Maternal and Paternal Factors

No.	Author name N (study	, Country	Characteristics of study population	Dx of Summary of findings
	NAFLD)			NAFLD
1	Rajindrajith et 499	Sri Lanka	 Cross-sectional study 	US and no – Significant associations:
	al ^[1]		 Adolescents aged 14 years 	history of - Being breast fed <4 months with
			– 51.8% females	alcohol NAFLD (33.3% vs 17.1% in controls, P
			– 42 (8.4%) had NAFLD	use = 0.02).
				– Higher WC, BMI, HOMA-IR, TG,
				increased subcutaneous and body fat
				with NAFLD.
				– More adolescents with metabolic
				derangements had NAFLD
				– No associations: Birth order, paternal
				education, maternal education, family income,
				period of gestation, BP and maternal or

								NAFLD.
2	Sood <i>et al</i> ^[2]	99	India	_	Cross-sectional study	US and no	_	For children with NAFLD, GG and CG statuses
				_	Obese / Overweight children	n history of		for PNPLA3 polymorphism were seen in 34.8%
					aged <18 yr with / without	ıt viral		and 33.3% overweight / obese children
					NAFLD	hepatitis		compared with only 1 (3.33%) for
				_	69 (69.7%) had NAFLD	/ alcohol		homozygosity and 8/30 (26.7%) in the
				-	Median age 11.1 yr, 59 (85.8%))		heterozygous group.
					boys		_	Presence of NAFLD in one parent and two
								parents increase the OR of offspring being
								diagnosed with NAFLD.
							_	PNPLA3 was not an independently associated
								with NAFLD on multivariable regression.
							_	There was high parental incidence with at least
								1 parent with NAFLD or low HDL (84%), and >

2/3 of the families had insulin resistance, HTN

paternal history of metabolic syndrome with

and high TG for children with NAFLD

3	Long <i>et al</i> ^[3] 785	US	_	Cross-sectional study	CT, LPR ≤ -	- OR of	f hepatic steatosis was 1.92 when adjusted
			_	Cohort participants from secor	nd 0.33 and	for s	sex, age, alcohol use, lipid lowering
				and third generations in th	ne no history	treatr	ment, HOMA-IR and BMI in those with
				Framingham Heart study	of alcohol	one p	parent who had hepatic steatosis versus
			_	Age \geq 40 yr for females and as	ge use	those	without. The OR increased to 3.66 when
				\geq 35 yr for males		both	parents had hepatic steatosis.
			_	23% had one parent who ha	ıd		
				hepatic steatosis, while 1.1% ha	ıd		
				both affected parents			
4	Ayonrinde et 1710	Australia	_	Cohort study	US and no	- Signi	ficant associations
	$al^{[4]}$		_	Adolescents aged 17 yr	history of	-	Factors associated with NAFLD in
					alcohol		female offspring after adjustment for
					use		obesity in adolescence were maternal
							obesity (OR 3.46 95%CI 1.49-8.05) and
							maternal weight gain \geq 6.0kg by
							gestation week 18 on multivariate
							analysis

- For males, the SES at time of birth with NAFLD after adjustment for adolescent obesity (OR 9.07 95%CI 1.54-53.29).
- Significant associations
 - Breastfeeding without milk
 supplement ≥ 6 months with decreased
 NAFLD (OR 0.64 95% CI 0.43-0.94).
 - Maternal pre-pregnancy obesity and adolescent obesity with NAFLD (OR 2.29 95%CI 1.21-4.32) and (OR 9.08 95%CI 6.26-13.17) respectively independent of a western dietary pattern at 17 yr old.
 - Intake of milk supplement before 6 months with greater prevalence of US severity of NAFLD compared to intake

5 Ayonrinde *et* 1170 Australia

al[5]

 Prospective data on infant history of feeding and maternal pregnancy alcohol were examined against NAFLD use

US and no

outcome at 17 yr old

Cohort study

_

after 6 months (17.7% vs 11.2% and 7.8% vs 3.4%).

6	Patel <i>et al</i> ^[6] 1215	UK	– Cohort study	US and no	 Significant associations
			– Participants underwent US	5 of history of	 Maternal diabetes with higher odds of
			the liver at mean 17.8 yr old	viral	offspring US fatty liver.
				hepatitis	– Higher maternal pre-pregnancy BMI
				/ alcohol	with higher odds of developing fatty
					liver in the offspring [aOR 2.72 (95%
					CI: 1.20-6.15)].
7	Zheng <i>et al</i> ^[7] 8752	China	 Cross sectional study 	US and no	- Compared to non-exposed women (to the
			– All participants were fer	nale history of	Chinese famine), women exposed during
			patients who undertook rou	tine alcohol	prenatal and postnatal periods had higher
			physical examinations in pu	ıblic use	waist, BMI, DBP and SBP measurements (P <
			health center		0.01) and higher risks of NAFLD, OR 1.33 (1.04-
			– Control group: born 1963-19	64	1.70) and 1.26 (1.03-1.55), respectively.
			– Fetal exposure group: born 1	960-	
			1961		

_	Postnatal exposure group: born –	Women exposed only during prenatal period
	1957-1958	had higher risks of having abnormal ALT, OR
_	The Chinese famine was 1959-	1.30 (1.05-1.61).
	1961	

US: Ultrasound; NAFLD: Non alcoholic fatty liver disease; WC: Waist circumference; BMI: Body mass index; HOMA-IR: Homeostatic model assessment for insulin resistance; TG: Triglyceride; BP: Blood pressure; ALT: Alanine aminotransferase; PNPLA3: Patatin-like phospholipase domain-containing protein 3; OR: Odds ratio; aOR: Adjusted odds ratio; NASH: Non-alcoholic steatohepatitis; NAS CRN: NASH clinical research network; CT: Computed tomography; LPR: Liver phantom ratio, SES: Socioeconomic status; HFF: Hepatic fat fraction; HTN: Hypertension.

Post	natal Factors					
No.	Author name	N (study, NAFLD)	Country	Characteristics of study population	Dx of St NAFLD	ummary of findings
1	Rajindrajith et al ^[1]	499	Sri Lanka	 Cross-sectional study Adolescents aged 14 years 51.8% females 42 (8.4%) had NAFLD 	US and no history of alcohol use	 Significant associations: Being breast fed <4 months with NAFLD (33.3% vs 17.1% in controls, p=0.02). Higher WC, BMI, HOMA-IR, TG, increased subcutaneous and body fat with NAFLD. More adolescents with metabolic derangements had NAFLD No associations: Birth order, paternal education, maternal education, family income, period of gestation, BP and maternal

Supplementary Table 2 Postnatal factors associated with Hepatic Steatosis

or paternal history of metabolic syndrome with NAFLD.

2	Ayonrinde et 1170	Australia	_	Cohort study		US and	_	Significant associations
	al ^[5]		_	Prospective data	on infant	no		– Breastfeeding without milk
				feeding and	maternal	history		supplement \geq 6 months with
				pregnancy were	examined	of		decreased NAFLD (OR 0.64 95%CI
				against NAFLD out	come at 17	alcohol		0.43-0.94).
				years old		use		 Maternal pre-pregnancy obesity and
								adolescent obesity with NAFLD (OR
								2.29 95%CI 1.21-4.32) and (OR 9.08
								95%CI 6.26-13.17) respectively
								independent of a western dietary
								pattern at 17 years old.
							_	Intake of milk supplement before 6 months
								with greater prevalence of US severity of
								NAFLD compared to intake after 6 months
								(17.7% vs 11.2% and 7.8% vs 3.4%).

3	Zheng et al ^[7]	8752	China	_	Cross section	onal stud	ły	US	and -	_	Compared to non-exposed women (to the
				_	All partici	pants w	ere female	no			Chinese famine), women exposed during
					patients	who	undertook	histo	ry		prenatal and postnatal periods had higher
					routine phy	ysical ex	aminations	of			waist, BMI, DBP and SBP measurements (p <
					in public h	ealth cen	ter	alcoh	nol		0.01) and higher risks of NAFLD, OR 1.33
				_	Control gro	oup: borr	n 1963-1964	use			(1.04-1.70) and 1.26 (1.03-1.55), respectively.
				_	Fetal expo	sure gr	oup: born		-	_	Women exposed only during prenatal period
					1960-1961						had higher risks of having abnormal ALT,
				_	Postnatal	exposu	re group:				OR 1.30 (1.05-1.61).
					born 1957-1	958					
				_	The Chines	e famine	e was 1959-				
					1961						

NAFLD: Non alcoholic fatty liver disease; WC: Waist circumference; BMI: Body mass index; HOMA-IR: Homeostatic model assessment for insulin resistance; TG: Triglyceride; BP: blood pressure; SBP: Systolic blood pressure; DBP: Diastolic blood pressure; ALT: Alanine aminotransferase; OR: Odds ratio

Fact	ors in Childho	od and	l Adolescence					
No.	Author name	N (study, Country	Characteristics of study population	Dx of NAI	FLD S	Sumn	nary of findings
		NA	FLD)					
1	Rajindrajith	et 499	Sri Lanka	 Cross-sectional study 	US and	no	_	Significant associations:
	al ^[1]			 Adolescents aged 14 years 	history	of		– Being breast fed <4 months with
				– 51.8% females	alcohol us	e		NAFLD (33.3% vs 17.1% in controls
				– 42 (8.4%) had NAFLD				P = 0.02).
								– Higher WC, BMI, HOMA-IR, TO
								increased subcutaneous and bod
								fat with NAFLD.
							_	More adolescents with metaboli
								derangements had NAFLD
							_	No associations: Birth order, paterna
								education, maternal education, family
								income, period of gestation, BP and

Supplementary Table 3 Factors in Childhood and Adolescence associated with Hepatic Steatosis

maternal or paternal history of metabolic syndrome with NAFLD.

2	Nier <i>et al</i> ^[8]	125	Germany	_	Case-control study	US		_	Children with NAFLD were heavier and
				_	89 overweight and 36	6			had higher WC
					normal weight healthy	y		_	In overweight children, total consumption
					children				of carbohydrate was higher in those with
				_	Age 5-9 years				NAFLD than without by 120kcal/day,
									specifically the increase in intake of fructose
									and glucose.
								_	Overweight children with NAFLD had
									higher intake of sweetened beverages such
									as fruit juices.
3	Liu et al ^[9]	1639	China	_	Cross-sectional study	US and	no	_	Adolescents who consumed the highest
				_	Age 16-23 years	history	of		quartile of whole grains had lower risk of
				_	A semiquantitative food	d alcohol use	<u>j</u>		NAFLD (0.72, 95% CI 0.61-0.98)
					frequency questionnaire	e			

			(FFQ) of 85 items was use	d	_	Red meat and soft drink consumption were
			to assess diet			associated with NAFLD (1.34, 95% CI 1.06-
						1.72)
					-	Those with NAFLD had less physical
						activity / week, higher BMI and WC, and
						higher proportion were obese
					_	Traditional Chinese dietary pattern had the
						lowest risk while Western dietary pattern
						had higher risk of NAFLD after adjustment
						for confounders
4 Rong <i>et al</i> ^[10]	4141	China –	Cross-sectional study	US, hepatitis B	-	Body weight, BMI, AST and ALT were
		-	Age 15-22 years	and C ruled		higher in those with NAFLD.
		-	2061 girls and 2080 boys	out by		
				serology and		
				no history of		
				alcohol use		

