) cites the 2015 impact factor for WJG as 2.787 (5-year impact factor: 2.848), ranking WJG as 38 among 78 journals in gastroenterology and hepatology (quartile in category Q2).

FLYLEAF

I-IX Editorial Board

EDITORS FOR THIS ISSUE

NAME OF JOURNAL
World Journal of Gastroenterology

ISSN
ISSN 1007-9327 (print)
ISSN 2219-2840 (online)

LAUNCH DATE
October 1, 1995

FREQUENCY
Weekly

EDITORS-IN-CHIEF
Damian Garcia-Olmo, MD, PhD, Doctor, Professor, Surgeon, Department of Surgery, Universidad Autonoma de Madrid; Department of General Surgery, Fundacion Jimenez Diaz University Hospital, Madrid 28046, Spain

Stephen C Stroem, PhD, Professor, Department of Laboratory Medicine, Division of Pathology, Karolinska Institutet, Stockholm 141-86, Sweden

Andrzej S Tarnawski, MD, PhD, DSc (Med), Professor of Medicine, Chief Gastroenterology, VA Long Beach Health Care System, University of California, Irvine, CA, 901 F. Seventh St, Long Beach, CA 90822, United States

Yuan Qi, Vice Director
Jin-Lei Wang, Director

EDITORIAL BOARD MEMBERS
All editorial board members resources online at http://www.wjgnet.com/1007-9327/editorialboard.htm

EDITORIAL OFFICE
Jin-Lei Wang, Director
Yuan Qi, Vice Director
Zi-Mao Gong, Vice Director
World Journal of Gastroenterology
Baishideng Publishing Group Inc
8226 Regency Drive, Pleasanton, CA 94588, USA
Telephone: +1-925-2238242
Fax: +1-925-2238243
E-mail:editorialoffice@wjgnet.com
Help Desk: http://www.f6publishing.com/helpdesk
http://www.wjgnet.com

PUBLISHER
Baishideng Publishing Group Inc
8226 Regency Drive, Pleasanton, CA 94588, USA
Telephone: +1-925-2238242
Fax: +1-925-2238243
E-mail: bpgoffice@wjgnet.com
Help Desk: http://www.f6publishing.com/helpdesk
http://www.wjgnet.com

PUBLICATION DATE
April 14, 2017

COPYRIGHT
© 2017 Baishideng Publishing Group Inc. Articles published by this Open-Access journal are distributed under the terms of the Creative Commons Attribution Non-commercial License, which permits use, distribution, and reproduction in any medium, provided the original work is properly cited, the use is non commercial and is otherwise in compliance with the license.

SPECIAL STATEMENT
All articles published in journals owned by the Baishideng Publishing Group (BPG) represent the views and opinions of their authors, and not the views, opinions or policies of the BPG, except where otherwise explicitly indicated.

INSTRUCTIONS TO AUTHORS
Full instructions are available online at http://www.wjgnet.com/bpg/guide2/204

ONLINE SUBMISSION
http://www.f6publishing.com

E-mail: editorialoffice@wjgnet.com

Responsible Assistant Editor: Xiang Li
Responsible Electronic Editor: Cai-Hong Wang
Proofing Editor-in-Chief: Liao Shong Mei

http://www.wjgnet.com
Clinical Trials Study

PIK3CA gene mutations in Northwest Chinese esophageal squamous cell carcinoma

Shi-Yuan Liu, Wei Chen, Ehtesham Annait Chughtai, Zhe Qiao, Jian-Tao Jiang, Shao-Min Li, Wei Zhang, Jin Zhang

AIM
To evaluate **PIK3CA** gene mutational status in Northwest Chinese esophageal squamous cell carcinoma (ESCC) patients, and examine the associations of **PIK3CA** gene mutations with clinicopathological characteristics and clinical outcome.

METHODS
A total of 210 patients with ESCC who underwent curative resection were enrolled in this study. Pyrosequencing was applied to investigate mutations in exons 9 and 20 of **PIK3CA** gene in 210 Northwest Chinese ESCCs. The associations of **PIK3CA** gene mutations with clinicopathological characteristics and clinical outcome were examined.

