Contents

Thrice Monthly Volume 10 Number 7 March 6, 2022

FIELD OF VISION

2053
Personalized treatment - which interaction ingredients should be focused to capture the unconscious
Steinmair D, Löffler-Stastka H

MINIREVIEWS

2063
Patterns of liver profile disturbance in patients with COVID-19
Shousha HI, Ramadan A, Lithy R, El-Kassas M

ORIGINAL ARTICLE

Clinical and Translational Research

2072
Prognostic and biological role of the N-Myc downstream-regulated gene family in hepatocellular carcinoma
Yin X, Yu H, He XK, Yan SX

Case Control Study

2087
Usefulness of the acromioclavicular joint cross-sectional area as a diagnostic image parameter of acromioclavicular osteoarthritis
Joo Y, Moon JY, Han JY, Bang YS, Kang KN, Lim YS, Choi YS, Kim YU

2095
Correlation between betatrophin/angiogenin-likeprotein3/lipoprotein lipase pathway and severity of coronary artery disease in Kazakh patients with coronary heart disease
Qin L, Rehemuding R, Ainiwaer A, Ma X

Retrospective Study

2106
Postoperative adverse cardiac events in acute myocardial infarction with high thrombus load and best time for stent implantation
Zhuo MF, Zhang KL, Shen XB, Lin WC, Hu B, Cui HP, Huang G

2115
Develop a nomogram to predict overall survival of patients with borderline ovarian tumors
Gong XQ, Zhang Y

Clinical Trials Study

2127
Diagnostic performance of Neutrophil CD64 index, procalcitonin, and C-reactive protein for early sepsis in hematological patients

2138
Previously unexplored etiology for femoral head necrosis: Metagenomics detects no pathogens in necrotic femoral head tissue
Liu C, Li W, Zhang C, Pang F, Wang DW
Contents

World Journal of Clinical Cases
Thrice Monthly Volume 10 Number 7 March 6, 2022

Observational Study

2147
Association of types of diabetes and insulin dependency on birth outcomes
Xaverius PK, Howard SW, Kiel D, Thurman JE, Wankun E, Carter C, Fang C, Carriere R

2159
Pathological pattern of endometrial abnormalities in postmenopausal women with bleeding or thickened endometrium
Xue H, Shen WJ, Zhang Y

2166
In vitro maturation of human oocytes maintaining good development potential for rescue intracytoplasmic sperm injection with fresh sperm
Dong YQ, Chen CQ, Huang YQ, Liu D, Zhang XQ, Liu FH

2174
Ultrasound-guided paravertebral nerve block anesthesia on the stress response and hemodynamics among lung cancer patients
Zhen SQ, Jin M, Chen YX, Li JH, Wang H, Chen HX

META-ANALYSIS

2184
Prognostic value of YKL-40 in colorectal carcinoma patients: A meta-analysis
Wang J, Qi S, Zhu YB, Ding L

2194
Prognostic value of neutrophil/lymphocyte, platelet/lymphocyte, lymphocyte/monocyte ratios and Glasgow prognostic score in osteosarcoma: A meta-analysis
Peng LP, Li J, Li XF

CASE REPORT

2206
Endovascular stent-graft treatment for aortoesophageal fistula induced by an esophageal fishbone: Two cases report

2216
Quetiapine-related acute lung injury: A case report
Huang YX, He GX, Zhang WJ, Li BW, Weng HX, Luo WC

2222
Primary hepatic neuroendocrine neoplasm diagnosed by somatostatin receptor scintigraphy: A case report
Akabane M, Kobayashi Y, Kinowaki K, Okubo S, Shindoh J, Hashimoto M

2229
Multidisciplinary non-surgical treatment of advanced periodontitis: A case report
Li LJ, Yan X, Yu Q, Yan FH, Tan BC

2247
Flip-over of blood vessel intima caused by vascular closure device: A case report
Sun LX, Yang XS, Zhang DW, Zhao B, Li LL, Zhang Q, Hao QZ

2253
Huge gastric plexiform fibromyxoma presenting as pyemia by rupture of tumor: A case report
Zhang R, Xia LG, Huang KB, Chen ND

2261
Intestinal intussusception caused by intestinal duplication and ectopic pancreas: A case report and review of literature
Wang TL, Gong XS, Wang J, Long CY
Contents