5	Ryu <i>et al</i> ^[11] 7	6415	Korea	_	Cross-sectional study	τ	JS, hepati	itis B	_	Age of menarche was negatively associated
				_	Aged 30 and above wl	ho a	nd C r	uled		with prevalence of NAFLD independent of
					undertook regular heal	lth c	ut	by		adult BMI and percent fat mass
					screening	s	erology	and		
						r	o histor	y of		
						h	epatitis/			
						а	lcohol us	e		
6	Prokopowicz et 1	08	Poland	_	Cross-sectional study	τ	JS and	no	_	NAFLD was associated with a significantly
	al ^[12]			_	Age 6-18years	h	istory	of		greater waist-hip ratio, WC and waist-
				_	Hospitalised in t	he h	epatitis/			height ratio.
					department between 20	12 a	lcohol us	e	_	NAFLD was significantly more often in
					and 2014					children / adolescents with HOMA-IR
										exceeding reference values
7	Ayonrinde et 1	170	Australia	_	Cohort study	τ	JS and	no	_	Significant associations
	al ^[5]			_	Prospective data on infa	int h	istory	of		– Breastfeeding without milk
					feeding and matern	nal a	lcohol us	e		supplement \geq 6 months with
					pregnancy were examine	ed				

	against NAFLD outcome at	decreased NAFLD (OR 0.64 95%CI
	17 years old	0.43-0.94).
		– Maternal pre-pregnancy obesity
		and adolescent obesity with NAFLD
		(OR 2.29 95%CI 1.21-4.32) and (OR
		9.08 95%CI 6.26-13.17) respectively
		independent of a western dietary
		pattern at 17 years old.
	-	Intake of milk supplement before 6 months
		with greater prevalence of US severity of
		NAFLD compared to intake after 6 months
		(17.7% vs 11.2% and 7.8% vs 3.4%).
8 Siddiqi <i>et al</i> ^[13] 242 India –	Cross-sectional study US, hepatitis B –	75% of participants who drank ≥2 soft
-	Participants who drank soft and C ruled	drinks/day (Group 1) had NAFLD,
	drinks were divided into out by	compared to 8% for 1 soft drink/day (Group
	three groups dependent on serology and	2) and 4% for <1 soft drink/day (Group 3)
	no history of	

					quantity of soft drinks	s alcohol use	_	Participants in group 1 had higher WC /
					consumed			BMI / TG / DBP / HOMA-IR / Fasting
				_	Students age 18-26			insulin and lower HDL cholesterol
								compared to group 3
9	Jimenez-Rivera 9	7	Canada	_	Cross-sectional study	US, hepatitis B	_	Mean TG was higher in patients with
	$et al^{[14]}$			_	Obese children	and C ruled		NAFLD.
				_	Age range 8-17 years	out by	_	HOMA-IR was ≥3.16 in 55% of NAFLD
				_	Mean age: 12.9 +/- 3.2 years	s serology and		patients vs 40% in those without NAFLD
						no history of		
						hepatitis/		
						alcohol use		
10	Felix <i>et al</i> ^[15] 3 ^r	9	Brazil	_	Cross-sectional study	US, hepatitis B	_	Male gender (OR 1.62, 95%CI 1.08- 2.44; p =
				_	Prospective	and C ruled		0.038); high intake of refined carbohydrates
				_	Obese children	out by		(OR 2.17, 95%CI 1.05 – 6.82; p = 0.038) and
				_	Age 3-14 years (Median: 9	; serology		lack of routine physical activity (OR 3.35,
					Average age: 8.8 ± 2.5 years))		95%CI 1.97 - 0.006; p = 0.006) were
								independently associated with NAFLD

11	Trovato <i>et al</i> ^[16]	708	Italy	_	Cross-sectional study	US	and	no	_	Patients with NAFLD take less
				_	Adolescent / young adults	his	tory	of		Mediterranean diet
				_	Ages 15-35, mean 21.72	he	patitis/		_	BMI, plus sized clothing for their actual size,
						alc	ohol use	:		sedentary life, lower frequency of daily food
										intake and sleep shortage were
										independently associated with NAFLD
12	Cakir et al ^[17]	181	Turkey	_	Case-control study	US	and	no	_	Low adherence to Mediterrenean diet was
				_	Group 1: obese/overweight	t his	tory	of		associated with obesity and high BMI, and
					children recently diagnosis	s hej	patitis			is a key predictor of NAFLD in obese
					with NAFLD (n = 106, 12.4 -	-				children
					2.6 years)					
				_	Group 2: obese children not	t				
					diagnosed with NAFLD (n	L				
					= 21, 11.3 – 2.6 years).					
				_	Group 3: healthy children	L				
					not diagnosed with chronic	2				

				disease and of normal BM	II		
				(n = 54, 11.8 – 2.9 years)			
13	Della Corte C et 243	Italy	_	Cross-sectional study	US and liver	_	Low adherence to mediterrenean diet
	al ^[18]		_	Obese	biopsy,		correlated with increasing liver damage,
			_	Age 10-17 years	hepatitis B and		NAFLD activity score and grade 2 fibrosis.
					C ruled out by		
					serology and		
					no history of		
					alcohol use		
14	Anderson et 3188	UK	_	Cohort study	US and no	_	Energy intake at all ages was positively
	al ^[19]		_	Prospective study from	n history of		linked to liver outcomes.
				birth cohort and followed	d hepatitis	_	After adjusting for total energy intake,
				up at mean of 17.8 years o	of		absolute macronutrient intake and liver
				age			health outcomes had inconsistent
							associations.
15	Lee <i>et al</i> ^[20] 57	USA	_	Cross-sectional study	Proton	_	Liver fat was linked to (P \leq 0.05) total fat (r
_			_	31 Black /26 White children	n magnetic		= 0.31), BMI percentile (r = 0.28), visceral fat

	– Age 12-18 years resonance	(r = 0.62), abdominal subcutaneous adipose
	- Fatty liver/ without fatty spectros-copy	tissue (r = 0.30), waist circumference (r =
	liver: Black 5(16.1%)/26; (H-MRS) and	0.38), and CRF (r = -0.27) after adjustment
	White 8(30.8%)/18 no history of	for ethnicity and age
	- Fatty liver computed as hepatitis	- Black boys had lower liver fat than white
	follows: liver fat	boys after adjustment for age and
	([methylene lipid	differences in BMI percentile or CRF, but not
	peak/methylene lipid peak	with waist circumference or visceral fat (P >
	+water peak] × 100) ≥5%	0.05).
		- Only visceral fat was independently
		associated with having fatty liver (OR 1.12,
		95% CI 1.04-1.21; P = .003).
		- Visceral fat differences partially account for
		the racial disparities in liver fat in obese
		adolescents
16 Di Costanzo et 230 Italy	- Observational, cohort study Liver MRI,	– [T] allele in GCKR, [G] allele in PNPLA3 and
$al^{[21]}$	hepatitis B and	[T] allele in TM6SF2 gene carriers had

		Overweight [defined as C ruled out by significantly higher levels of hepatic fat
		body mass index (BMI) > serology and compared to wild-type carriers.
		85th and < 95th percentile no history of – Metabolic and genetic factors accounted f
		for gender and age] or obese alcohol use 8.7% and 16.1% of HFF% respectively.
		(defined as BMI ≥ 95th
		percentile for gender and
		age)
		131 Boys/ 99 Girls
		Aged 6–16 years, 10.2 SD 3.0
		years
17 Silveira <i>et al</i> ^[22] 182	Brazil	Cohort study US – Higher quartile of SCAT was linked
		Obese, sedentary higher blood pressure (p = 0.015), but not
		Age 6 to 16 years (Mean: 11 NAFLD (p = 0.665).
		SD 2.7) – Higher IAAT was linked to increase
		Male: 88/ Female:94 dyslipidemia (p = 0.001), NAFLD (p = 0.00
		and metabolic syndrome ($p = 0.013$).

18	Zimmermann	244 464	Denmark	_	Cohort study		Blood	s,		-	Gaining BMI excessively during ages 7 to 13
	<i>et al</i> ^[23]			_	49.8% men		imagii	ng,			years was associated with higher risk of
				_	Age 7-13 years		Biposy	y and	l no		routinely-diagnosed NAFLD in adulthood
							histor	у	of		in both sexes
							hepati	itis/		_	BMI z-score change between ages 7 to 13
							alcoho	ol use			years dependent on BMI z-score at age 7
											years was associated with NAFLD during
											adulthood [HR 1.15 (95% CI 1.05 to 1.26) and
											HR 1.12 (95% CI 1.02 to 1.23) per 1-unit gain
											in BMI z-score] in males and females
											respectively
										_	Childhood BMI increase predicted NAFLD
											during adulthood regardless of the initial or
											the final BMI.
19	Alkassabany e	t 800	Egypt	_	Cross-sectional,	nested	US a	and	no	_	History of chronic disease such as
	al ^[24]				case-control study		histor	у	of		autoimmune disease and asthma resulted in
							hepati	itis			

	- School children up to 18	27 times higher risk of fatty liver
	years-old	development
	– 349 (43.6%) boys –	Family history of DM, HTN, liver disease
	– 451 (56.4%) girls	and especially obesity (OR=5.2) were
	- 126 children with NAFLD	significantly associated with fatty liver
	(prevalence of 15.8%, 95%	development.
	CI 13.2–18.3)	
20 Sanches <i>et al</i> ^[25] 79 Brazil	- Prospective interventional US and no -	Insulin resistance conferred a 65% greater
	study history of	risk of NAFLD
	– Post-pubescent obese alcohol use –	Obese adolescents after weight loss,
	- 33 and 46 patients with and	regardless of NAFLD diagnosis, had
	without NAFLD	lowered deposition of body fat, including
	– Interdisciplinary therapy	visceral fat, and improved inflammatory
	targeting weight-loss	profile, represented by higher
	comprising nutritional,	concentrations of adiponectin

	clinical and psychological	concentrations and lower concentrations of
	interventions, combined	leptin, plasminogen activator inhibitor-1
	exercise training and	and mean leptin/adiponectin ratio
	physiotherapy	
21 AyonrindeOT 965 Australia	– Cohort study US and no –	Girls with PCOS had higher diagnosis of
<i>et al</i> ^[26]	– 592 boys and 572 girls were history of	NAFLD versus those without PCOS (37.5%
	tested for NAFLD alcohol use	vs 15.1%, P = 0.003).
	– 244 girls were tested for –	Increasing SST and pre-existing PCOS
	PCOS	independently predicted for NAFLD
	– 199 girls attended both	
	assessments	
	- Girls: 12 had NAFLD with	
	PCOS / 25 had NAFLD	
	without PCOS / 20 had	
	PCOS without NAFLD /	
	142 had neither NAFLD nor	
	PCOS	

				– Boys: 59 had NAFLD / 527	
				had no NAFLD	
22	Xanthakos	et 242	US	- Observational cohort study Liver biopsy - Increasing NAFLD severity was linked	1 to
	al ^[27]			$- \leq 19$ years, undergoing and no history higher ALT, HTN, fasting glucose le	evel
				bariatric surgery of alcohol use $(P<0.01)$ and WBC count $(P=0.04)$.	
				 Mean age: 16.8±1.6 years Diabetes was the only factor linked 	to
				– Median BMI: 52 kg/m2 fibrosis detection (OR 3.56; 95%	%CI
				– 72% Females 1.93–6.56).	
				- White (68%), non-Hispanic - Microarray analysis showed that NA	ΛSH
				(91%) presence was associated with altered g	gene
				expression that control choleste	erol
				absorption, macrophage chemotaxis, a	and
				fatty acid binding.	
23	Oddy et al ^[28]	2868	Australia	– Cohort study US and no – Healthy dietary pattern was not associa	ated
				 2,900 pregnant women history of with NAFLD 	
				– 97% of 2,804 women gave hepatitis/	
				birth to 2,868 babies alcohol use	

			– These children have been	– Western dietary pattern score was
			assessed at birth and ages 1,	positively linked to higher odds of NAFLD
			2, 3, 5, 8, 10, 14, and 17 years	development at age 17 years
24 Yan <i>et al</i> ^[29]	1350	China	– Cohort study US and no	- Children who were overweight or obese
			- Data collection started in history of	had higher odds of NAFLD in adulthood as
			1987, of children 6 to 18 hepatitis/	compared to those of normal weight. In
			years, follow up of 1350 alcohol use	males, subscapular skinfold thickness had
			subjects of the original	OR of 2.78 and BMI had OR of 2.49; the ORs
			cohort from 2010 to 2014	for females were OR 3.61 and 3.34
			(aged 28–45 years)	respectively (all Ps < 0.001).
				- They also had higher odds of ALT elevation.
				In males, subscapular skinfold thickness
				had OR 1.66 and BMI had OR of 1.64; the
				ORs for females were 3.01 and 2.12
				respectively (all $Ps < 0.05$).

