LC-MS/MS Analysis

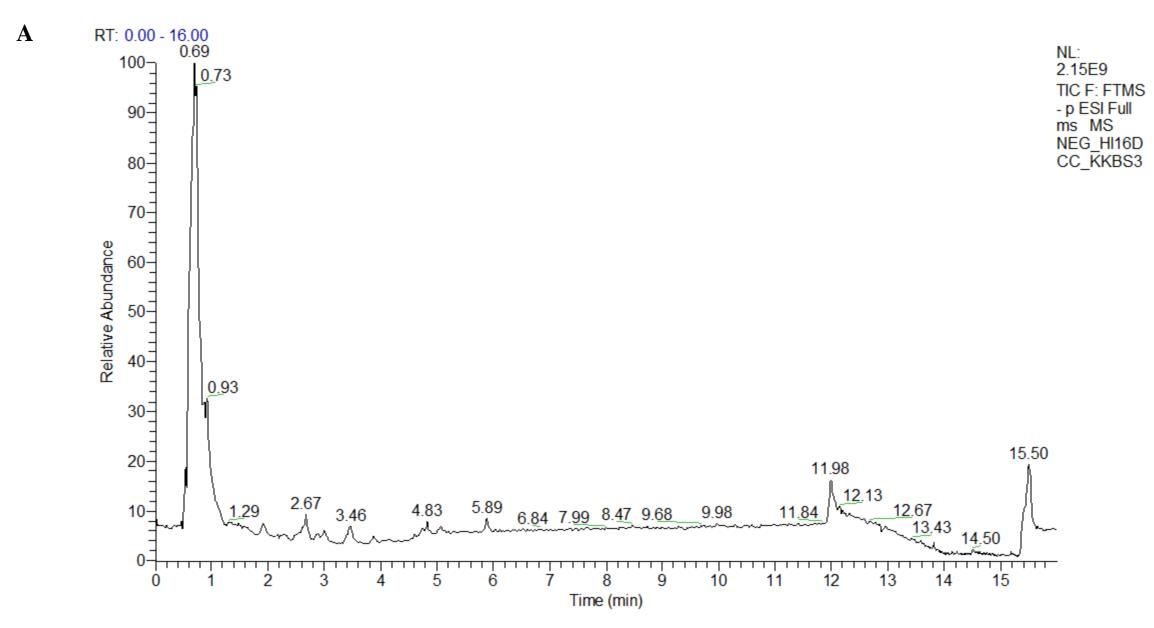
LC-MS/MS analysis was performed on a Thermo Scientific UHPLC-Q Exactive HF-X system (Shanghai Meiji Bio-Pharmaceutical Technology Co., Ltd.). The chromatography conditions were as follows: 3 μL of the sample was separated on an HSS T3 column (100 mm × 2.1 mm i.d., 1.8 μm) and subsequently introduced into the mass spectrometer. The mobile phase A consisted of 95% water and 5% acetonitrile (containing 0.1% formic acid), while mobile phase B comprised 47.5% acetonitrile, 47.5% isopropanol, and 5% water (containing 0.1% formic acid). The flow rate was set at 0.40 mL/min, and the column temperature was maintained at 40°C.

Mass Spectrometry Conditions:

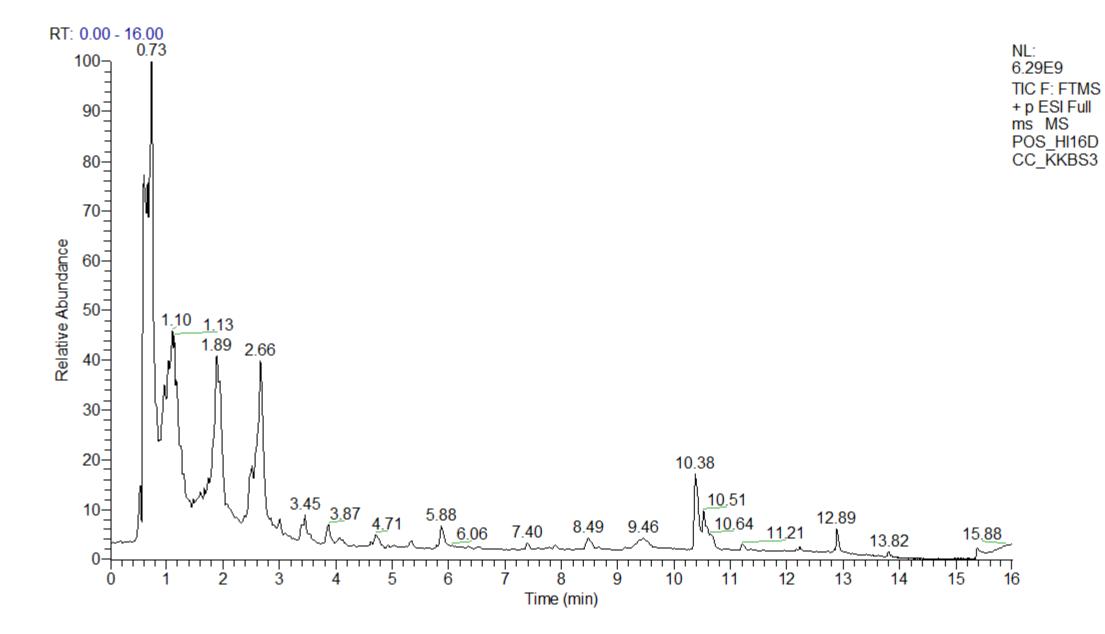
The mass spectrometry signals were collected in both positive and negative ion scanning modes, with the mass scan range set from 70 to 1050 m/z. The sheath gas flow was 50 psi, the auxiliary gas flow was 13 psi, and the auxiliary gas heater temperature was 425°C. The positive ion spray voltage was set at 3500 V, while the negative ion spray voltage was set at -3500 V. The ion transfer tube temperature was 325°C, and the normalized collision energy was set to 20-40-60 V for cycle collision energy. The resolution of the first-order mass spectrometry was 60,000, while the second-order resolution was 7,500. Data acquisition was performed in DDA mode.

Supplementary Table 1 The primer sequences

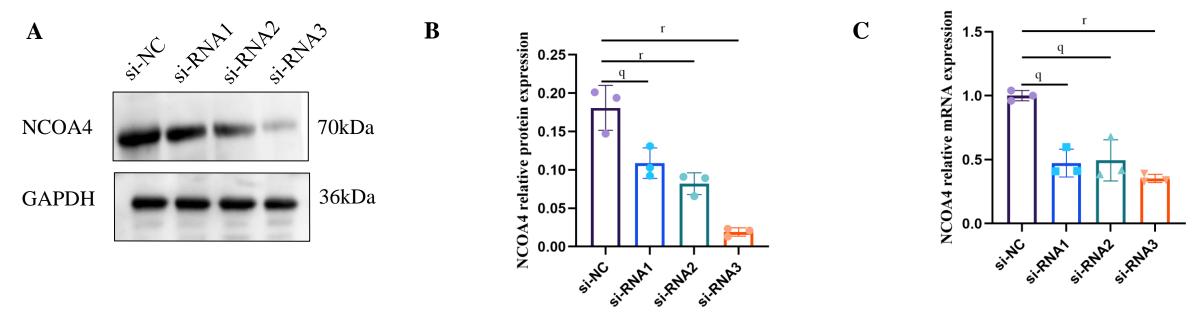
The primer sequences			
b-ACTIN-F	ATAGAGGCTCTTGTGCGTACTGTC		
b-ACTIN-R	TTGGTGTCGGCTGGTCAGATG		
BAX-F	ACCAAGAAGCTGAGCGAGTGTC		
BAX-R	TGTCCACGGCGGCAATCATC		
Caspase-3-F	GACTGGAAAGCCGAAACTCTTCATC		
Caspase-3-R	AGTCCCACTGTCTGTCTCAATGC		
TGF-b1-F	CCTGGCGATACCTCAGCAACC		
TGF-b1-R	CCTCCACGGCTCAACCACTG		
α-SMA-F	AGAAGAGTTACGAGTTGCCTGATGG		
α-SMA-R	GCTGTTGTAGGTGGTTTCATGGATG		
E-cadherin-F	ATTCTGCTGCTCTTGCTGTTTCTTC		
E-cadherin-R	CTCTTCTCCGCCTCCTTCTTCATC		
GPX4-F	CGCTGTGGAAGTGGATGAAGATC		
GPX4-R	TGTCGATGAGGAACTGTGGAGAG		
SLC7A11-F	ACGGTGGTGTTTTGCTGTCTC		
SLC7A11-R	GCTGGTAGAGGAGTGTGCTTGC		
IL-6-F	GGTGTTGCCTGCCTTCC		
IL-6-R	GTTCTGAAGAGGTGAGTGGCTGTC		
TNF-a-F	AAGGACACCATGAGCACTGAAAGC		
TNF-a-R	AGGAAGGAGAAGAGGCTGAGGAAC		
ATG7-F	ATCCCACAGCCAACAGATTGAAGG		
ATG7-R	TGCCTCCACCAAACCTGATTGAAG		
NCOA4-F	CTGGAATGTCTTAGAAGCCGTGAG		
NCOA4-R	GCTGAGCCTGCTGTTGAAGTG		
SQSTM1-F	CGTTAGCAGCCCAGCACATAGC		
SQSTM1-R	CCAGCAGGAAGCCCACAACAC		
FTH1-F	TTCAACAGTGCTTGGACGGAACC		