<table>
<thead>
<tr>
<th>Page</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>2275</td>
<td>Y-shaped shunt for the treatment of Dandy-Walker malformation combined with giant arachnoid cysts: A case report</td>
<td>Dong ZQ, Jia YF, Gao ZS, Li Q, Niu L, Yang Q, Pan YW, Li Q</td>
</tr>
<tr>
<td>2281</td>
<td>Posterior reversible encephalopathy syndrome in a patient with metastatic breast cancer: A case report</td>
<td>Song CH, Lee SJ, Jeon HR</td>
</tr>
<tr>
<td>2286</td>
<td>Multiple skin abscesses associated with bacteremia caused by Burkholderia gladioli: A case report</td>
<td>Wang YT, Li XW, Xu PY, Yang C, Xu JC</td>
</tr>
<tr>
<td>2294</td>
<td>Giant infected hepatic cyst causing exclusion pancreatitis: A case report</td>
<td>Kenzaka T, Sato Y, Nishisaki H</td>
</tr>
<tr>
<td>2301</td>
<td>Cutaneous leishmaniasis presenting with painless ulcer on the right forearm: A case report</td>
<td>Zhuang L, Su J, Tu P</td>
</tr>
<tr>
<td>2315</td>
<td>Breast and dorsal spine relapse of granulocytic sarcoma after allogeneic stem cell transplantation for acute myelomonocytic leukemia: A case report</td>
<td>Li Y, Xie YD, He SJ, Hu JM, Li ZS, Qu SH</td>
</tr>
<tr>
<td>2322</td>
<td>Synchronous but separate neuroendocrine tumor and high-grade dysplasia/adenoma of the gall bladder: A case report</td>
<td>Hsiao TH, Wu CC, Tseng HH, Chen JH</td>
</tr>
<tr>
<td>2336</td>
<td>Acute esophageal obstruction after ingestion of psyllium seed husk powder: A case report</td>
<td>Shin S, Kim JH, Mun YH, Chung HS</td>
</tr>
<tr>
<td>2341</td>
<td>Spontaneous dissection of proximal left main coronary artery in a healthy adolescent presenting with syncope: A case report</td>
<td>Liu SF, Zhao YN, Jia CW, Ma TY, Cai SD, Gao F</td>
</tr>
<tr>
<td>2351</td>
<td>Relationship between treatment types and blood-brain barrier disruption in patients with acute ischemic stroke: Two case reports</td>
<td>Seo Y, Kim J, Chang MC, Huh H, Lee EH</td>
</tr>
</tbody>
</table>
ABOUT COVER
Editorial Board Member of World Journal of Clinical Cases, Feng Yin, MD, PhD, Assistant Professor, Department of Pathology and Anatomic Sciences, University of Missouri, Columbia, MO 65212, United States. fengyin@health.missouri.edu

AIMS AND SCOPE
The primary aim of World Journal of Clinical Cases (WJCC, World J Clin Cases) is to provide scholars and readers from various fields of clinical medicine with a platform to publish high-quality clinical research articles and communicate their research findings online.

WJCC mainly publishes articles reporting research results and findings obtained in the field of clinical medicine and covering a wide range of topics, including case control studies, retrospective cohort studies, retrospective studies, clinical trials studies, observational studies, prospective studies, randomized controlled trials, randomized clinical trials, systematic reviews, meta-analysis, and case reports.

INDEXING/ABSTRACTING
The WJCC is now indexed in Science Citation Index Expanded (also known as SciSearch®), Journal Citation Reports/Science Edition, Scopus, PubMed, and PubMed Central. The 2021 Edition of Journal Citation Reports® cites the 2020 impact factor (IF) for WJCC as 1.337; IF without journal self cites: 1.301; 5-year IF: 1.742; Journal Citation Indicator: 0.33; Ranking: 119 among 169 journals in medicine, general and internal; and Quartile category: Q3. The WJCC’s CiteScore for 2020 is 0.8 and Scopus CiteScore rank 2020: General Medicine is 493/793.

RESPONSIBLE EDITORS FOR THIS ISSUE
Production Editor: Lin-YuTong Wang; Production Department Director: Xiang Li; Editorial Office Director: Jin-Lei Wang.