25	Liang <i>et al</i> ^[30] 168	China	– Cross-sectional study US and no – Low IGF-1SDS and high HOMA-IR, BMI
			– Obese history of and uric acid were independently
			 Ages 6 to 19 years hepatitis/ associated with NAFLD
			– 90 with NAFLD, 78 without alcohol use – An analysis of IGF-1 SDS, BMI, HOMA-IR
			NAFLD and uric acid together could predict NAFLD
			accurately with high specificity (74.36%)
			and high sensitivity (78.89%).
26	Peña-Vélez et 112	Mexico	- Cross-sectional US and no - Neck circumference was independently
	al ^[31]		comparative study history of linked to NAFLD (OR = 1.172; 95%
			- 63 boys and 49 girls hepatitis/ CI = 1.008-1.362; p = 0.038)
			– Obese alcohol use
			– Aged 6 - 18 years
27	Nobili <i>et al</i> ^[32] 599	Italy	– Cross-sectional study Liver biopsy, – Participants with NAFLD proven using
			– Children and adolescents of hepatitis B and biopsy had nearly twice the prevalence of
			Caucasian ethnicity C ruled out by prediabetes/diabetes as compared to those
			– 298 boys and 301 girls serology and without NAFLD (20.6% vs. 11%).
			– Age range: 5–17 years no history of

	– US diagnosis of severe alcohol use	- Participants with NAFLD and abnormal
	hepatic steatosis or	glucose tolerance had 2.2 higher increased
	persistently elevated	risk of NASH than those with normal
	aminotransferase levels in	glucose tolerance.
	the serum (≥6 months)	
28 Cuthbertson et 2020 Finland	- Cohort study US and no	- Being overweight or obese in childhood, but
al ^[33]	– Aged 3-18 years at history of	not metabolic health, is linked to increased
	recruitment with follow up alcohol use	risk of NAFLD in adulthood.
	after 31 years	- Participant who were overweight or obese
	– Cardiovascular Risk in	in childhood but not obese in adulthood did
	Young Finns Study	not have higher risk of adult NAFLD.
	multicenter study	
29 Lu <i>et al</i> ^[34] 4128 China	 Retrospective cohort study US and no 	- Women with lower age of menarche had
	- Interviewers collected history of	higher risk of age-adjusted prevalence of
	information about age of hepatitis/	insulin resistance, overweight / obesity and
	menarche using alcohol use	NAFLD. Increasing age of menarche was
	questionnaire from post-	negatively linked to risk of NAFLD.

					menopausal C	Chinese				
					women					
30	Mosca et al ^{35]}	271	Italy	-	Case-control study		US and li	ver	-	The factors which were independently
				_	Overweight/ Obese		biopsy,			associated with NASH were concentration
				_	155 males		hepatitis B a	and		of uric acid (OR 2.488, 95% CI 1.87-2.83, p =
				_	102 patients had NAS	SH and	C ruled out	by		0.004) and consumption of fructose (OR
					169 without NASH		serology a	and		1.612, 95% CI 1.25-1.86, p = 0.001), after
				_	Mean age: 12.5 years		no history	of		adjustment for confounders.
							alcohol use		_	Consumption of fructose was also
										independently linked to hyperuricaemia
										(OR 2.021, 95% CI 1.66-2.78, P = 0.01)
31	Benitez et al ^[36]	513	Chile	_	Longitudinal cohort s	study	US and	no	_	Obesity after age 2 years increased the risk
				_	513 children born 2002	2-2003	history	of		of adolescent NAFLD
				_	Annual anthropo	metric	hepatitis/		_	Obesity at 5 years of age was linked to the
					data		alcohol use			highest risk of NAFLD (OR 8.91 95% CI 3.03-
										16.11)

	_	Evaluated for presence of		
		intrahepatic fat at 14-16		
		years old		
32 Nihal 248	Furkey –	Cohort study	US and no	 Most anthropometric indices and metabolic
Hatipog [˜] lu <i>et</i>	_	114 boys, 134 girls, all obese	history of	parameters were elevated in children
al ^[37]		(BMI > 95th percentile)	hepatitis/	diagnosed with NAFLD.
			alcohol use	- NC was the only risk factor in both boys and
				girls. The risk of NAFLD increased by 1.544-
				fold (p<0.001, 95% CI 1.357-2.214) in boys
				and 1.733-fold (p=0.001, 95% CI 1.185-2.012)
				in girls with every 1cm increase in NC.
33 Schlieske <i>et al</i> ^[38] 447 0	Germany –	Cross-sectional study	US and	- NAFLD was significantly associated with
	_	Overweight children	hepatitis B and	the amount of suprailiac, subscapular and
	_	Mean BMI 32.4 +/- 5.2	C ruled out by	abdominal subcutaneous adipose tissue (P <
		kg/m2	serology	0.001) and intra-abdominal depth (P <
	_	Mean age: 14.2 ± 1.9 years		0.001).

						showed that NAFLD was independently
						associated with only intra-abdominal depth
						for both genders and subcutaneous
						suprailiac adipose tissue deposit in females.
34 Ozł	nan <i>et al</i> [^{39]}	211	Turkey -	Cohort study	US, hepatitis B	 NAFLD was significantly less prevalent in
			-	99 male and 112 femal	e and C ruled	prepubertal children than in obese
				children	out by	adolescents (51.5% vs 65.8%).
			-	Median age: 11.24 ± 2.65	serology and	- The risk factors of NAFLD were WC, age
					no history of	and Quantitative insulin sensitivity check
					hepatitis/	index (QUICKI).
					alcohol use	
35 Zha	to et $al^{[40]}$	186	China -	Case-control study	US and no	- Multivariable logistic regression showed
			-	93 obese children and 9	3 history of	age, uric acid was positively associated with
				obese patients had fatt	y hepatitis/	fatty liver in obese children.
				liver	alcohol use	– Fatty liver incidence was significantly
						higher and the proportion of males as well

- Analysis using stepwise logistic regression

	Simple obese group: BMI	as the level of WC, BMI and HOMA-IR (p
	25.5 ± 3.4Kg/m2, WC of	<0.05) were elevated with increasing uric
	83.5±11.5 cm, 54 were male	acid level, while TG and TC were not
	and age 1-16 years (median	significantly different among groups
	age: 9)	(p >0.05).
_	Obese with fatty liver –	Uric acid was positively correlated with
	group: BMI: 28.1 ±	WC, BMI and HOMA-IR (r = 0.477, 0.468
	3.7Kg/m2 and WC of 92.0 ±	and 0.259, p < 0.05), but not correlated with
	9.9 cm, 73 were male and	TC (r = -0.06, p = 0.42).
	age 7–16 years (median age:	
	12)	
36 Hamza <i>et al</i> ^[41] 85 Egypt –	Case-control study US and no –	Obese patients consumed more fructose
_	55 obese patients and 30 history of	from both natural and processed sources
	non-obese children and hepatitis	and had higher total intake of calories and
	adolescents matched by sex,	fructose
	age and pubertal stage	

-	A weekly semi-quantitative –	Higher intakes of calories and fructose in
	food frequency	obese patients were associated with a
	questionnaire (FFQ) was	progressive increase in NAFLD grade by US
	used to assess fructose	
	consumption	
37 Fintini <i>et al</i> ^[42] 111 Italy –	Cross-sectional study Liver biopsy, -	Reported sedentary activity (Physical
-	40 untreated (out of which US and	activity questionnaire, PAQ) was similar in
	10 were females) with seconda-ry	NRM and NAFLD but lower in OB
	NAFLD proven using causes of -	Children with NAFLD spent more time
	biopsy steatosis	sedentary and less time engaging in
-	30 obese children (OB) (out excluded	physical activity than with NRM, but not
	of which 10 are females)	with OB.
	without NAFLD as proven -	Active energy expenditure (EE, cal kg-1 d-
	by ultrasonography	1) in NAFLD was linked to insulin
	children and 41 normal	sensitivity index result, while total EE was
	healthy lean children	inversely linked to homeostatic model
	(NRM) (out of which 11 are	assessment index result in OB.

					females), matched by ag	ge		
					and pubertal stage served a	as		
					controls			
38	Zhang et al ^[43]	189	China	_	Cross-sectional study	Proton	_	Subjects with metabolic syndrome had
				_	BMI > 95th percentile i	n magnetic		higher liver fat content (LFC) [median 9.7%
					Chinese population	resonan-ce		(interquartile range 4.5-19.9%)] than those
				_	Age 5-16 years	spectros-copy		without metabolic syndrome [5.7% (2.0-
						and no history		12.8%)] (p < 0.01).
						of hepatitis/	_	LFC was positively linked to the total
						alcohol use		number of components of the metabolic
								syndrome (p for trend < 0.01)
							-	Higher levels of LFC were linked to a higher
								risk of hypertriglyceridemia and metabolic
								syndrome, and low HDL cholesterol (p <
								0.05 for all associations). There were no
								associations with HTN or hyperglycemia
								development.

39	Patel et al ^[44]	1904	United	_	Prospective, population	- US and	_	Fatty liver was associated with higher risk
			Kingdom		based birth cohort	Acoustic		of central and peripheral DBP, SBP and
				_	791 male	radiation force		MAP after adjusting for sex, age, puberty,
				_	From the Avor	n impulse-		social class and alcohol intake.
					Longitudinal Study o	f imaging	_	NAFLD is not linked to increased peripheral
					Parents and Children	n (ARFI) and no		or central BP in adolescents after adjustment
					(ALSPAC), participants had	d history of		for adiposity
					to have participated in the	e alcohol use		
					liver USS sub-study			
40	Pawar et al ^[45]	100	India	_	Cross-sectional study	US, ALT,	_	Systolic HTN, serum TG, APRI and AST
				_	Overweight and obes	e Fibroscan and		were significantly higher in children who
					children	no history of		had NAFLD
				_	Age 11- 15 years	hepatitis	_	Systolic hypertension was the only risk
								factor independently linked to NAFLD in
								binary logistic regression.

41	Mollard <i>et al</i> ^[46]	74	Canada	_	Cross-sectional study	MR –	Adolescents diagnosed with hepatic
				_	Overweight adolescents	spectroscopy	steatosis consumed more fried food than
				_	Ages 13-19 years		those without (41% vs 18%; $P = 0.04$).
				_	Magnetic resonance	e –	Positive associations were observed
					imaging of visceral obesity	y	between hepatic steatosis and total fat
					(represented by visceral-to	-	intake (β = 0.51, P = 0.03) and the
					subcutaneous adipos	е	consumption of .35% of daily energy intake
					tissue ratio)		from fat (OR 11.8; 95% CI 1.6, 86.6; P = 0.02).
				_	Harvard Youth Adolescen	t	
					Food Frequency	y	
					Questionnaire was used to	0	
					measure food consumption	n	
					and dietary habits.		
42	Boyraz <i>et al</i> ^[47]	451	Turkey	_	Cross-sectional study	US –	217 (48.1%) of children had NAFLD and 96
				_	Pubertal obese children		(21.3%) had metabolic syndrome.
				_	Ages 8–18 years		

			 Classified into three groups 	– Patients with NAFLD had higher
			on the severity of steatosis.	occurrence of metabolic syndrome
				components than those without
				– Number of metabolic syndrome
				components positively correlated with
				steatosis severity.
43	El-Karaksy et 76	Egypt	 Cross sectional study US +/- liv 	er – Combination of increased hepatic
	al ^[48]		– Obese/ Overweight biopsy and	no echogenicty by ultrasound, anthropometric
			 Ages 2-15 years history 	of measurements, lipid profile and insulin
			 Liver biopsy was performed hepatitis 	resistance predicted NAFLD well in obese
			in 33 patients.	children.
				- Only LDL cholesterol predicted NAFLD
				sensitively
44	Yang <i>et al</i> ^[49] 100	South	 Cross-sectional study US, AST/ Al 	LT – Significant differences between the two
		Korea	– 66 boys and 34 girls and no histo	ry groups were observed for body fat and
			– 60 with NAFLD, 40 without of hepatiti	s/ trunk fat percentage were (p<0.001 and
			NAFLD alcohol use	

p=0.003 respectively) and not for extremity fat percentage (p=0.683).