RESULTS
PIK3CA gene mutations in exon 9 were detected in 48 cases (22.9%) of a non-biased database of 210 curatively resected Northwest Chinese ESCCs. **PIK3CA** gene mutations were not associated with sex, tobacco
use, alcohol use, tumor location, stage, or local recurrence. When compared with wild-type PIK3CA gene cases, patients with PIK3CA gene mutations in exons 9 experienced significantly better disease-free survival and overall survival rates.

CONCLUSION
The results of this study suggest that PIK3CA gene mutations could act as a prognostic biomarker in Northwest Chinese ESCC patients.

Key words: PIK3CA gene mutations; Esophageal squamous cell carcinoma; Northwest Chinese; Prognostic significance

© The Author(s) 2017. Published by Baishideng Publishing Group Inc. All rights reserved.

Core tip: PIK3CA gene mutations have been associated with various prognoses in patients with different cancers. However, no large-scale study has examined the prognostic impact of PIK3CA gene mutations in Northwest Chinese esophageal squamous cell carcinoma (ESCC). In this study, we quantified PIK3CA gene mutations via pyrosequencing technology using a non-biased database of 210 curatively resected ESCCs. It was found that PIK3CA gene mutations in Northwest Chinese ESCC are associated with favorable prognoses. It has been suggested that PIK3CA gene mutational status can have a potential role as a prognostic biomarker for ESCC.

INTRODUCTION
Esophageal squamous cell carcinoma (ESCC) is a major histologic type of esophageal cancer that is one of the most aggressive malignant tumors worldwide, especially in East Asian countries, and accounts for most esophageal malignancies in China and Japan[1,2]. As one of the most commonly diagnosed cancers among men in China, the estimated number of new cases of esophageal cancer was 291238 in 2011, while the numbers of deaths was 218957 in the same year[3]. By 2015, these numbers had increased to 477900 and 375000, respectively[4]. Both the incidence and mortality rates were higher in rural areas than in urban areas. Despite the continuing development of cancer multimodality therapies, including surgery, radiotherapy, and chemotherapy, the prognosis of ESCC patients remains poor, even for those who undergo complete resection of their carcinomas[5].

Phosphatidylinositol 3-kinases (PI3Ks) are expressed as heterodimers of p110 catalytic subunits and p85 regulatory subunits that interact with phosphatidylinositol-3-phosphate at the membrane and catalyze the phosphorylation of protein kinase B (PKB, also known as AKT), which activates the downstream signaling pathway[6]. Activation of the PI3K/AKT signaling pathway plays an important role in the development of a variety of human carcinomas[7]. The catalytic subunits of PI3K are encoded by three genes (α, β, γ), with p110α subunit (PIK3CA) amplification being reported in a number of different tumor types. The mutant PIK3CA gene stimulates the AKT pathway and promotes cell growth and invasion in various types of human cancer[8-11] (Samuels, 2004 #120; Samuels, 2005 #126), including lung, breast, gastric, and colorectal cancer[13-15].

PIK3CA gene mutations have also been detected in Japanese and Korean ESCCs[16,17]. Although independently associated with a poor prognosis in Chinese breast cancer patients[18], it was found to be associated with improved outcome in breast cancer patients in the United States[19]; this seeming contradiction requires an intensive study of this gene in future research. In addition, PIK3CA gene mutations and their prognostic role in Chinese ESCC patients have been rarely reported. We therefore quantified PIK3CA gene mutations in 210 samples of curatively resected ESCCs using pyrosequencing, and examined the prognostic significance of PIK3CA gene mutations in Northwest Chinese ESCC patients.