NAME OF JOURNAL
World Journal of Clinical Cases

ISSN
ISSN 2307-8960 (online)

LAUNCH DATE
April 16, 2013

FREQUENCY
Thrice Monthly

EDITORS-IN-CHIEF
Bao-Gan Peng, Jerzy Tadeusz Chudek, George Kontogeorgos, Maurizio Serati, Ja Hyeon Ku

EDITORIAL BOARD MEMBERS
https://www.wjgnet.com/2307-8960/editorialboard.htm

PUBLICATION DATE
March 6, 2022

COPYRIGHT
© 2022 Baishideng Publishing Group Inc

INSTRUCTIONS TO AUTHORS
https://www.wjgnet.com/bpg/gerinfo/204

GUIDELINES FOR ETHICS DOCUMENTS
https://www.wjgnet.com/bpg/GerInfo/287

GUIDELINES FOR NON-NATIVE SPEAKERS OF ENGLISH
https://www.wjgnet.com/bpg/gerinfo/240

PUBLICATION ETHICS
https://www.wjgnet.com/bpg/GerInfo/288

PUBLICATION MISCONDUCT
https://www.wjgnet.com/bpg/gerinfo/208

ARTICLE PROCESSING CHARGE
https://www.wjgnet.com/bpg/gerinfo/242

STEPS FOR SUBMITTING MANUSCRIPTS
https://www.wjgnet.com/bpg/gerinfo/239

ONLINE SUBMISSION
https://www.f6publishing.com
CASE REPORT

Novel mutations of the Alström syndrome 1 gene in an infant with dilated cardiomyopathy: A case report

Ping Jiang, Liang Xiao, Yuan Guo, Rong Hu, Bo-Yi Zhang, Yi He

Abstract

BACKGROUND
Alström syndrome (AS) is a rare autosomal recessive disease that is generally induced by mutations of the Alström syndrome 1 (ALMS1) gene. We report a case of AS, extend the spectrum of ALMS1 mutations and highlight the biological role of ALMS1 to explore the relationship between dilated cardiomyopathy (DCM) and mutations in ALMS1.

CASE SUMMARY
We present the case of an infant with AS mainly manifesting with DCM that was caused by a novel mutation of the ALMS1 gene. Whole-exome sequencing revealed a simultaneous large deletion and point mutation in ALMS1, leading to frameshift and missense mutations, respectively, rather than nonsense or frameshift mutations, which have been reported previously. Upon optimized anti-remodeling therapy, biochemical exams and arrhythmic burden of the infant were alleviated at follow-up after 6 mo.

CONCLUSION
We identified novel mutations of ALMS1 and extended the spectrum of ALMS1 mutations in an infant with AS.

Key Words: Alström syndrome; Dilated cardiomyopathy; Alström syndrome 1; Missense mutation; Frameshift mutation; Case report
Core Tip: We present the case of an infant with dilated cardiomyopathy (DCM) who was diagnosed with Alström syndrome at the early stage of the disease. Whole-exome sequencing revealed that a large deletion and point mutation simultaneously occurred in the Alström syndrome 1 (ALMS1) gene, leading to frameshift and missense mutations, respectively, rather than nonsense or frameshift mutations, which have been reported previously. Likewise, to date, few interpretations have been made of the related mechanism of the novel ALMS1 gene mutation to induce DCM in infants.

Citation: Jiang P, Xiao L, Guo Y, Hu R, Zhang BY, He Y. Novel mutations of the Alström syndrome 1 gene in an infant with dilated cardiomyopathy: A case report. World J Clin Cases 2022; 10(7): 2330-2335
URL: https://www.wjgnet.com/2307-8960/full/v10/i7/2330.htm
DOI: https://dx.doi.org/10.12998/wjcc.v10.i7.2330

INTRODUCTION
Alström syndrome (AS; MIM# 203800) is an unusual autosomal recessive genetic disorder that involves multiple systems and progressive dysfunction and is characterized by visual disturbance, hearing impairment, cardiomyopathy, hypertriglyceridemia, accelerated nonalcoholic fatty liver disease, and recurrent respiratory disease[1]. It is caused by mutations of the Alström syndrome 1 (ALMS1) gene, which is located on chromosome 2p13. The ALMS1 gene contains 23 exons and encodes a 461.2-kDa protein of 4169 amino acids[2]. To date, over 268 variants in ALMS1 have been identified[3]. The ALMS1 protein localizes to centrosomes and the base of cilia[3]; however, the function of the protein is not clear, and the explicit molecular pathological mechanisms of dilated cardiomyopathy (DCM) have not been fully demonstrated. Here, we present the case of a 1-month-old girl who was initially diagnosed with DCM induced by a novel mutation of the ALMS1 gene and describe the likely pathogenesis of DCM as a result of variants in ALMS1.