- In obese children, insulin resistance was _ significantly correlated to age, body fat and trunk fat percentages, GGT, liver enzymes and uric acid.
- Insulin resistance and trunk fat percentage _ were significantly linked to NAFLD development in obese children as assessed by multiple logistic regression.
- Patients with metabolic syndrome had a _ higher probability of being diagnosed with NAFLD using biopsy (P=0.001). of Children diagnosed with NAFLD had _
 - significantly higher WC, BMI, ALT, TC, LDL cholesterol, fasting insulin, TG and lower HDL cholesterol when compared to
- El-Koofy et al^[50] 33 Cross-sectional study US, ALT, Liver Egypt 45 Overweight/ obese Biopsy and no Ages 2–13 years history Studied for IR, MS and hepatitis NAFLD prevalence

			0.05) and fitted more with the criteria of
			metabolic syndrome (80% vs. 44%).
			- NAFLD patients had higher prevalence of
			insulin resistance (73% vs. 28%).
46 Mueller <i>et al</i> ^[51] 1214	United	– Cohort study Non Contrast	- Earlier menarche per year was linked to
	States	- Coronary Artery Risk CT and no	higher risk of NAFLD (RR 1.15; 95% CI 1.07-
		Development in Young history of	1.24), VAT (RR 6.7; 95% CI 4.3–9.0cc), IMAT
		Adults (CARDIA) study hepatitis/	(RR 1.0; 95% CI: 0.6–1.4cc), and SCAT (RR
		 Menarche age was reliably alcohol use 	19.3; 95% CI: 13.2-26.0cc) after adjustment.
		reported at exam years 0	– VAT was the only significant factor
		and 2	(p=0.047) after adjusting for weight gain
		– Multiple-slice abdominal	between exam year 0 and 25
		CT was conducted at exam	
		year 25	

patients who had normal liver histology (P<

US: Ultrasound, NAFLD: non alcoholic fatty liver disease, WC: waist circumference, BMI: body mass index, HOMA-IR: homeostatic model assessment for insulin resistance, TG: triglyceride, BP: blood pressure, OR: odds ratio, CI: confidence interval, ALT: alanine aminotransferase, AST: asparate

aminotransferase, NASH: non-alcoholic steatohepatitis, DBP: diastolic blood pressure, HDL: high-density lipoprotein, CRP: C-reactive protein, CRF: cardiorespiratory fitness, MRI: magnetic resonance imaging, PNPLA3: Patatin-like phospholipase domain-containing protein 3, HFF%: percentage hepatic fat fraction, SCAT: subcutaneous adipose tissue, IAAT: intraabdominal adipose tissue, HR: hazard ratio, DM: diabetes mellitus, HTN: hypertension, PCOS: polycystic ovary syndrome, SST: suprailiac skinfold thickness, IGF-1: insulin like growth factor 1, SDS: standard deviation scores, NC: neck circumference, TC: total cholesterol, SBP: systolic blood pressure, MAP: mean arterial pressure, APRI: aspartate transaminases to platelet ratio index, LDL: low-density lipoprotein, GGT: gamma glutamyl transferase, VAT: visceral adipose tissue, IMAT: inter-muscular adipose tissue, CT: computed tomography, RR: relative risk

Ger	Genetic/ Ethnic factors										
No.	Author name	N (study, Country		Characteristics of study population	Dx of Su	ummary of findings					
		NAFLD)			NAFLD						
1	Chang et al ^[52]	101	Taiwan	 Cross-sectional study 	US and no	- Patients with NAFLD were not different in					
				– Aged 6-17 years	history of	BMI, although were older. More males than					
					viral	females had NAFLD and patients with					
					hepatitis /	NAFLD had higher HOMA-IR, 2h-OGTT					
					alcohol	- Having L allelles to the heme oxygenase-1					
						gene was significantly associated with					
						developing pediatric NAFLD (OR 18.84, 95%					
						CI 1.45-245.22). Other variables include					
						HOMA-IR and age.					
2	Lin <i>et al</i> ^[53]	831	Taiwan	 Cross sectional study 	US and no	– GCKR rs780094, PNPLA3 rs738409 and					
				– Age 7-15 years	history of	TM6SF2 rs58542926 variants were linked to					
				– 22.7% had hepatic steatosis.	alcohol use	higher risk of hepatic steatosis and elevated					
						ALT levels independently.					

Supplementary Table 4 Genetic factors associated with Hepatic Steatosis

- Both heterozygous and homozygous MBOAT7 rs641738 variants were not associated with insulin resistance, hepatic steatosis, liver enzymes and lipid levels.
- Variants of GCKR rs780094 and PNPLA3 rs738409 were linked to serum levels of CK-18 fragment after confounder adjustment for gender, age and body mass index z-score, but no association was observed for MBOAT7 rs641738.

3	Lee <i>et al</i> ^[20]	57	USA	_	Cross-sectional study	Proton –	Liver fat was linked to (P \leq 0.05) total fat (r =
				_	31 Black / 26 White children	magnetic	0.31), BMI percentile (r = 0.28), visceral fat (r
				_	Age 12-18 years	resonan-ce	= 0.62), abdominal subcutaneous adipose
				_	Fatty liver/ without fatty liver	: spectro-	tissue (r = 0.30), waist circumference (r =
					Black 5 (16.1%)/26; White	e scopy and	0.38), and CRF (r = -0.27) after adjustment for
					8(30.8%)/18	no history	ethnicity and age
						of viral	

				hepatitis /	- Black boys had lower liver fat than white
				alcohol	boys after adjustment for age and differences
					in BMI percentile or CRF, but not with waist
					circumference or visceral fat ($P > 0.05$).
					- Visceral fat differences partially account for
					the racial disparities in liver fat in obese
					adolescents
4	Rausch <i>et al</i> ^[54] 234	USA	 Cohort study 	Liver	- There were 10 SNPs identified using GWAS
			- Hispanic boys aged up to 18	8 biopsy,	which were linked to BMI z-score (6 located
			years old (median 12 years)	hepatitis B	within chromosome 2 and 1 within
			– Median BMI of 31.4	and C	CAMK1D) and potentially influenced liver
			– Median HbA1c of 5.3%	ruled out	gluconeogenesis.
			 Liver biopsy proven NAFLD 	by	
				serology	
				and no	
				history of	
				alcohol use	

5	Grandone et 1010	Italy	 Cohort study 	US, –	\sim 167K allele was associated with steatosis (P <
	al ^[55]		– 522 female	vaccinat-	0.0001), higher ALT levels (P < 0.001) and
			 Obesity defined as body m 	ass ed against	lower LDL (P < 0.0001), total cholesterol (P <
			index BMI > 95th percentile	hepatitis B	0.00001), non-HDL levels (P < 0.000001) and
			– Age 4-16 years	and	TG ($P = 0.02$)
				hepatitis C –	- Subjects homozygous for the PNPLA3 148M
				ruled out	allele carrying the rare variant of TM6SF2 had
				by	higher odds of (OR 12.2 CI 3.8-39.6,
				serology	p=0.000001) hypertransaminasaemia
				with no	compared with other patients.
				history of	
				alcohol use	
6	Di Sessa <i>et al</i> ^[56] 1002	Italy	 Cohort study 	US, –	- Subjects with the MBOAT7 T allele had
			 Obese Children 	hepatitis B	higher PNFI values (p=0.04) and ALT
			– Mean age 10.56 ± 2.97 years	and C	(p=0.004) than those without. The same
				ruled out	observations were reported for MBOAT7 T
				by	allele polymorphism with hepatic steatosis.

						serolog	у		
						and	no		
						history	of		
						alcohol	use		
7	Nobili et al ^[57]	152	Italy	_	Cohort study	Liver		_	Taqman assays identified polymorphisms of
				_	Obese	biopsy,			SOD2 rs4880 C>T, PNPLA3 rs738409 C>G
				_	6-18YO (10 SD 3)	hepatiti	is B		(I148 M), LPIN1 rs13412852 C>T and KLF6
				_	92Boys/60Girls	and	С		rs3750861 G>A.
				_	72 with NASH/ 81 no NASH	ruled	out	_	Genetic risk factors were significant
						by			predictors of NASH (AUC 0.75, 95%
						serolog	у		confidence interval [CI] 0.67- 0.82, P<0.0001)
						and	no		in multivariate logistic model.
						history	of		
						alcohol	use		
8	Peng et al ^[58]	1186	China	_	Case-control study	US,		_	Selection and genotyping of four common
				_	593 with NAFLD, 72.41% male	hepatiti	is B		SNPs in the SREBP-1c gene (namely
				_	593 Controls, 72.41% male	and	С		

					ruled out	rs2297508, rs62064119, rs13306741 and
					by	rs11868035)
					serology	- In these SNPs, NAFLD patients and controls
					and no	exhibited no significant differences in
					history of	genotype and allele frequencies (all $P > 0.05$).
					alcohol use	– These polymorphisms in SREBF-1c gene were
						not linked to NAFLD development in
						Chinese Hans.
9	Younossi	et 11,613	USA	 Cross-sectional study 	US,	- NASH was independently associated with
	al ^[59]			 Lean patients, BMI<25kg/m2 	hepatitis B	younger age, Hispanic race and components
				– 4 major racial groups: nor	n- and C	of metabolic syndrome including
				Hispanic blacks, non-Hispan	ic ruled out	hypertension (p values < 0.05).
				whites, Hispanics, and othe	rs by	
				(Aleut, American India	n, serology	
				Asian, Eskimo or Pacif	ic and no	
				Islander).	history of	
					alcohol use	

10	Di Costanzo et 230	Italy	_	Observational, cohort study	MRI,	_	[T] allele in GCKR, [G] allele in PNPLA3 and
	al ^[21]		_	Overweight [defined as body	y hepatitis B		[T] allele in TM6SF2 gene carriers had
				mass index (BMI) > 85th and \cdot	< and C		significantly higher levels of hepatic fat as
				95th percentile for gender and	d ruled out		compared to wild-type carriers.
				age] or obese (defined as BMI	≥ by	_	Metabolic and genetic factors accounted for
				95th percentile for gender and	d serology		8.7% and 16.1% of HFF% respectively.
				age)	and no		
			_	131 Boys/ 99 Girls	history of		
			_	Aged 6-16 years, 10.2 SD 3.	0 alcohol use		
				years			
11	Nishioji <i>et al</i> ^[60] 824	Japan	_	Cross-sectional study	US,	_	G allele of PNPLA3 rs738409 in subjects who
			_	Mean age: 54.3 years	hepatitis B		had normal weight (OR 3.52; 95% CI: 1.42-
			_	548 cases in males (66.5%) and	d and C		8.71; P = 0.0063) and who were overweight
				276 cases in females (33.5%)	ruled out		(OR 2.60; 95% CI: 1.14-5.91; P = 0.0225) was
			_	198 cases (24.0%) were obes	e by		linked to odds of NAFLD but not those who
				and 272 cases (33.0%) were	e serology		were obese.
				diagnosed with NAFLD	and no		

					history	of ·	- Both G allele of PNPLA3 rs738409 and weight
					alcohol us	se	gain of at least 10kg after age 20 years were
							associated with NAFLD in subjects who had
							normal weight (OR 12.00; 95% CI: 3.71-38.79;
							p = $3.3 \times 10-5$) and those who were (OR 13.40;
							95% CI: 2.92–61.36; P = 0.0008).
12	Lin <i>et al</i> ^[61]	520	Taiwan	 Cross-sectional study 	US	-	- Patients with PNPLA3 rs738409 GG, CG and
				– Obese			CC alleles were compared.
				– Aged 6-18 years			- The risk of NAFLD was higher by 2.96 times
				– Male: 346			(95% CI, 1.57 to 5.59, p = 0.0008) for CG alleles
							and by 5.84 times (95% CI, 2.59 to 13.16; p <
							0.0001) for GG alleles when compared to CC
							alleles.
						-	- Patients with CG alleles and GG alleles were
							also associated with increased ALT compared
							to patients with CC alleles.

13	Guichelaar e	et 144	USA	_	Cohort study, prospective	Liver	_	PNPLA3 GG genotype was positively
	al ^[62]			_	Severely obese, mean BMI of	f Biopsy,		correlated (p < 0.05) with serum levels of
					46.6 ± 7.7 kg/m2	hepatitis B		AST, ALT, fibrinogen, glucose, HOMA-IR,
				_	122 (84.7%) Females.	and C		insulin-dependent diabetes mellitus and
				_	Mean age was 47.9 SD 10.7	' ruled out		NASH.
					years	by	_	PNPLA3 rs738409 G (reference: C allele) was
				_	12 (8.3%) had normal liver	serology		independently linked to NASH, as well as
					histology	and no		glucose >100mg/dl, CK-18 >145 IU/l and
				_	72 (50%) had NASH, out of	f history of		CRP >0.8 mg/ dl. Probability of developing
					whom 15 (10.4% of total	l alcohol use		NASH increased from 9% to 82% when
					patients) had stage 2-3	3		presence of risk factors increased from 0 to 4.
					fibrosis.			
14	Peng et al ^[63]	1106	China	_	Frequency matched case-	- US, no	_	rs139051 TT and rs738409 GG or GC
					control study	history of		genotypes were linked to increased risk of
						hepatitis/		NAFLD with a dose-dependent relationship
						alcohol		

	 553 NAFLD patients consisting 	 PNPLA3 genetic polymorphisms might have
	of 399 men and 154 women;	an independent or joint influence on NAFLD
	mean age: 45.33 ± 12.48 years	development in Han Chinese
	– 553 healthy individuals	1
	consisting of 399 men and 154	
	women; mean age: 43.87 ±	
	13.00 years) without steatosis	
	by US	
	,	
15 El-Koofy <i>et</i> 96 Egypt	– Cross-sectional study US +/-	 MTP G/G genotype was more common in
al ^[64]	- 37 overweight (comprising of Biopsy,	patients with NASH (P = 0.002 , CI: $2.9-392$)
	17 males and 20 females) and hepatitis B	than the controls.
	39 obese (comprising of 21 and C	 All NASH patients also had the MnSOD T/T
	males and 18 females). ruled out	genotype.
	- Aged 2-15 years (mean of $7.7 \pm by$	
	3.5 years) serology	
	– 20 healthy controls and no	
	history of	

alcohol use

16	Walker <i>et al</i> ^[65]	223	USA	-	Cross-sectional study	MRI and	-	Only PNPLA3 and APOC3 gene variants
				_	Obese Hispanic children	no history		were linked to liver fat.
				_	Male:93/ Female:130	of	_	Subjects with a GRS54 had approximately
				_	Age 13.5 SD 2.9	hepatitis/		three times higher liver fat content than
				_	BMI: 30.5 SD 7.5	alcohol use		subjects with GRS (genetic risk score) of 0
17	Bhatt et al ^[66]	335	India	_	Case-Control study	US and no	-	Cases had higher prevalence of G/G and
				_	335 subjects who were	e history of		C/G genotypes of the rs738409 gene than
					overweight/obese, defined as	s hepatitis/		controls (P = 0.04). Hence, minor allele G
					body mass index BMI > 23	3 alcohol use		frequency was also higher in cases (P =
					kg/m ²			0.003).
				_	162 (Age: 38.2 SD 7.0) cases and	l	_	G allele was linked to higher HOMA-IR (P =
					173 (Age 37.1 SD 6.9) controls			0.05), fasting insulin (P = 0.002), alanine
								transaminase (P = 0.003) and aspartate
								transaminase ($P = 0.04$) only in cases.