MATERIALS AND METHODS

Study subjects
A total of 210 patients with ESCC who underwent curative resection at the Second Affiliated Hospital of Xi’an Jiaotong University between 2009 and 2015 were enrolled in this study. Patients were observed at 1 to 3 month intervals until either death or December 30, 2015. Tumor staging was carried out according to the 7th American Joint Committee Cancer Staging Manual[20]. Disease-free survival was defined as the length of time after surgical treatment of the cancer during which the patient survived with no sign of cancer recurrence. Cancer-specific survival was defined as the time between the date of operation and the date of death, which was confirmed to be attributable to ESCC. Overall survival was defined as the time between the date of operation and the date of death. Written consent was obtained from each subject and the study procedures were approved by the ethical committees of the Second Affiliated Hospital of Xi’an Jiaotong University.

Genomic DNA extraction, polymerase chain reaction, and pyrosequencing of PIK3CA exon 9 and exon 20
Genomic DNA was extracted from 210 paraffin-embedded tissue specimens of surgically resected
esophageal cancers using the QIAamp DNA Mini kit (Qiagen, Hilgen, Germany) according to the manufacturer’s instructions.

Polymerase chain reaction (PCR) amplifications targeting the PIK3CA gene (exon 9 and 20) were performed. Two sets of primers (Table 1) were used for the detection of any mutation points in exons 9 and 20 of the PIK3CA gene. PCR was carried out in a total volume of 20 μL. The mixture included 1x HotStarTaq buffer, 2.0 mmol/L Mg²⁺, 0.2 mmol/L dNTP, 0.2 μmol/L of each primer, 1U HotStarTaq polymerase (Qiagen, Hilgen, Germany), and 1 μL template DNA. The cycling program for exon 9 was initial denaturation at 95 °C for 15 min, followed by 11 cycles at 94 °C for 20 s, 62 °C-0.5 °C per cycle for 40 s, and 72 °C for 1 min. The cycling program for the exon 20 was initial denaturation at 95 °C for 15 min, followed by 27 cycles at 94 °C for 20 s, 56 °C for 30 s, and 72 °C for 1 min. The PCR products were electrophoresed on agarose gels to confirm successful amplification of the 81 (exon 9) and 74 bp (exon 20) products.

PIK3CA pyrosequencing was carried out using the Pyro-Mark Q42 System (Qiagen, Hilden, Germany) according to the manufacturer’s instructions. Primers of PIK3CA gene (exon 9 and exon 20) for pyrosequencing are shown in Table 2.

Statistical analysis

For the statistical analysis, we used GraphPad Prism 5 software (GraphPad Software, La Jolla, CA). The association between PIK3CA gene mutations and clinicopathological variables were performed using the χ²-test or Fisher’s exact probability test. All P values were two-tailed, with a P-value less than 0.01 being considered significant. Estimation of overall survival was calculated using the Kaplan-Meier method, with statistical differences analyzed via the log-rank test.

RESULTS

PIK3CA gene mutational status in ESCC

For 210 patients who had undergone curative resection of stage I to III ESCC, we examined PIK3CA gene mutations (exon 9 and exon 20) by pyrosequencing technology. In this study, PIK3CA gene mutations were only observed in exon 9 in 48 (22.9%) of 210 Northwest Chinese ESCC samples. The most common mutation of PIK3CA exon 9 was the c.1634A>C (p.E545A) mutation, which was present in 35 tumors, followed by c.1633G>A (p.E545K) in 13 tumors.

PIK3CA gene mutations and ESCC patient characteristics

We examined whether the influence of PIK3CA gene mutations on cancer-specific survival was modified by any of the evaluated clinical, pathologic, or epidemiologic variables of the ESCCs. As a result, we found that PIK3CA gene mutations were not significantly associated with any of the evaluated characteristics of ESCCs, namely sex (male vs female), tobacco use (yes vs no), alcohol use (yes vs no), tumor location (upper, middle vs lower thoracic), preoperative treatment (yes vs no), lymph node metastasis (yes vs no), or local recurrence (yes vs no) (all P > 0.01; Table 3).