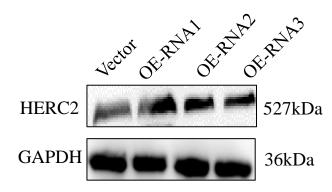

FTH1-R	ATGGCGGCGACTAAGGAGAGG
LC3-F	GCCTTCTTCCTGCTGGTGAACC
LC3-R	TCCTCGTCTTTCTCCTGCTCGTAG
HERC2-F	AGCAGAGGATTCGGACACAGAGG
HERC2-R	CAGCATGAACTCCAGCAGACAGAC

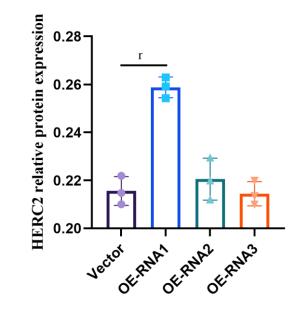
Supplementary Table 2 Compound quantification of KKBS

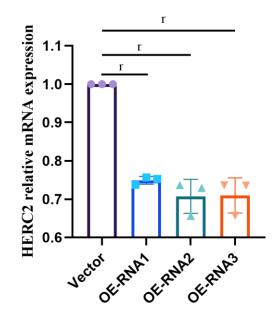

Metabolite	M/Z	Formula	CAS ID
Sweroside	359.1343	C16H22O9	14215-86-2;_
Isoquercetin	465.1039	C21H20O12	482-35-9
L-tyrosine	182.0817	C9H11NO3	60-18-4
Kaempferol 3-o-galactoside	449.1088	C21H20O11	23627-87-4
Ononin	431.1343	C22H22O9	486-62-4;
Calycosin	285.0763	C16H12O5	20575-57-9;_;
Formononetin	269.0813	C16H12O4	485-72-3;
Quercetin	303.0505	C15H10O7	117-39-5;
Kaempferol	287.0557	C15H10O6	520-18-3;80714-53-0;
Quercetin 3-o-malonylglucoside	551.1045	C24H22O15	96862-01-0

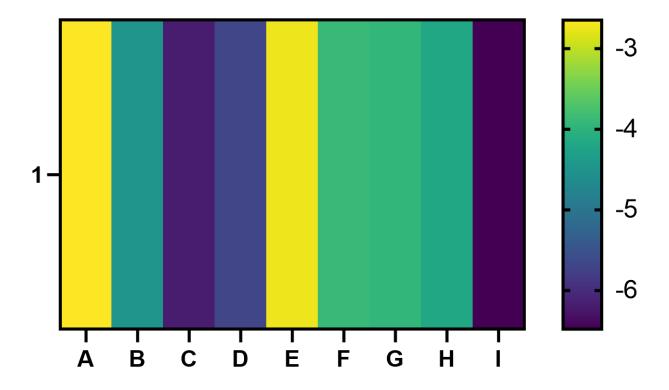
M/Z: The mass-to-charge ratio, denoted as m/z, refers to the ratio of the mass of an ion to its charge; Metabolite: The metabolites identified in this study are listed as follows; Formula: chemical formula of metabolite; CAS ID: CAS number of the compound.