						-	G/G genotype was associated with NAFLD
							[odds ratio (OR), 1.98, 95% CI 1.43-2.73, P =
							0.04).
						_	Asian Indians living in north India who had
							the allele rs738490 of PNPLA3 are more
							susceptible to NAFLD development.
18	Alkassabany et 800	Egypt	_	Cross-sectional, nested case-	US and no	_	History of chronic disease such as
	al ^[24]			control study	history of		autoimmune disease and asthma resulted in
			_	School children up to 18 years-	hepatitis		27 times higher risk of fatty liver
				old			development
			_	349 (43.6%) boys		_	Family history of DM, HTN, liver disease and
			_	451 (56.4%) girls			especially obesity (OR=5.2) were significantly
			_	126 children with NAFLD			associated with fatty liver development.
				(prevalence of 15.8%, 95% CI			
				13.2–18.3)			

19	Xanthakos	et 242	US	 Observational cohort study 	Liver –	Increasing NAFLD severity was linked to
	al ^[27]			– ≤ 19 years, undergoing l	biopsy and	higher ALT, HTN, fasting glucose level
				bariatric surgery	no history	(P<0.01) and WBC count (P= 0.04).
				– Mean age: 16.8±1.6 years	of alcohol –	Diabetes was the only factor linked to fibrosis
				– Median BMI: 52 kg/m2	use	detection (OR 3.56; 95% CI 1.93-6.56).
				– 72% Females	-	Microarray analysis showed that NASH
				– White (68%), non-Hispanic		presence was associated with altered gene
				(91%)		expression that control cholesterol
						absorption, macrophage chemotaxis, and
						fatty acid binding.
20	Zusi et al ^[67]	514	Italy	– Cohort study	US and no –	Genetic variants in GCKR rs1260326 (OR =
				- Children and adolescents who l	history of	1.53, p = 0.003), TM6SF2 rs58542926 (OR =
				were obese	hepatitis/	4.13, p = 0.002), ELOVL2 rs2236212 (OR =
				– Mean age [±SD]: 11.2 ± 2.8 a	alcohol use	1.34, p = 0.047) and PNPLA3 rs738409 (OR =
				years		1.58, $p = 0.004$) were linked to NAFLD
				- z-BMI: 3.3 ± 0.8		development

				_	NAFLD prevalence was 67.5%		_	Including a 11-polymorphism GRS to
					(347 patients)			clinically-established risk factors resulted in a
								modest but significant improvement to the
								ability of the regression model in predicting
								the susceptibility to NAFLD (with SNPs C-
								statistic 0.81 [95%CI 0.75-0.88] vs. 0.77 [0.70-
								0.84] without SNPs; p = 0.047)
21 N	Nobili et al ^[32]	599	Italy	_	Cross-sectional study	Liver	_	Participants with NAFLD proven using
				_	Children and adolescents of	biopsy,		biopsy had nearly twice the prevalence of
					Caucasian ethnicity	hepatitis B		prediabetes/diabetes as compared to those
				_	298 boys and 301 girls	and C		without NAFLD (20.6% vs. 11%).
				_	Age range: 5-17 years	ruled out	_	Participants with NAFLD and abnormal
				_	US diagnosis of severe hepatic	by		glucose tolerance had 2.2 higher increased
					steatosis or persistently	serology		risk of NASH than those with normal glucose
					elevated aminotransferase	and no		tolerance.
					levels in the serum (≥6 months)	history of	_	Association was attenuated after accounting
						alcohol use		for confounders sex, age, waist circumference

(adjusted OR 1.69, 95% CI 1.06–2.69, p = 0.032), and polymorphism of PNPLA3 rs738409.

22	Monga <i>et al</i> ^[68] 73	United -	- Cross-sectional study MRI and	_	Children diagnosed with NAFLD had lower
		States -	- Obese children (defined BMI no history		bacterial alpha-diversity than healthy
			above 95th percentile) of		children (p=0.013).
		-	- 44 children with NAFLD (HFF hepatitis/	-	Children with NAFLD had higher Firmicutes
			≥ 5.5%) alcohol use		to Bacteroidetes ratio and lower abundance of
		-	- 29 children without NADLD		Bacteroidetes, Gemmiger, Prevotella and
			(HFF < 5.5%)		Oscillospira
		-	- Excluded patients with known	-	Additive effect on HFF by PNPLA3
			hepatic diseases		polymorphisms with Gemmiger and
					Oscillospira.
23	Perez-Diaz- 110	Spain -	- FLiO project (Fatty Liver in US and no	_	In patients with at risk genotype (SH2B1
	Del-Campo et		Obesity) which is a history of		rs7359397 (CT/TT) subjects), frequency of
	a[[69]		randomized controlled trial hepatitis/		NASH was higher 69.1% vs 44.4%.
			(NCT03183193) alcohol use		

	– No significant difference in	- Carriers of risk allele had higher liver fat
	BMI between group with no	content and risk of NASH in multinomial
	risk genotype vs high risk	logistic regression.
	genotype	
24 Abshagen <i>et</i> 63 Germany	– Cohort study Liver	– Homozygous Del carriers (n=8) had lower
al ^[70]	– Liver biopsies from obese Biopsy	NAFLD and fibrosis severity than wild-type
	individuals who had NAFLD	allele carriers (n=55)
	and fibrosis and underwent	- REPIN1 Del variant may be linked to a lower
	abdominal surgery for sleeve	risk of NAFLD development
	gastrectomy, Roux-en-Y	
	gastric bypass or elective	
	cholecystectomy	
	– Male: n=21	

US: Ultrasound, MRI: magnetic resonance imaging, SD: standard deviation, NAFLD: non alcoholic fatty liver disease, BMI: body mass index, HOMA-IR: homeostatic model assessment for insulin resistance, OGTT: Oral glucose tolerance test, OR: odds ratio, CI: confidence interval, ALT: alanine aminotransferase, PNPLA3: Patatin-like phospholipase domain-containing protein 3, GCKR: Glucokinase Regulator, TM6SF2: transmembrane 6 superfamily member 2, MBOAT: membrane bound O-acyl transferase, CK: cytokeratin, CRF: cardiorespiratory fitness, WC: waist circumference, NASH:

non-alcoholic steatohepatitis, GWAS: genome-wide association study, SNP: single nucleotide polymorphisms, CAMK1D: Calcium/calmodulindependent protein kinase type 1D, LDL: low-density lipoprotein, TG: triglyceride, HDL: high-density lipoprotein, PNFI: pediatric NAFLD fibrosis index, SOD2: Superoxide dismutase 2, mitochondrial, KLF6: Kruppel Like Factor 6, LPIN-1: Lipin 1, AUC: Area under curve, AST: asparate aminotransferase, DBP: diastolic blood pressure, SREBP: sterol regulatory element binding proteins, HFF%: percentage hepatic fat fraction, CRP: C-reactive protein, MTP: Microsomal triglyceride transfer protein, MnSOD2: manganese-dependent superoxide dismutase, APOC3: Apolipoprotein C-III, DM: diabetes mellitus, HTN: hypertension, ELOVL2: ELOVL Fatty Acid Elongase 2, Del: deletion, REPIN1: Replication Initiator 1

Othe	er Factors							
No.	Author	N (study	y, Country	Characteristics of study population	Dx	of Summary of findings		
	name	NAFLD)	1		NAFLD			
1	Nier et al ^[8]	125	Germany	- Case-control study	US	 Children with NAFLD were heavier and had 		
				– 89 overweight and 36 nor	rmal	higher WC		
				weight healthy children		- In overweight children, total consumption of		
				– Age 5-9 years		carbohydrate was higher in those with NAFLD		
						than without by 120kcal/day, specifically the		
						increase in intake of fructose and glucose.		
						 Overweight children with NAFLD had higher 		
						intake of sweetened beverages such as fruit		
						juices.		
2	Antonella e	et 271	Italy	 Case-control study 	US aı	nd – The factors which were independently		
	al ^[35]			 Overweight/ Obese 	Liver	associated with NASH were concentration of		
				– 155 males	biopsy,	uric acid (OR 2.488, 95% CI 1.87-2.83, p = 0.004)		
					hepatitis	B and consumption of fructose (OR 1.612, 95% CI		

Supplementary Table 5 Other factors associated with Hepatic Steatosis

	102 patients had NASH and 169	and C	1.25-1.86, p = 0.001), after adjustment for
	without NASH	ruled out	confounders.
-	Mean age: 12.5 years	by –	Consumption of fructose was also
		serology	independently linked to hyperuricaemia (OR
		and no	2.021, 95% CI 1.66-2.78, P = 0.01)
		history of	
		alcohol use	
3 Pacifico et 51 Italy –	Randomised controlled trial	Liver MRI –	After 6 months, the DHA group had lowered
al ^[71]	(double-blind and parallel-	. +	liver fat by 53.4% (95% CI, 33.4-73.4) while the
	group)	Liver	placebo group decreased by 22.6% (6.2-39.0)
-	Randomised treatment with	i biopsy,	(P=0.040 when comparing both groups).
	Doxosahexaenoic acid (DHA)	hepatitis B –	In the DHA group, VAT and EAT were
	or placebo (n = 29 in each	and C	lowered by 7.8% (0-18.3) and 14.2% (0-28.2%),
	group)	ruled out	as compared to 2.2% (0-8.1) and 1.7% (0-6.8%)
-	51 completed: 25 DHA, 26	b by	in the placebo group respectively (p=0.01 for
	placebo	serology	both comparisons).
	30 Male	and no	

			Age: Placebo 10.8 SD 2.8 years; history of – The DHA	group had significantly lower
			DHA 11 SD 2.6 years alcohol use fasting insul	in and TG (p=0.028 and p=0.041,
			respectively	
4	Cardoso et 129	Brazil	Cross-sectional study US and no – Uric acid le	evels were positively associated
	al ^[72]		Females: 62.8% (81/129) history of with metabolic	olic syndrome, adolescence and
			65.9% (85/129) were non-white hepatitis/ SBP, but not	with NAFLD.
			Mean age 11.27 SD 3.72 years alcohol use	
5	Pirgon et 117	Turkey	Cross-sectional study US, – Obese adole	scents with and without NAFLD
	al ^[73]		87 obese adolescents (consisting hepatitis B had lower 2	25(OH)D levels when compared
			of 42 boys and 45 girls, mean and C with lean ac	lolescents (29.5±18.4 vs. 41.0±17.9
			age: 12.7±1.3 years, mean body ruled out vs. 48.1±22.2	ng/mL).
			mass index standard deviation by – Those with N	NAFLD had lower 25(OH)D levels
			score (BMI-SDS): 2.1 ± 0.3) serology than those w	without NAFLD ($p < 0.001$) and
			30 lean adolescents (consisting lean adolescent	ents (p < 0.001)
			of 15 boys and 15 girls, mean – For adolesce	nts who were obese and NAFLD,
			age: 12.3 ± 1.45 years, mean 25(OH)D wa	as negatively correlated with with
			BMI-SDS: 0.5±0.7)	