PIK3CA gene mutations and patient survival

We assessed the influence of PIK3CA gene mutations on clinical outcome in Northwest Chinese patients with curatively resected ESCC. During the follow-up of the 210 patients, there were a total of 46 deaths confirmed to be attributable to esophageal cancer. The median follow-up time for censored patients was 36.5 mo. In the Kaplan-Meier analysis, patients with PIK3CA gene mutations experienced significantly longer disease-free survival (log rank P = 0.0094), cancer-specific survival (log rank P = 0.0059), and overall survival (log rank P = 0.0066) rates than those with the wild-type PIK3CA gene (Figure 1).

DISCUSSION

Numerous genetic and functional studies have clearly established a fundamental role for the PI3K signaling pathway in the development of neoplasia. As an oncogene in various human cancers, PIK3CA is one of the most genetically mutated genes in human cancers (including colorectal, brain, and gastric cancers)[22], having been displayed as mutated in various tumors, thereby making it a possible therapeutic marker. PIK3CA gene mutations and the subsequent activation of the PI3K/AKT pathway are considered to play a crucial role in cancer cell signaling pathways downstream of growth factors, cytokines, and other cellular stimuli in human neoplasms[6,23]. We therefore conducted this study to examine the prognostic impact of PIK3CA gene mutations among 210 Northwest Chinese patients with curatively resected ESCC.

In this study, we identified PIK3CA gene mutations in 48 out of 210 (22.9%) Northwest Chinese patients with curatively resected ESCC, which is a rate similar to that previously observed in ESCC (21%)[24], colorectal cancer (32%)[9], and breast cancer (25%-40%)[25,26], but slightly higher than that for gastric cancers (4.3%)[27] and brain tumors (5%)[28]. Additionally, we also found that c.1634A>C (p.E545A) was the dominant mutation type, which was consistent with a previous study in China[29]. The PIK3CA gene mutation

Table 1 Two sets of primers of exon 9 and 20 of PIK3CA gene for polymerase chain reaction

<table>
<thead>
<tr>
<th>Exon</th>
<th>Forward</th>
<th>Reverse</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>5'CAAGAGCATTCTCACTAGGAGATCC 3'</td>
<td>5'GTAAAAACATGCTGAGATCAGCCACAT 3'</td>
</tr>
<tr>
<td>20</td>
<td>5'TGAAATGCCAGAAAATCTACGAGATCC 3'</td>
<td>5'GGTCTTTGCCTGCTGAGAGTT 3'</td>
</tr>
</tbody>
</table>

WJG | www.wjgnet.com | 2587 | April 14, 2017 | Volume 23 | Issue 14 |
frequency of ESCC in this study is slightly high when compared with those of previous studies; we believe this may be due to a difference in the patient cohorts, sample sizes, or methods used to assess PIK3CA gene mutation. When identifying PIK3CA gene mutations, other researchers typically use direct sequencing rather than pyrosequencing used in the current study, which is a reliable high-throughput method that can be used as an alternative method for genotyping mutation studies\(^{[30]}\). There is also a non-electrophoretic nucleotide extension sequencing technology that can be used for mutation detection in tumors. Additionally, pyrosequencing has been shown to be more sensitive than regular sequencing in detecting EGFR and KRAS mutations in lung cancer patients\(^{[31,32]}\). PIK3CA gene mutational status was not identified as being associated with any clinicopathological characteristics of Northwest Chinese ESCC patients in our study, which is consistent with two other studies in Korea and China\(^{[19,33]}\).

Identifying prognostic factors or biomarkers plays a crucial role in cancer research and clinical treatment\(^{[34-36]}\). Previous studies examining the relationship between PIK3CA gene mutations and prognosis in human cancers have yielded variable results and showed that PIK3CA gene mutational status is not associated with ESCC patient survival, although it does denote a better prognosis in breast cancer and ovarian cancer\(^{[37,38]}\). This discrepancy might be due to differences in tumor histologic type. We conducted this study to explore the prognostic impact of PIK3CA gene mutations among 210 Northwest Chinese patients with curatively resected ESCC. It was revealed that PIK3CA gene mutations were associated with a favorable prognosis among patients with curatively resected ESCC, suggesting PIK3CA gene mutational status may be a prognostic biomarker for Northwest Chinese ESCC patients that can be used to identify the clinical outcome of patients with curatively resected ESCC, which is consistent with its roles in Japanese ESCC patients\(^{[34]}\). Nonetheless, our findings regarding the correlation between PIK3CA mutations and favorable prognosis in esophageal cancer requires further confirmation by future independent studies using much larger non-biased cohorts of ESCCs.

