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Abstract
Prostate cancer (PCa) imaging forms an important part of PCa clinical manage-
ment. Magnetic resonance imaging is the modality of choice for prostate imaging. 
Most of the current imaging assessment is qualitative i.e., based on visual inspec-
tion and thus subjected to inter-observer disagreement. Quantitative imaging is 
better than qualitative assessment as it is more objective, and standardized, thus 
improving interobserver agreement. Apart from detecting PCa, few quantitative 
parameters may have potential to predict disease aggressiveness, and thus can be 
used for prognosis and deciding the course of management. There are various 
magnetic resonance imaging-based quantitative parameters and few of them are 
already part of PIRADS v.2.1. However, there are many other parameters that are 
under study and need further validation by rigorous multicenter studies before 
recommending them for routine clinical practice. This review intends to discuss 
the existing quantitative methods, recent developments, and novel techniques in 
detail.
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Core Tip: Quantitative imaging has many advantages over conventional qualitative assessment. A few parameters have also 
been shown to correlate with the Gleason score and can help in deciding disease prognosis and clinical management. A 
quantitative imaging biomarker could improve prostate cancer (PCa) detection by minimizing inter-observer variability, 
thereby reducing overdiagnosis of clinically insignificant PCa (Gleason score < 7). This would help avoid unnecessary 
biopsies and decrease the overtreatment of slow-growing PCa. In addition, with further advancement in the quantitative 
imaging parameters, they may be used to monitor therapeutic response or to predict response to a particular treatment.

Citation: Dhiman A, Kumar V, Das CJ. Quantitative magnetic resonance imaging in prostate cancer: A review of current technology. 
World J Radiol 2024; 16(10): 497-511
URL: https://www.wjgnet.com/1949-8470/full/v16/i10/497.htm
DOI: https://dx.doi.org/10.4329/wjr.v16.i10.497

INTRODUCTION
Prostate cancer (PCa) is the second most common malignancy and one of the main causes of cancer related mortalities in 
males around the globe[1]. Traditional diagnostic methods like digital rectal examination, prostate specific antigen tests, 
and transrectal ultrasound (US)-guided biopsy have poor sensitivity and specificity and face limitations in staging and 
grading of PCa. Therefore, for better prognosis effective management, and treatment planning, accurate characterization 
of PCa is necessary[2].

Current imaging modalities available for imaging of PCa are transrectal US, multiparametric magnetic resonance 
imaging (MRI), positron emission tomography-computed tomography (PET-CT) scan, and PET-MRI (PET-MRI) scan. US 
plays a limited role in cancer detection as very small proportion of hypoechoic lesions are revealed to be tumors upon 
biopsy. Thus, it is used to visualize the prostate during transrectal or trans-perineal US-guided biopsies. CT offers high 
specificity in detecting very high-grade tumors but is still not ideal for diagnosing PCa as it lacks soft tissue resolution 
and molecular insights needed for accurate PCa detection[3]. PET scan uses a tracer to target prostate-specific membrane 
antigen which helps to detect lymph node metastasis in men with high-risk PCa. Prostate-specific membrane antigen PET 
has proven to be more effective than conventional CT in accurately staging high-risk PCa patients[4]. MRI, is a no-
ninvasive method that integrates functional and morphological information to provide a superior soft-tissue contrast 
resolution, which permits resolution of intra-prostatic anatomy, discrimination of the prostate capsule, and differentiation 
of benign from malignant intraprostatic abnormalities which the other mentioned imaging techniques often lack[5].

Imaging modalities may provide structural as well as functional information, depending upon the modality and 
technique. However, most of the imaging assessment is qualitative i.e., based on visual inspection and thus subjected to 
inter-observer disagreement. To overcome this and to enhance the objectivity of reporting, quantitative imaging 
techniques have been recommended which may play a major role. Quantitative imaging aims to assign a numerical value 
to the observations enabling higher accuracy, reproducibility, standardized reporting, interpretation, and communication. 
Few such MRI quantitative metrics are already part of PIRADS v.2.1[6]. However, many are still under study and need 
further validation. This review intends to discuss the existing quantitative methods, recent developments, and novel 
techniques in detail.

QUANTITATIVE PARAMETERS
Apparent diffusion coefficient
Diffusion-weighted imaging (DWI) is an important part of multiparametric MRI and enables the assessment of changes 
associate with the tissue organization in progression of PCa. High cellularity tissues by virtue of reduced extracellular 
space restrict the Brownian movement of water molecules and thus demonstrate diffusion restriction[7]. DWI acquisition 
sequence can be used to obtain two sets of images: (1) Diffusion weighted imaging acquired at different b-values, where, b
-value signifies diffusion sensitizing gradient’s strength with its unit being seconds/mm2[8-10]; and (2) Apparent 
diffusion coefficient (ADC) map generated from the diffusion weighted images acquired at least two different b-values. 
When the logarithm of signal intensity decay on the Y-axis is plotted against b-values on the X-axis, the slope of the line 
which is produced represents the ADC value[7,9,10]. A minimum of two b-values are required for the calculation of ADC. 
DWI acquired at more than two b-values enhance the precision of ADC estimation at the cost of increased acquisition 
time[7]. There is a lack of standardization of number of b-values and highest b-value to use, which leads to differences in 
the calculation of ADC values. Many recent studies have proven the superiority of high b-value DWI (1500-2500 s/mm2) 
over conventional DWI (b = 1000 s/mm2)[11-18]. However, the disadvantage of a high b value includes a reduced signal-
to-noise ratio, more susceptibility artifacts, and image distortion[19]. Specific software is also required for ADC cal-
culation if using such high b-value[20]. Thus, routinely most of the centers prefer conventional DWI. PIRADS v.2.1 
guidelines also recommend the use of b values ≤ 1000 s/mm2[21].