					-0.158, p = 0.01).
6	Pacifico et 80	Italy	 Case-control study 	MRI, –	Subjects who were obese and diagnosed with
	al ^[74]		- 40 Obese with NAFLD, 4	40 hepatitis B	NAFLD had higher Zonulin values as
			without	and C	compared to those without NAFLD [median
			– Both cases and contro	ls ruled out	(interquartile range), 4.23 (3.18-5.89) vs 3.31
			consisted of 25 boys and 15 gir	ls by	(2.05-4.63), P < 0.01]
			and five prepubertal children.	serology	
				and no	
				history of	
				alcohol use	
7	Black <i>et al</i> ^[75] 2868	Australia	 Cohort study 	US and no –	Higher s25(OH)D levels at 17 years lowered
			- Participants followed from	m history of	odds of NAFLD development (OR 0.74, 95% CI
			birth	alcohol use	0.56,0.97; p=0.029), after adjusting for race, sex,
			- s25(OH)D levels were assesse	ed	television/computer viewing, physical
			at ages 14 and 17 years.		activity, insulin resistance and body mass
			- US done at 17 years		index

ALT (r=–0.794, p=0.03) and HOMA-IR (r =

8	Xu et al ^[76]	520	China	_	Cohort study	US and no	_	Children who were obese and diagnosed with
				_	Obese children	history of		NAFLD had higher fasting insulin, fasting C-
				_	376 boys, 144 girls	hepatitis		peptide and HOMA-IR (p<0.001) than those
				_	Age range: 3.4 –17.1 years			without NAFLD.
							_	Fasting C-peptide (OR 2.367) was associated
								independently with NAFLD in obese children
								and WC (OR 1.047) in stepwise multiple
								logistic regression.
							_	Fasting C-peptide tertiles were significantly
								associated with NAFLD 1.00 (as references),
								1.896 (1.045-3.436), and 4.169 (1.822-9.537)
								after adjustment.
9	Olariu	et 245	Romania	_	Case-control study	US, MRI,	_	47 (37.6%) had intestinal dysbiosis and 78
	al ^[77]			_	125 overweight and obes	e CT and no		(62.4%) were SIBO negative.
					subjects aged 10-18 years an	d history of	_	4 (3.3%) controls were SIBO positive.
					120 controls of normal weigh	nt hepatitis/	_	28/47 (59.5%) of the subjects who were obese
					and matched by gender and ag	e alcohol use		and SIBO positive had NAFLD.

						_	8/78 (10.2%) of the subjects who were obese
							and SIBO negative had NAFLD.
						_	Out of 47 adolescents who were overweight or
							obese and diagnosed with intestinal dysbiosis,
							28 (59.5%) had NAFLD as compared to 8
							(10.2%) out of 78 overweight or obese subjects
							who were SIBO negative (p < 0.001).
						_	Higher rate of NAFLD in SIBO positive obese
							children when compared to obese subjects
							without intestinal dysbiosis.
10	Liang <i>et al</i> ^[30] 168	China	_	Cross-sectional study	US and no	_	Low IGF-1SDS and high HOMA-IR, BMI and
			_	Obese	history of		uric acid were independently associated with
			_	Ages 6 to 19 years	hepatitis/		NAFLD
			_	90 with NAFLD, 78 withou	ut alcohol use	_	An analysis of IGF-1 SDS, BMI, HOMA-IR and
				NAFLD			uric acid together could predict NAFLD
							accurately with high specificity (74.36%) and
							high sensitivity (78.89%).

11	Monga et 73	United	_	Cross-sectional study MRI	and	_	Children diagnosed with NAFLD had lower
	al ^[68]	States	_	Obese children (defined BMI no his	story		bacterial alpha-diversity than healthy children
				above 95th percentile) of			(p=0.013).
			_	44 children with NAFLD (HFF ≥ hepatiti	is/	_	Children with NAFLD had higher Firmicutes
				5.5%) alcohol	use		to Bacteroidetes ratio and lower abundance of
			_	29 children without NADLD			Bacteroidetes, Gemmiger, Prevotella and
				(HFF < 5.5%)			Oscillospira
			_	Excluded patients with known		_	Additive effect on HFF by PNPLA3
				hepatic diseases			polymorphisms with Gemmiger and
							Oscillospira.
12	Zhao <i>et al</i> ^[40] 186	China	_	Case-control study US and	d no	_	Multivariable logistic regression showed age,
			_	93 obese children and 93 obese history	of		uric acid was positively associated with fatty
				patients had fatty liver hepatiti	is/		liver in obese children.
			_	Simple obese group: BMI 25.5 \pm alcohol	use	_	Fatty liver incidence was significantly higher
				3.4Kg/m2, WC of 83.5±11.5 cm,			and the proportion of males as well as the level
				54 were male and age 1-16			of WC, BMI and HOMA-IR (p <0.05) were
				years (median age: 9)			elevated with increasing uric acid level, while

		-	Obese with fatty liver group:		TG and TC were not significantly different
			BMI: 28.1 ± 3.7Kg/m2 and WC		among groups (p >0.05).
			of 92.0 ± 9.9 cm, 73 were male		- Uric acid was positively correlated with WC,
			and age 7-16 years (median age:		BMI and HOMA-IR (r = 0.477, 0.468 and 0.259,
			12)		p < 0.05), but not correlated with TC (r = -0.06,
					p = 0.42).
13	Sezer <i>et al</i> ^[78] 111	Turkey –	Cohort study	US, -	Those with and without hepatosteatosis did
		-	Obese children include	d, hepatitis B	not differ in vitamin D levels.
			divided into 2 subgroubs based and C		
			on US (hepatosteatosis (52%) ruled out		
			and non-hepatosteatosis)	by	
		-	Age 7-18 years	serology	
				and no	
				history of	
				alcohol use	
14	Nichols et 4133	United –	Cohort study	Liver -	There were higher proportions of children
	al ^[79]	States		biopsy and	who were boys (74.6 vs 39.4%, p < 0.001), had

	- 66 cases and 4067 controls (69.7 no history		elevated modified BMI-z scores (median 2.4
	vs 59% who were of of		(IQR 1.7) vs 1.9 (IQR 1.7), $p < 0.001$), and
	Hispanic/Latino ancestry, p = hepatitis/		abnormal metabolic parameters (TSH, TG,
	0.1) a	alcohol use	ALT, HDL cholesterol and non-HDL
	- Age range: 5-18 years		cholesterol) in those diagnosed with NAFLD.
		_	The 4th quartile of TSH was significantly
			associated with NAFLD after adjusting for sex,
			age and obesity severity.
15 Kaltenbach 332 Germany	- Cross-sectional study	US, –	TSH concentrations were increased in children
<i>et al</i> ^[80]	- Obese and overweight children	hepatitis B	with NAFLD than those without ($p=0.0007$).
	- Either euthyroid or had a	and C –	TSH values were divided into quartiles were
	subclinical hypothyroidism	ruled out	associated with hepatic steatosis (p < 0.05).
	(TSH > 4 µU mL-1, normal l	by	
	thyroxine).	serology	
	ć	and no	
	1	history of	
	á	alcohol use	

US: Ultrasound, NAFLD: non alcoholic fatty liver disease, WC: waist circumference, NASH: non-alcoholic steatohepatitis, OR: odds ratio, CI: confidence interval, HFF: hepatic fat fraction, MRI: magnetic resonance imaging, VAT: visceral adipose tissue, EAT: epicardial adipose tissue, TG: triglyceride, SBP: systolic blood pressure, BMI: body mass index, HOMA-IR: homeostatic model assessment for insulin resistance, SD: standard deviation, SDS: standard deviation scores, s25(OH)D: serum 25- hydroxyvitamin D, ALT: alanine aminotransferase, SIBO: small intestine bacterial overgrowth, IGF-1: insulin like growth factor 1, PNPLA3: Patatin-like phospholipase domain-containing protein 3, TC: total cholesterol, HDL: high-density lipoprotein, IQR: interquartile range, TSH: thyroid stimulating hormone

REFERENCES

1 Rajindrajith S, Pathmeswaran A, Jayasinghe C, et al. Non-alcoholic fatty liver disease and its associations among adolescents in an urban, Sri Lankan community. *BMC Gastroenterol* 2017; **17:** 135 [DOI: 10.1186/s12876-017-0677-7]

2 **Sood V**, Khanna R, Rawat D, Sharma S, Alam S, Sarin SK. Study of Family Clustering and PNPLA3 Gene Polymorphism in Pediatric Non Alcoholic Fatty Liver Disease. *Indian Pediatr* 2018; **55**: 561-567 [PMID: 30129536]

3 Long MT, Gurary EB, Massaro JM, Ma J, Hoffmann U, Chung RT, Benjamin EJ, Loomba R. Parental non-alcoholic fatty liver disease increases risk of non-alcoholic fatty liver disease in offspring. *Liver Int* 2019; **39**: 740-747 [PMID: 30179294 DOI: 10.1111/liv.13956] 4 Ayonrinde OT, Adams LA, Mori TA, Beilin LJ, de Klerk N, Pennell CE, White S, Olynyk JK. Sex differences between parental pregnancy characteristics and nonalcoholic fatty liver disease in adolescents. *Hepatology* 2018; **67**: 108-122 [PMID: 28665032 DOI: 10.1002/hep.29347]

5 Ayonrinde OT, Oddy WH, Adams LA, Mori TA, Beilin LJ, de Klerk N, Olynyk JK. Infant nutrition and maternal obesity influence the risk of non-alcoholic fatty liver disease in adolescents. *J Hepatol* 2017; **67**: 568-576 [PMID: 28619255 DOI: 10.1016/j.jhep.2017.03.029] 6 Patel S, Lawlor DA, Callaway M, Macdonald-Wallis C, Sattar N, Fraser A. Association of maternal diabetes/glycosuria and prepregnancy body mass index with offspring indicators of non-alcoholic fatty liver disease. *BMC Pediatr* 2016; **16**: 47 [PMID: 27036545 DOI: 10.1186/s12887-016-0585-y]

7 **Zheng X**, Ren W, Gong L, Long J, Luo R, Wang Y. The Great Chinese Famine Exposure in Early Life and the Risk of Nonalcoholic Fatty Liver Disease in Adult Women. *Ann Hepatol* 2017; **16**: 901-908 [PMID: 29055916 DOI: 10.5604/01.3001.0010.5281]

8 Nier A, Brandt A, Conzelmann IB, Özel Y, Bergheim I. Non-Alcoholic Fatty Liver Disease in Overweight Children: Role of Fructose Intake and Dietary Pattern. *Nutrients* 2018; **10** [PMID: 30235828 DOI: 10.3390/nu10091329]

9 Liu X, Peng Y, Chen S, Sun Q. An observational study on the association between major dietary patterns and non-alcoholic fatty liver disease in Chinese adolescents. *Medicine (Baltimore)* 2018; 97: e0576 [PMID: 29703050 DOI: 10.1097/MD.0000000000010576]
10 Rong Y, Chun-Yan N, Hong-Xin Z, Lu Y, Wen W, Yu T. Association of Adolescent Obesity with Nonalcoholic Fatty Liver Disease and Related Risk Factors in Xi 'an, China. *Ann Hepatol* 2018; 17: 85-91 [PMID: 29311392 DOI: 10.5604/01.3001.0010.7538]
11 Ryu S, Chang Y, Choi Y, Kwon MJ, Kim CW, Yun KE, Jung HS, Kim BK, Kim YJ, Ahn J, Cho YK, Kim KH, Chung EC, Shin H,

Cho J. Age at menarche and non-alcoholic fatty liver disease. J Hepatol 2015; 62: 1164-1170 [PMID: 25500721 DOI: 10.1016/j.jhep.2014.11.041]

12 **Prokopowicz Z**, Malecka-Tendera E, Matusik P. Predictive Value of Adiposity Level, Metabolic Syndrome, and Insulin Resistance for the Risk of Nonalcoholic Fatty Liver Disease Diagnosis in Obese Children. *Can J Gastroenterol Hepatol* 2018; **2018**: 9465784 [PMID: 29854716 DOI: 10.1155/2018/9465784]

13 **Siddiqi Z**, Karoli R, Fatima J, Khanduri S, Varshneya S, Ahmad SS. Soft Drinks Consumption and the Risk of Nonalcoholic Fatty Liver Disease. *J Assoc Physicians India* 2017; **65**: 28-32 [PMID: 28598045]

14 Jimenez-Rivera C, Hadjiyannakis S, Davila J, Hurteau J, Aglipay M, Barrowman N, Adamo KB. Prevalence and risk factors for non-alcoholic fatty liver in children and youth with obesity. *BMC Pediatr* 2017; **17**: 113 [PMID: 28446162 DOI: 10.1186/s12887-017-0867-z]