In summary, this study suggests that PIK3CA gene mutations are associated with a favorable clinical outcome in operational resected ESCC, which supports the PIK3CA gene’s role as a prognostic biomarker for ESCC. Our data correlates with that of previous studies suggesting that the acquisition of PIK3CA gene mutations may be an important molecular event in the etiology of a wide range of tumor types and highlights the potential broad applicability that the PIK3CA gene may have in the clinical outcome of human cancers. Future studies are needed to confirm this association and clarify the exact molecular mechanisms by which PIK3CA gene mutations affect human cancer behavior.

<p>| Table 2 Primers of PIK3CA gene for pyrosequencing |</p>
<table>
<thead>
<tr>
<th>Exon</th>
<th>Primers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exon 9 RS1</td>
<td>Nucleotide dispensation order</td>
</tr>
<tr>
<td>Exon 9 RS2</td>
<td>Nucleotide dispensation order</td>
</tr>
<tr>
<td>Exon 9 RS3</td>
<td>Nucleotide dispensation order</td>
</tr>
<tr>
<td>Exon 20 RS</td>
<td>Nucleotide dispensation order</td>
</tr>
</tbody>
</table>

<p>| Table 3 PIK3CA mutations and clinicopathological characteristics in Northwestern Chinese esophageal squamous cell carcinoma patients n (%) |</p>
<table>
<thead>
<tr>
<th>Clinical, epidemiologic, or pathologic feature</th>
<th>Total, n</th>
<th>PIK3CA Mutant</th>
<th>PIK3CA Wild-type</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>All cases</td>
<td>210</td>
<td>48</td>
<td>162</td>
<td>0.4756</td>
</tr>
<tr>
<td>Sex</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>137 (65.3)</td>
<td>34 (70.8)</td>
<td>123 (75.9)</td>
<td></td>
</tr>
<tr>
<td>Female</td>
<td>73 (34.7)</td>
<td>14 (29.2)</td>
<td>39 (24.1)</td>
<td></td>
</tr>
<tr>
<td>Tobacco use</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>149 (71.0)</td>
<td>31 (64.6)</td>
<td>118 (72.9)</td>
<td>0.2684</td>
</tr>
<tr>
<td>No</td>
<td>61 (29.0)</td>
<td>17 (35.4)</td>
<td>44 (28.1)</td>
<td></td>
</tr>
<tr>
<td>Alcohol use</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>175 (83.3)</td>
<td>38 (79.2)</td>
<td>137 (84.6)</td>
<td>0.3778</td>
</tr>
<tr>
<td>No</td>
<td>35 (16.7)</td>
<td>10 (20.8)</td>
<td>25 (15.4)</td>
<td></td>
</tr>
<tr>
<td>Preoperative treatment</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>28 (13.3)</td>
<td>6 (12.5)</td>
<td>22 (13.6)</td>
<td>0.8467</td>
</tr>
<tr>
<td>No</td>
<td>182 (86.7)</td>
<td>42 (87.5)</td>
<td>140 (86.4)</td>
<td></td>
</tr>
<tr>
<td>Tumor location</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Upper thoracic</td>
<td>20 (9.5)</td>
<td>5 (10.4)</td>
<td>15 (9.2)</td>
<td>0.9651</td>
</tr>
<tr>
<td>Middle thoracic</td>
<td>109 (51.9)</td>
<td>25 (52.1)</td>
<td>84 (51.9)</td>
<td></td>
</tr>
<tr>
<td>Lower thoracic</td>
<td>81 (38.6)</td>
<td>18 (37.5)</td>
<td>63 (38.9)</td>
<td></td>
</tr>
<tr>
<td>Stage</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I A</td>
<td>16 (7.6)</td>
<td>3 (6.3)</td>
<td>13 (8.0)</td>
<td>0.1641</td>
</tr>
<tr>
<td>I B</td>
<td>20 (9.5)</td>
<td>5 (10.4)</td>
<td>15 (9.3)</td>
<td></td>
</tr>
<tr>
<td>II A</td>
<td>28 (13.3)</td>
<td>11 (22.9)</td>
<td>17 (10.5)</td>
<td></td>
</tr>
<tr>
<td>II B</td>
<td>44 (21.0)</td>
<td>10 (20.8)</td>
<td>34 (21.0)</td>
<td></td>
</tr>
<tr>
<td>II A</td>
<td>49 (23.3)</td>
<td>12 (25.0)</td>
<td>37 (22.8)</td>
<td></td>
</tr>
<tr>
<td>III B</td>
<td>23 (11.0)</td>
<td>1 (2.1)</td>
<td>22 (13.6)</td>
<td></td>
</tr>
<tr>
<td>III C</td>
<td>30 (14.3)</td>
<td>6 (12.5)</td>
<td>24 (14.8)</td>
<td></td>
</tr>
<tr>
<td>Lymph node metastasis</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>121 (57.6)</td>
<td>31 (64.6)</td>
<td>90 (55.6)</td>
<td>0.2663</td>
</tr>
<tr>
<td>No</td>
<td>89 (42.4)</td>
<td>17 (35.4)</td>
<td>72 (44.4)</td>
<td></td>
</tr>
<tr>
<td>Local recurrence</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>43 (20.5)</td>
<td>9 (18.8)</td>
<td>34 (21.0)</td>
<td>0.7368</td>
</tr>
<tr>
<td>No</td>
<td>167 (79.5)</td>
<td>39 (81.2)</td>
<td>128 (79.0)</td>
<td></td>
</tr>
<tr>
<td>Prognosis</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dead</td>
<td>88 (41.9)</td>
<td>15 (31.3)</td>
<td>73 (45.1)</td>
<td>0.0885</td>
</tr>
<tr>
<td>Survived</td>
<td>122 (58.1)</td>
<td>33 (68.7)</td>
<td>89 (54.9)</td>
<td></td>
</tr>
</tbody>
</table>
mutations may be an important molecular event in the etiology of ESCC, and that mutations are associated with their clinical outcome.