CASE PRESENTATION
Chief complaints
A 1-month-old girl was brought to the hospital because of cyanosis and dyspnea.

History of present illness
She had a persistent cough with recurrent choking for 4 d, and the symptoms deteriorated in the last 12 h, manifesting with cyanosis and dyspnea.

History of past illness
She had a history of recurrent respiratory infections and had nystagmus at birth.

Personal and family history
Her parents denied a family history of cardiomyopathy and genetic disease.

Physical examination
Her body weight was 4.5 kg, and her body length was 50 cm. Her heart border was enlarged to the left midaxillary line, and she had a few rales in both lower lungs.

Laboratory examinations
Clinical laboratory tests indicated a plasma triglyceride level of 3.17 mmol/L (normal < 1.7 mmol/L), high-density lipoprotein (HDL) cholesterol level of 0.99 mmol/L (normal 1.15–2.25 mmol/L), serum cardiac troponin T (cTnT) level of 0.05 µg/L (normal< 0.024 µg/L) and N-terminal pro-brain natriuretic peptide level of 23 681 pg/mL (normal < 125 pg/mL).

Imaging examinations
Twelve-lead ECG documented high voltages in the left precordial leads and diffuse T wave inversion (Figure 1A). There were two episodes of paroxysmal atrial tachycardia in 24-h Holter ECG monitoring, and the maximum heart rate was 180 beats/min, whereas ventricular arrhythmia was not recorded. Chest radiography demonstrated cardiac enlargement and pulmonary congestion (Figure 1B). Transthoracic echocardiography (TTE) indicated severe left ventricular dilatation and heart failure with reduced ejection fraction (Figure 1C).
Figure 1 Electrocardiography and imaging examinations of the patient. A: Abnormal 12-lead electrocardiography indicated high voltages in the left precordial leads and diffuse T wave inversion; B: Chest radiography demonstrated cardiac enlargement and pulmonary congestion; C: Dilated left ventricle approximately 43 mm in late diastole and reduced ejection fraction approximately 26% (echocardiography at admission); D: Dilated left ventricle approximately 46 mm in late diastole, reduced ejection fraction approximately 27% (echocardiography at a follow-up of 6 mo).

Further diagnostic work-up
Nuclear genomic DNA was extracted from peripheral blood samples of the infant and her parents for amplification with targeted capture of the coding regions of the genome. Then, amplicons were subjected to whole-exome sequencing by a NextSeq500 sequencer (Illumina, San Diego, CA, United States). Novel genetic mutations in ALMS1 were identified, and genetic analysis showed that the ALMS1 gene (NM_015120) had two mutations on chr2: 73829360 (c.12160C>G, p.R4054G) in exon 20 and chr2: 73827805-73830431 deletion in exons 18-21 (Figure 2). The mutations were confirmed by the Sanger sequencing method, which revealed that c.12160C>G (p.R4054G) and a deletion removing the entire exons 18-21 were acquired by paternal and maternal inheritance, respectively.

FINAL DIAGNOSIS
According to diagnostic criteria for AS[4], the infant met two major criteria and one minor criterion. The mutation sites associated with clinical features were in favor of the diagnosis of AS.

TREATMENT
Both sacubitril/valsartan and dapagliflozin are strongly recommended for adult patients with heart failure with reduced ejection fraction, according to the 2021 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure[5], but not in infants, because the safety and efficacy of both have not been confirmed in infants, and further study is needed for evaluation[6,7]. Therefore, drug therapies such as angiotensin-converting enzyme inhibitors, beta blockers, spironolactone, digoxin and diuretics were administered according to consensus clinical management guidelines for AS[1].
OUTCOME AND FOLLOW-UP

In follow-up at 6 mo, clinical laboratory tests indicated that the N-terminal pro-brain natriuretic peptide level decreased to 1879 pg/mL, the cTnT concentration declined to normal, and there was no arrhythmic burden in repeated 24-h Holter ECG monitoring. Further, TTE revealed that cardiac function of the infant had not deteriorated with the current medication (Figure 1D).