Supplementary Figure 1

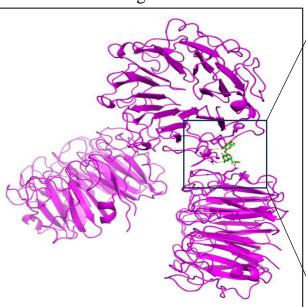



Supplementary Figure 2

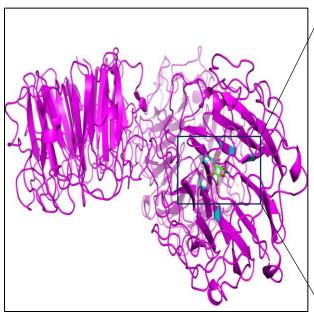


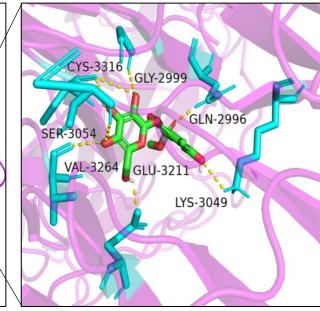


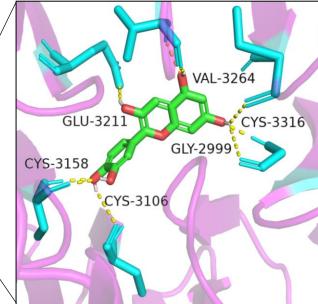
 \mathbf{C}



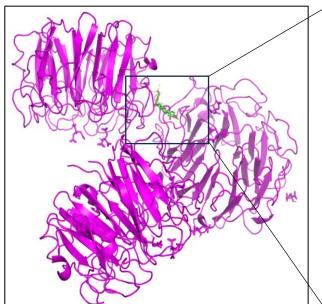
1 represented HERC2; The compounds represented by A to I are as follows: (A) Secologanin, (B) Sweroside, (C) Calycosin 7-O-beta-D-glucoside, (D) Isoquercetin, (E) Quercetin, (F) Myricetin, (G) Kaempferol, (H) Ononinn, and (I) Formononetin, respectively.

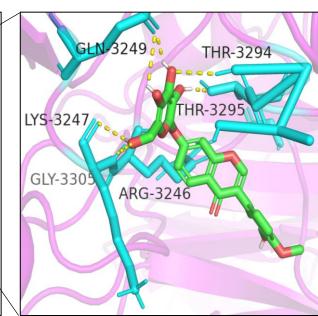

В


HERC2-Secologanin

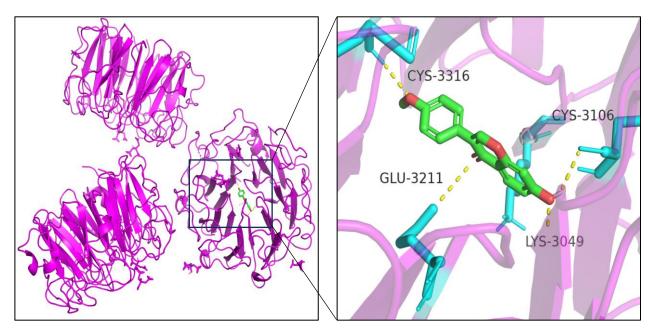

PRO-2983 GLY-3305 GLN-3304 LYS-3299

HERC2-Sweroside





HERC2-Calycosin 7-O-beta-D-glucoside


HERC2-Isoquercetin

HERC2-Quercetin HERC2-Myricetin VAL-3050 CYS 3106 PRO-3142 LYS-3141 GLN-2996 VAL-3264 HR-3138 GLU-3211 HIS-3261 HERC2-Kaempferol HERC2-Ononin €YS-3212 VAL-3264 LYS-2979 LYS-2981 CYS-3316 CYS-3158

HERC2-Formononetin