Innovations and breakthroughs
This is, by far, one of the largest studies on the prognostic role of PIK3CA gene mutations in Northwest Chinese ESCC to date, and it shows that PIK3CA gene mutations in ESCC are associated with a favorable prognoses. It has been suggested that PIK3CA gene mutational status can have a potential role as a prognostic biomarker for ESCC patients.

Applications
PIK3CA gene mutations are associated with a favorable clinical outcome in operational resected Northwest Chinese ESCC patients, thereby suggesting that the acquisition of PIK3CA gene mutations may be an important molecular event in the etiology of a wide range of tumor types and highlighting the potential broad applicability that PIK3CA gene may have in the clinical outcome of human cancers.

Terminology
The PIK3CA gene is located on the 3q26.3 chromosome and encodes the catalytic p110 alpha subunit of phosphoinositide 3-kinase (PI3K). The PI3K signaling pathway is deregulated in many types of cancer, with only the catalytic p110 alpha subunit being mutated.

Peer-review
The authors examined the associations of PIK3CA gene mutations with clinicopathological characteristics and clinical outcome in esophageal squamous cell carcinoma patients in Northwest China. The authors exploited the most recent literature concerning the subject. The study suggests that PIK3CA gene mutations are associated with a favorable clinical outcome in esophageal squamous cell cancer and that in the future the evaluation of PIK3CA gene mutations may be potentially applied as a prognostic marker. The manuscript is worth sharing with other researchers. It is concise, clear, comprehensive, and convincing.

REFERENCES
Liu SY et al. PIK3CA gene mutations in esophageal cancer

P- Reviewer: Ciesielski M, Ribas G S- Editor: Yu J L- Editor: Rutherford A E- Editor: Wang CH