15 Félix DR, Costenaro F, Gottschall CB, Coral GP. Non-alcoholic fatty liver disease (Nafld) in obese children- effect of refined carbohydrates in diet. *BMC Pediatr* 2016; **16**: 187 [PMID: 27846831 DOI: 10.1186/s12887-016-0726-3]

16 **Trovato FM**, Martines GF, Brischetto D, Catalano D, Musumeci G, Trovato GM. Fatty liver disease and lifestyle in youngsters: diet, food intake frequency, exercise, sleep shortage and fashion. *Liver Int* 2016; **36**: 427-433 [PMID: 26346413 DOI: 10.1111/liv.12957] 17 **Cakir M**, Akbulut UE, Okten A. Association between Adherence to the Mediterranean Diet and Presence of Nonalcoholic Fatty Liver Disease in Children. *Child Obes* 2016; **12**: 279-285 [PMID: 26871614 DOI: 10.1089/chi.2015.0197]

18 **Della Corte C**, Mosca A, Vania A, Alterio A, Iasevoli S, Nobili V. Good adherence to the Mediterranean diet reduces the risk for NASH and diabetes in pediatric patients with obesity: The results of an Italian Study. *Nutrition* 2017; **39-40**: 8-14 [PMID: 28606575 DOI: 10.1016/j.nut.2017.02.008]

19 Anderson EL, Howe LD, Fraser A, Macdonald-Wallis C, Callaway MP, Sattar N, Day C, Tilling K, Lawlor DA. Childhood energy intake is associated with nonalcoholic fatty liver disease in adolescents. *J Nutr* 2015; **145**: 983-989 [PMID: 25788585 DOI: 10.3945/jn.114.208397]

20 Lee S, Kuk JL. Visceral fat is associated with the racial differences in liver fat between black and white adolescent boys with obesity. *Pediatr Diabetes* 2017; **18**: 660-663 [PMID: 28176415 DOI: 10.1111/pedi.12492]

21 **Di Costanzo A**, Pacifico L, Chiesa C, Perla FM, Ceci F, Angeloni A, D'Erasmo L, Di Martino M, Arca M. Genetic and metabolic predictors of hepatic fat content in a cohort of Italian children with obesity. *Pediatr Res* 2019; **85**: 671-677 [PMID: 30710115 DOI: 10.1038/s41390-019-0303-1]

22 Silveira LS, Monteiro PA, Antunes Bde M, et al. Intra-abdominal fat is related to metabolic syndrome and non-alcoholic fat liver disease in obese youth. BMC Pediatr 2013;13:115. [DOI: 10.1186/1471-2431-13-115]

23 Zimmermann E, Gamborg M, Holst C, et al. Body mass index in school-aged children and the risk of routinely diagnosed nonalcoholic fatty liver disease in adulthood: a prospective study based on the Copenhagen School Health Records Register. BMJ Open 2015;5:e006998. [DOI: 10.1136/bmjopen-2014-006998]

24 Alkassabany YM, Farghaly AG, El-Ghitany EM. Prevalence, risk factors, and predictors of nonalcoholic fatty liver disease among schoolchildren: a hospital-based study in Alexandria, Egypt. *Arab J Gastroenterol* 2014; **15**: 76-81 [PMID: 25097051 DOI: 10.1016/j.ajg.2014.05.002]

25 **Sanches PL**, de Piano A, Campos RM, Carnier J, de Mello MT, Elias N, Fonseca FA, Masquio DC, da Silva PL, Corgosinho FC, Tock L, Oyama LM, Tufik S, Dâmaso AR. Association of nonalcoholic fatty liver disease with cardiovascular risk factors in obese adolescents: the role of interdisciplinary therapy. *J Clin Lipidol* 2014; **8**: 265-272 [PMID: 24793347 DOI: 10.1016/j.jacl.2014.02.007] 26 **Ayonrinde OT**, Adams LA, Doherty DA, Mori TA, Beilin LJ, Oddy WH, Hickey M, Sloboda DM, Olynyk JK, Hart R. Adverse metabolic phenotype of adolescent girls with non-alcoholic fatty liver disease plus polycystic ovary syndrome compared with other girls and boys. *J Gastroenterol Hepatol* 2016; **31**: 980-987 [PMID: 26589977 DOI: 10.1111/jgh.13241]

27 Xanthakos SA, Jenkins TM, Kleiner DE, Boyce TW, Mourya R, Karns R, Brandt ML, Harmon CM, Helmrath MA, Michalsky MP, Courcoulas AP, Zeller MH, Inge TH; Teen-LABS Consortium. High Prevalence of Nonalcoholic Fatty Liver Disease in Adolescents Undergoing Bariatric Surgery. *Gastroenterology* 2015; **149**: 623-34.e8 [PMID: 26026390 DOI: 10.1053/j.gastro.2015.05.039]

28 Oddy WH, Herbison CE, Jacoby P, Ambrosini GL, O'Sullivan TA, Ayonrinde OT, Olynyk JK, Black LJ, Beilin LJ, Mori TA, Hands BP, Adams LA. The Western dietary pattern is prospectively associated with nonalcoholic fatty liver disease in adolescence. *Am J Gastroenterol* 2013; **108**: 778-785 [PMID: 23545714 DOI: 10.1038/ajg.2013.95]

29 Yan Y, Hou D, Zhao X, Liu J, Cheng H, Wang Y, Mi J. Childhood Adiposity and Nonalcoholic Fatty Liver Disease in Adulthood. *Pediatrics* 2017; **139** [PMID: 28356335 DOI: 10.1542/peds.2016-2738]

30 Liang S, Cheng X, Hu Y, Song R, Li G. Insulin-like growth factor 1 and metabolic parameters are associated with nonalcoholic fatty liver disease in obese children and adolescents. *Acta Paediatr* 2017; **106**: 298-303 [PMID: 27889912 DOI: 10.1111/apa.13685] 31 **Peña-Vélez R**, Garibay-Nieto N, Cal-Y-Mayor-Villalobos M, Laresgoiti-Servitje E, Pedraza-Escudero K, García-Blanco MDC, Heredia-Nieto OA, Villanueva-Ortega E. Association between neck circumference and non-alcoholic fatty liver disease in Mexican children and adolescents with obesity. *J Pediatr Endocrinol Metab* 2020; **33**: 205-213 [PMID: 31846425 DOI: 10.1515/jpem-2019-0204] 32 **Nobili V**, Mantovani A, Cianfarani S, Alisi A, Mosca A, Sartorelli MR, Maffeis C, Loomba R, Byrne CD, Targher G. Prevalence of prediabetes and diabetes in children and adolescents with biopsy-proven non-alcoholic fatty liver disease. *J Hepatol* 2019; **71**: 802-810 [PMID: 31279904 DOI: 10.1016/j.jhep.2019.06.023]

33 **Cuthbertson DJ**, Brown E, Koskinen J, Magnussen CG, Hutri-Kähönen N, Sabin M, Tossavainen P, Jokinen E, Laitinen T, Viikari J, Raitakari OT, Juonala M. Longitudinal analysis of risk of non-alcoholic fatty liver disease in adulthood. *Liver Int* 2019; **39**: 1147-1154 [PMID: 30347485 DOI: 10.1111/liv.13993]

34 Lu J, Zhang J, Du R, Wang T, Xu M, Xu Y, Wang W, Bi Y, Li D, Chen Y, Ning G. Age at menarche is associated with the prevalence

of non-alcoholic fatty liver disease later in life. J Diabetes 2017; 9: 53-60 [PMID: 26800495 DOI: 10.1111/1753-0407.12379]

35 **Mosca A**, Nobili V, De Vito R, Crudele A, Scorletti E, Villani A, Alisi A, Byrne CD. Serum uric acid concentrations and fructose consumption are independently associated with NASH in children and adolescents. *J Hepatol* 2017; **66**: 1031-1036 [PMID: 28214020 DOI: 10.1016/j.jhep.2016.12.025]

36 **Cuzmar**, V., G. Alberti, R. Uauy, A. Pereira, C. García, F. De Barbieri, C. Corvalán, J. L. Santos, V. Mericq, L. Villarroel and J. C. Gana (2020). "Early Obesity: Risk Factor for Fatty Liver Disease." Journal of Pediatric Gastroenterology & Nutrition 70(1): 93-98. [DOI: 10.1097/MPG.00000000002523]

37 Hatipoğlu N, Doğan S, Mazıcıoğlu MM, Kurtoğlu S. Relationship between Neck Circumference and Non-Alcoholic Fatty Liver Disease in Childhood Obesity. *J Clin Res Pediatr Endocrinol* 2016; 8: 32-39 [PMID: 26758497 DOI: 10.4274/jcrpe.2313]

38 Schlieske, C., Denzer, C., Wabitsch, M., Oeztuerk, S., Mason, R., Thiere, D. and Kratzer, W., 2014. Sonographically measured suprailiac adipose tissue is a useful predictor of non-alcoholic fatty liver disease in obese children and adolescents. Pediatric Obesity, 10(4), pp.260-266. [DOI: 10.1111/ijpo.265]

39 **Ozhan B**, Ersoy B, Kiremitci S, Ozkol M, Taneli F. Insulin sensitivity indices: fasting versus glucose-stimulated indices in pediatric non-alcoholic fatty liver disease. *Eur Rev Med Pharmacol Sci* 2015; **19**: 3450-3458 [PMID: 26439042]

40 **Zhao K**, Ju H, Wang H. Metabolic characteristics of obese children with fatty liver: A STROBE-compliant article. *Medicine (Baltimore)* 2019; **98**: e14939 [PMID: 31008924 DOI: 10.1097/MD.00000000014939]

41 Hamza, R. T., A. Y. Ahmed, D. G. Rezk and A. I. Hamed (2016). "Dietary fructose intake in obese children and adolescents: relation

to procollagen type III N-terminal peptide (P3NP) and non-alcoholic fatty liver disease." Journal of Pediatric Endocrinology and Metabolism 29(12). [DOI: 10.1515/jpem-2016-0015]

42 Fintini D, Pietrobattista A, Morino G, Cafiero G, Calzolari A, Turchetta A, Brufani C, Alisi A, Giordano U, Nobili V. Energy expenditure and insulin sensitivity evaluation in obese children affected by hepatosteatosis. *Pediatr Obes* 2012; 7: e14-e17 [PMID: 22434759 DOI: 10.1111/j.2047-6310.2011.00018.x.]

43 **Zhang H**, Yang H, Lai C, Xu X, Huang K, Fu J. Quantitative relationship between liver fat content and metabolic syndrome in obese children and adolescents. *Clin Endocrinol (Oxf)* 2015; **83**: 43-49 [PMID: 25711346 DOI: 10.1111/cen.12758]

44 **Patel**, S., D. A. Lawlor, D. L. S. Ferreira, A. D. Hughes, N. Chaturvedi, M. Callaway, C. Day, N. Sattar and A. Fraser (2015). "The association of nonalcoholic fatty liver disease with central and peripheral blood pressure in adolescence." Journal of Hypertension 33(3): 546-553. [DOI: 10.1097/HJH.00000000000445]

45 Pawar, S., Vinay, Z., Choksey, A., Mohite, A., Jain, S., Surude, R., Contractor, Q., Rathi, P., Verma, R., Varthakavi, P. (2016). Most overweight and obese Indian children have nonalcoholic fatty liver disease. Annals of Hepatology. 15. 853-861. 10.5604/16652681.1222101. [DOI:10.5604/16652681.1222101]

46 **Mollard RC**, Sénéchal M, MacIntosh AC, Hay J, Wicklow BA, Wittmeier KD, Sellers EA, Dean HJ, Ryner L, Berard L, McGavock JM. Dietary determinants of hepatic steatosis and visceral adiposity in overweight and obese youth at risk of type 2 diabetes. *Am J Clin Nutr* 2014; **99**: 804-812 [PMID: 24522441 DOI: 10.3945/ajcn.113.079277]

47 Boyraz M, Hatipoğlu N, Sarı E, Akçay A, Taşkın N, Ulucan K, Akçay T. Non-alcoholic fatty liver disease in obese children and

the relationship between metabolic syndrome criteria. *Obes Res Clin Pract* 2014; **8**: e356-e363 [PMID: 25091357 DOI: 10.1016/j.orcp.2013.08.003]

48 el-Karaksy HM, el-Koofy NM, Anwar GM, el-Mougy FM, el-Hennawy A, Fahmy ME. Predictors of non-alcoholic fatty liver disease in obese and overweight Egyptian children: single center study. *Saudi J Gastroenterol* 2011; **17**: 40-46 [PMID: 21196652 DOI: 10.4103/1319-3767.74476]

