Supplementary Table 1 Timing of ERCP and stent removal

Study	first	author	Study design (n)	Key Findings	Conclusion	Qualitya
(year)						
Timing	of ERCI	P				
Abbas[3	33](2019)		Retrospective	No significant difference in AEs	ERCP timing not	High
			nationwide cohort	among emergent(11%), urgent(10%),	significantly associated	
			(1028)	and expectant(9%) ERCP ($P = 0.577$). Mortality	with AEs.	
				showed U-shape trend (5%, 0%, 2%; $P < 0.001$).		
Desai[43	3] (2021)		Retrospective	Expectant ERCP (>3 days) had fewer AEs and	ERCP does not need to	High
			nationwide cohort	rehospitalizations vs. emergent or urgent ERCP ($P =$	be emergent or urgent.	
			(1260)	0.004, <0.001). Combination therapy superior to stent		
				alone ($P = 0.02$).		
Adler[4	Adler[44](2017)		Multicenter,	No difference in clinical success by timing (≤1 day:	Timing does not affect	Medium
			retrospective (518)	91.2%, 2–3 days: 90%, >3 days: 88.5%; <i>P</i> = 0.77).	ERCP success or AE rate;	
					elective ERCP is	
					generally safe.	
Chen [4	Chen [49](2024)		Multicenter,	ERCP <3 weeks had higher success (92.0% vs 75.0%,	ERCP within 3 weeks	Medium
			retrospective (94)	P = 0.032) and lower stricture rate (18.0% vs 45.5%, P	improves success and	
				= 0.005). OR for success: 4.168; OR for stricture: 0.256.	reduces strictures; early	
					intervention	
					recommended.	

Stent removal

Mavrogiannis[34](2006)	RCT (52)	Stents	removed	after	6-8	weeks.	Clinical	6 - 8 wee	eks stent	duration	High
		improve	ement in 2-6	days; h	ospital	stay 4–12	days.	effective	e for	leak	
								resoluti	on.		
Canena[6] (2012)	Single-	FCSEM	S removed	after m	edian	16 days (range 7–	FCSEMS	S ≤30	days	Low
	center, retrospective	28).						effective	e and	safe	
	(17)							for refra	ctory BD	Ls.	
Pinkas [39](2008)	Single-center,	NBD re	moved in 2-	11 days	(mean	4.7±0.9) v	s. biliary	NBD	allows	earlier	Medium
	retrospective (20)	stents i	n 14–53 da	ys (mea	n 29.1	±4.4). NB	D group	remova	l and	fewer	
		required	d fewer ERC	Ps (1.0 7	s 2.2).			ERCPs t	than stent	ts.	

AE, adverse event; BDLs, bile duct leaks; ERCP, endoscopic retrograde cholangiopancreatography; FCSEMS, fully covered self-expandable metal stent; NBD, nasobiliary drainage; OR, odds ratio; RCT, randomized controlled trial. aQuality was assessed using the Newcastle-Ottawa Scale (NOS)[67] for non-randomized studies: High quality (score ≥7), medium quality (score 5-6), low quality (score ≤4). RCT was evaluated with Cochrane risk of bias[68].

Supplementary Table 2 Management of complex cases

Study first author	Study design	Key Findings	Conclusion	Qualitya
(year)	(n)			
Refractory Leaks				
Canena[5] (2015)	Multicenter,	EST + 10 Fr stent had 91.0% success. Rescue with MPSs	Refractory leaks are better	Medium
	retrospective	had 62.5% success; FCSEMS achieved 100% success in	managed with FCSEMS	
	(94)	MPS failures.	rather than MPSs.	

Canena[54] (2015)	Two center	Leak closure: FCSEMS 100% vs MPS 65% (P = .004);	FCSEMS superior to MPS	Medium
	Prospective,	predictors of MPS failure: <3 stents, <20F, high-grade	in refractory BDLs;	
	non-	leak.	effective as rescue.	
	randomized			
	(40)			
Phillips[55] (2011)	Single-center,	Leak control 94%, but 35% developed strictures, 18%	FCSEMS not	Low
	retrospective	ulcerations post-transplant.	recommended post-	
	(17)		transplant due to stricture	
			risk.	
Biloma				
Tonozuka[58]	Single-center,	Technical success 100%; first-session clinical success:	EUS-guided drainage with	Low
(2015)	retrospective	83.3%; final clinical success 100% after necrosectomy in 2	metal stents is safe and	
	(13)	patients; no adverse events or recurrence	effective.	
Lorenzo[59] (2021)	Single-center,	Clinical success rate 704% (EUS-TD: 75%, TP/TF: 67%);	EUS-TD or TP/TF	Medium
	retrospective	serious AEs in 23%, including 2 procedure-related deaths.	drainage effective but	
	(30)		with notable risk.	
Sakamoto [60](2024)	Single-center,	Technical success: ERCP 94%, EUS-TBD 100%; shorter	EUS-TBD may offer faster	Medium
	retrospective	procedure time and hospital stay with EUS-TBD.	recovery.	
	(47)			

AE, adverse event; BDL, bile duct leak; ERCP, endoscopic retrograde cholangiopancreatography; EUS, endoscopic

ultrasound; EUS-TBD, EUS-guided transluminal biliary drainage; EUS-TD, EUS-guided transduodenal drainage; FCSEMS, fully covered self-expandable metal stent; MPS, multiple plastic stents; NBD, nasobiliary drainage; TP/TF, transpapillary/transfistula.