DISCUSSION

AS is an extremely rare autosomal recessive disease induced by a mutation of the ALMS1 gene, with an estimated incidence of 1 case per 1000000 live births[1]. In the present case, the patient had mutations in ALMS1 and visual symptoms, DCM, repeated respiratory infection, and hypertriglyceridemia with low HDL levels, which conformed to the diagnostic standard for AS[4]. Mutations in ALMS1 are associated with AS in the individual, and both DCM and visual symptoms are cardinal manifestations of AS[1]. Consequently, the classic phenotype in infants with AS is closely related to the genotype. Mutations in exons 18-21 of ALMS1 were not identified in the mutational hotspots located in exons 8, 10 and 16. Variants in non-hotspot exons could result in classical phenotype deficiency or atypical phenotypes, such as the delayed age of obesity and diabetes onset. In contrast, most of the variants in ALMS1 in previous reports were nonsense and frameshift mutations[8], but a large deletion and point mutation simultaneously occurring in the infant caused frameshift and missense mutations, respectively, both of which are reported for the first time. Casey and colleagues[9] also identified two infant siblings with DCM who were finally diagnosed with AS as a result of mutant alleles in exons 20 and 5 rather than in the mutational hotspots. Thus, an increasing number of diseases are caused by variants in the ALMS1 gene outside the recognized mutational hotspots.
To date, little is known about the mechanism by which ALMS1 gene mutation can lead to DCM in infants. In our case, the mutations that affected ALMS1 protein expression were missense and frameshift mutations in exons 20 and 18-21, respectively, which can lead to abnormal structure of the ALMS1 protein and subsequent loss of function. A previous study showed that the ALMS1 protein plays an important role in postnatal cardiomyocyte mitosis by affecting centrosomes and regulating cell cycle arrest, and ALMS1 protein deficiency can impair the terminal differentiation of cardiomyocytes\cite{10}, leading to cardiac dysfunction or progressive functional deterioration. Additionally, deficiency of the ALMS1 protein can activate β-catenin-dependent WNT signaling\cite{10}, which has been demonstrated to contribute to the inflammatory response and fibrosis in tissues and cells in animal experiments\cite{11}. The local cardiac inflammatory response and cardiac fibrosis may be important mechanisms in the process of DCM.

CONCLUSION

We identified novel mutations of the ALMS1 gene and extended the spectrum of known ALMS1 mutations. It is essential to perform ALMS1 gene sequencing in infants with DCM.

ACKNOWLEDGEMENTS

The authors are grateful to the parents of the infant for their agreement to the publication of this report and accompanying images.

FOOTNOTES

Author contributions: Jiang P and He Y reviewed the literature and contributed to manuscript drafting; Hu R and Zhang YB performed follow-up work and interpreted the data; Xiao L and Guo Y analyzed and interpreted the gene sequencing; all authors approved the final version to be submitted.

Supported by Natural Science Foundation of Hunan Province, No. 2019JJ60087.

Informed consent statement: Informed written consent was obtained from the patient for publication of this report and any accompanying images.

Conflict-of-interest statement: The authors declare that they have no conflicts of interest.

CARE Checklist (2016) statement: The authors have read the CARE Checklist (2016), and the manuscript was prepared and revised according to the CARE Checklist (2016).

Open-Access: This article is an open-access article that was selected by an in-house editor and fully peer-reviewed by external reviewers. It is distributed in accordance with the Creative Commons Attribution NonCommercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: https://creativecommons.org/Licenses/by-nc/4.0/

Country/Territory of origin: China

ORCID number: Ping Jiang 0000-0002-4097-5115; Liang Xiao 0000-0003-2035-9697; Yuan Guo 0000-0002-3850-4664; Rong Hu 0000-0002-4226-8246; Bo-Yi Zhang 0000-0001-7008-3452; Yi He 0000-0002-5607-950X.

S-Editor: Liu JH
L-Editor: A
P-Editor: Liu JH

REFERENCES

Jiang P et al. novel ALMS1 mutations

Endocrine 2021; 71: 618-625 [PMID: 3356631 DOI: 10.1007/s12020-021-02643-z]