49 Yang HR, Chang EJ. Insulin resistance, body composition, and fat distribution in obese children with nonalcoholic fatty liver disease. *Asia Pac J Clin Nutr* 2016; **25**: 126-133 [PMID: 26965771 DOI: 10.6133/apjcn.2016.25.1.15]

50 El-Karaksy, H., H. Helmy, G. Anwar, A. El-Hennawy, N. El-Koofy, M. El-Raziky, F. El-Mougy and F. Hassani (2012). "The association of metabolic syndrome, insulin resistance and non-alcoholic fatty liver disease in overweight/obese children." Saudi Journal of Gastroenterology 18(1). [DOI: 10.4103/1319-3767.91738]

51 **Mueller NT**, Pereira MA, Demerath EW, Dreyfus JG, MacLehose RF, Carr JJ, Terry JG, Jacobs DR Jr. Earlier menarche is associated with fatty liver and abdominal ectopic fat in midlife, independent of young adult BMI: The CARDIA study. *Obesity (Silver Spring)* 2015; **23**: 468-474 [PMID: 25521620 DOI: 10.1002/oby.20950]

52 Chang PF, Lin YC, Liu K, Yeh SJ, Ni YH. Heme oxygenase-1 gene promoter polymorphism and the risk of pediatric nonalcoholic fatty liver disease. *Int J Obes (Lond)* 2015; **39**: 1236-1240 [PMID: 25835554 DOI: 10.1038/ijo.2015.46]

53 Lin YC, Chang PF, Chang MH, Ni YH. Genetic determinants of hepatic steatosis and serum cytokeratin-18 fragment levels in Taiwanese children. *Liver Int* 2018; **38**: 1300-1307 [PMID: 29314568 DOI: 10.1111/liv.13689]

54 Rausch JC, Lavine JE, Chalasani N, Guo X, Kwon S, Schwimmer JB, Molleston JP, Loomba R, Brunt EM, Chen YI, Goodarzi MO, Taylor KD, Yates KP, Rotter JI; NASH Clinical Research Network. Genetic Variants Associated With Obesity and Insulin Resistance in Hispanic Boys With Nonalcoholic Fatty Liver Disease. *J Pediatr Gastroenterol Nutr* 2018; **66**: 789-796 [PMID: 29470286 DOI: 10.1097/MPG.000000000000001926]

55 **Grandone A**, Cozzolino D, Marzuillo P, Cirillo G, Di Sessa A, Ruggiero L, Di Palma MR, Perrone L, Miraglia Del Giudice E. TM6SF2 Glu167Lys polymorphism is associated with low levels of LDL-cholesterol and increased liver injury in obese children. *Pediatr Obes* 2016; **11**: 115-119 [PMID: 25893821 DOI: 10.1111/ijpo.12032]

56 Di Sessa A, Umano GR, Cirillo G, Del Prete A, Iacomino R, Marzuillo P, Del Giudice EM. The Membrane-bound O-Acyltransferase7 rs641738 Variant in Pediatric Nonalcoholic Fatty Liver Disease. *J Pediatr Gastroenterol Nutr* 2018; **67**: 69-74 [PMID: 29601441 DOI: 10.1097/MPG.00000]

57 Nobili V, Donati B, Panera N, Vongsakulyanon A, Alisi A, Dallapiccola B, Valenti L. A 4-polymorphism risk score predicts steatohepatitis in children with nonalcoholic fatty liver disease. *J Pediatr Gastroenterol Nutr* 2014; **58**: 632-636 [PMID: 24345846 DOI: 10.1097/MPG.000000000000279]

58 **Peng XE**, Chen FL, Liu W, et al. Lack of association between SREBF-1c gene polymorphisms and risk of non-alcoholic fatty liver disease in a Chinese Han population. Sci Rep 2016;6:32110. [DOI: 10.1038/srep32110]

59 **Younossi ZM**, Stepanova M, Negro F, Hallaji S, Younossi Y, Lam B, Srishord M. Nonalcoholic fatty liver disease in lean individuals in the United States. *Medicine (Baltimore)* 2012; **91**: 319-327 [PMID: 23117851 DOI: 10.1097/MD.0b013e3182779d49]

60 Nishioji K, Mochizuki N, Kobayashi M, Kamaguchi M, Sumida Y, Nishimura T, Yamaguchi K, Kadotani H, Itoh Y. The Impact of PNPLA3 rs738409 Genetic Polymorphism and Weight Gain ≥10 kg after Age 20 on Non-Alcoholic Fatty Liver Disease in Non-Obese Japanese Individuals. *PLoS One* 2015; **10**: e0140427 [PMID: 26485523 DOI: 10.1371/journal.pone.0140427]

61 Lin YC, Chang PF, Hu FC, Yang WS, Chang MH, Ni YH. A common variant in the PNPLA3 gene is a risk factor for non-alcoholic fatty liver disease in obese Taiwanese children. *J Pediatr* 2011; **158**: 740-744 [PMID: 21168155 DOI: 10.1016/j.jpeds.2010.11.016] 62 Guichelaar MM, Gawrieh S, Olivier M, Viker K, Krishnan A, Sanderson S, Malinchoc M, Watt KD, Swain JM, Sarr M, Charlton MR. Interactions of allelic variance of PNPLA3 with nongenetic factors in predicting nonalcoholic steatohepatitis and nonhepatic complications of severe obesity. *Obesity (Silver Spring)* 2013; **21**: 1935-1941 [PMID: 23418085 DOI: 10.1002/oby.20327]

63 **Peng XE**, Wu YL, Lin SW, Lu QQ, Hu ZJ, Lin X. Genetic variants in PNPLA3 and risk of non-alcoholic fatty liver disease in a Han Chinese population. *PLoS One* 2012; **7**: e50256 [PMID: 23226254 DOI: 10.1371/journal.pone.0050256]

64 El-Koofy NM, El-Karaksy HM, Mandour IM, Anwar GM, El-Raziky MS, El-Hennawy AM. Genetic polymorphisms in nonalcoholic fatty liver disease in obese Egyptian children. *Saudi J Gastroenterol* 2011; **17**: 265-270 [PMID: 21727734 DOI: 10.4103/1319-3767.82582]

65 Walker RW, Sinatra F, Hartiala J, Weigensberg M, Spruijt-Metz D, Alderete TL, Goran MI, Allayee H. Genetic and clinical markers of elevated liver fat content in overweight and obese Hispanic children. *Obesity (Silver Spring)* 2013; **21**: E790-E797 [PMID: 23804528 DOI: 10.1002/oby.20523]

66 Bhatt SP, Nigam P, Misra A, Guleria R, Pandey RM, Pasha MA. Genetic variation in the patatin-like phospholipase domain-

containing protein-3 (PNPLA-3) gene in Asian Indians with nonalcoholic fatty liver disease. *Metab Syndr Relat Disord* 2013; **11**: 329-335 [PMID: 23734760 DOI: 10.1089/met.2012.0064]

67 **Zusi** C, Mantovani A, Olivieri F, Morandi A, Corradi M, Miraglia Del Giudice E, Dauriz M, Valenti L, Byrne CD, Targher G, Maffeis C. Contribution of a genetic risk score to clinical prediction of hepatic steatosis in obese children and adolescents. *Dig Liver Dis* 2019; **51**: 1586-1592 [PMID: 31255630 DOI: 10.1016/j.dld.2019.05.029]

68 Monga Kravetz A, Testerman T, Galuppo B, Graf J, Pierpont B, Siebel S, Feinn R, Santoro N. Effect of Gut Microbiota and PNPLA3 rs738409 Variant on Nonalcoholic Fatty Liver Disease (NAFLD) in Obese Youth. *J Clin Endocrinol Metab* 2020; **105** [PMID: 32561908 DOI: 10.1210/clinem/dgaa382]

69 **Perez-Diaz-del-Campo**, N., I. Abete, I. Cantero, B. A. Marin-Alejandre, J. I. Monreal, M. Elorz, J. I. Herrero, A. Benito-Boillos, J. I. Riezu-Boj, F. I. Milagro, J. A. Tor, J. A. Martinez and M. A. Zulet (2020). "Association of the SH2B1 rs7359397 Gene Polymorphism with Steatosis Severity in Subjects with Obesity and Non-Alcoholic Fatty Liver Disease." Nutrients 12(5). [DOI: 10.3390/nu12051260] 70 **Abshagen K**, Berger C, Dietrich A, Schütz T, Wittekind C, Stumvoll M, Blüher M, Klöting N. A Human REPIN1 Gene Variant: Genetic Risk Factor for the Development of Nonalcoholic Fatty Liver Disease. *Clin Transl Gastroenterol* 2020; **11**: e00114 [PMID: 31922994 DOI: 10.14309/ctg.00000000000114]

71 **Pacifico L**, Bonci E, Di Martino M, Versacci P, Andreoli G, Silvestri LM, Chiesa C. A double-blind, placebo-controlled randomized trial to evaluate the efficacy of docosahexaenoic acid supplementation on hepatic fat and associated cardiovascular risk factors in overweight children with nonalcoholic fatty liver disease. *Nutr Metab Cardiovasc Dis* 2015; **25**: 734-741 [PMID: 26026214 DOI:

10.1016/j.numecd.2015.04.003].]

72 Cardoso AS, Gonzaga NC, Medeiros CC, et al. Association of uric acid levels with components of metabolic syndrome and nonalcoholic fatty liver disease in overweight or obese children and adolescents. J Pediatr (Rio J) 2013;89:412-8. [DOI: 10.1016/j.jpedp.2012.12.011]

73 **Pirgon O**, Cekmez F, Bilgin H, Eren E, Dundar B. Low 25-hydroxyvitamin D level is associated with insulin sensitivity in obese adolescents with non-alcoholic fatty liver disease. *Obes Res Clin Pract* 2013; **7**: e275-e283 [PMID: 24306155 DOI: 10.1016/j.orcp.2012.01.004]

74 Pacifico L, Bonci E, Marandola L, Romaggioli S, Bascetta S, Chiesa C. Increased circulating zonulin in children with biopsy-proven nonalcoholic fatty liver disease. *World J Gastroenterol* 2014; **20**: 17107-17114 [PMID: 25493023 DOI: 10.3748/wjg.v20.i45.17107] 75 Black LJ, Jacoby P, She Ping-Delfos WC, Mori TA, Beilin LJ, Olynyk JK, Ayonrinde OT, Huang RC, Holt PG, Hart PH, Oddy WH, Adams LA. Low serum 25-hydroxyvitamin D concentrations associate with non-alcoholic fatty liver disease in adolescents independent of adiposity. *J Gastroenterol Hepatol* 2014; **29**: 1215-1222 [PMID: 24611991 DOI: 10.1111/jgh.12541]

76 Han X, Xu P, Zhou J, Liu Y, Xu H. Fasting C-peptide is a significant indicator of nonalcoholic fatty liver disease in obese children. *Diabetes Res Clin Pract* 2020; **160**: 108027 [PMID: 31958476 DOI: 10.1016/j.diabres.2020.108027]

77 **Belei O**, Olariu L, Dobrescu A, Marcovici T, Marginean O. The relationship between non-alcoholic fatty liver disease and small intestinal bacterial overgrowth among overweight and obese children and adolescents. *J Pediatr Endocrinol Metab* 2017; **30**: 1161-1168 [PMID: 28988228 DOI: 10.1515/jpem-2017-0252]

78 Sezer, O. B., D. Buluş, Ş. Hızlı, N. Andıran, D. Yılmaz and S. U. Ramadan (2016). "Low 25-hydroxyvitamin D level is not an independent risk factor for hepatosteatosis in obese children." Journal of Pediatric Endocrinology and Metabolism 29(7). [DOI: 10.1515/jpem-2015-0426]

79 Nichols PH, Pan Y, May B, Pavlicova M, Rausch JC, Mencin AA, Thaker VV. Effect of TSH on Non-Alcoholic Fatty Liver Disease (NAFLD) independent of obesity in children of predominantly Hispanic/Latino ancestry by causal mediation analysis. *PLoS One* 2020; **15**: e0234985 [PMID: 32569304 DOI: 10.1371/journal.pone.0234985]

80 Kaltenbach TE, Graeter T, Oeztuerk S, Holzner D, Kratzer W, Wabitsch M, Denzer C. Thyroid dysfunction and hepatic steatosis in overweight children and adolescents. *Pediatr Obes* 2017; **12**: 67-74 [PMID: 26877190 DOI: 10.1111/ijpo.12110]