Under PIRADS v.2.1, DWI is the primary sequence for assessing peripheral zone (PZ) lesions and a secondary 
sequence for transitional zone (TZ) lesions[22]. Low ADC values have been reported in TZ in benign stromal hyperplastic 
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nodules, which is the reason for not using DWI as a primary sequence for TZ[22]. Few studies have demonstrated higher 
ADC values in stromal hyperplastic nodules as compared to PCa, however, there is no clear-cut value to distinguish both 
and thus the use of quantitative ADC in the diagnosis of PCa in TZ is still not validated. DWI provides both qualitative 
(by assessing whether the tissue in question is showing restriction or not) and quantitative assessment. Various quanti-
fication metrics which are being explored include mean ADC, ADC ratio, ADC minimum, and histogram analysis. 
Currently, mean ADC is the only quantitative DWI parameter included under PIRADS v.2.1. Available literature has 
shown that the mean ADC value has an inverse relation with histological Gleason’s score and thus it can be used to 
predict whether the prostate malignancy is high grade or low grade[23-25]. Lucarelli et al[5] showed that the mean ADC 
values decrease from International Society of Urological Pathology (ISUP) 2 to ISUP 5 showing significant differences 
between low, intermediate, and high-grade tumors. ADC values showed a strong positive correlation with ISUP groups 
in both the peripheral and transition zones; however, the correlation between ADC values and PIRADS groups is less 
reliable in the transition zone than in the peripheral zone[5]. One major limitation of mean ADC is averaging ADC values 
and masking of low ADC pixels which contain more aggressive tumor foci[26]. Also, there are no clear cut-off mean ADC 
values for benign and malignant lesions, as ADC value is highly influenced by many factors including the type of scanner 
used, b-values, physiological differences in background prostate tissue, etc[27-30]. To compensate for these differences, 
some authors have advised the use of ADC ratio which is defined as the ADC value of the prostatic area suspicious of 
malignancy divided by the ADC value in the non-malignant reference area[31-33]. There is no validated reference with 
respect to which ADC ratio should be calculated, different studies have used different references including normal TZ, 
and PZ, and some have also used urinary bladder as a reference[33,34]. The advantage of this method is that with no 
additional scan time, it allows lesion visualization by providing a highly diffusion-weighted image[35]. Also, there are 
two schools of thought on how to draw region of interest (ROI) for ADC ratio calculation. One group used ROI covering 
ADC minimum area[23,36] yielding ADC minimum ratio and another group advocated ROI covering whole lesion 
yielding ADC mean ratio[37,38]. A study compared both and found that ADC mean and the resulting ADC mean ratio 
was significantly better compared to ADC minimum and resulting ADC minimum ratio in discriminating high-grade 
from low-grade PCa[33].

ADC minimum and ADC histogram analysis have been proposed as two quantitative DWI methods which are 
beneficial especially in heterogeneous lesions[26,39]. ADC minimum is more sensitive to detecting aggressive tumor foci 
in a heterogenous mass with varying ADC values[40]. And, thus can act as a better targeting guide in prostatic biopsies. 
However, there is mixed data, as to whether ADC mean or ADC minimum correlates better with Gleason score (GS)[26,
39,41]. The limitation of minimum ADC is being restrictive and more prone to fallacious due to artifacts[33,40,42]. Also as 
already discussed, ADC mean values due to averaging can mask the areas with minimum values, thus can underestimate 
the aggressiveness in a heterogenous lesion. To overcome this, some authors have come up with the concept of histogram 
analysis. Homogenous composition tumors will have the gaussian type of distribution as opposed to skewed distribution 
in heterogenous lesions[26]. The low centile values in the histogram have been shown to correlate better with GS[26,39,
41]. However, the optimal centile that should be taken for analysis lacks standardization[36,42].

Tumor size and tumor volume by three-dimensional ellipsoid fit
Tumor size is an important part of the decision tree of PIRADS v.2.1 and the 15 mm cut-off differentiates PIRADS 4 from 
PIRADS 5 lesion[6] (Figure 1). This has been independently validated by many investigators. The measurement of the 
single longest diameter is easy to perform and has a good positive correlation with tumor volume (TV) at radical 
prostatectomy[43].

TV is associated with the prognosis of PCa[44,45]. TV more than 0.5 cm3 is considered the threshold for significant 
disease[46]. Index lesion volume helps in deciding management, and guiding focal treatment, and is a good criterion for 
follow-up during active surveillance[47,48]. Focal therapy options such as high intensity focused US, cryotherapy, laser 
ablation, brachytherapy, electroporation, and radiofrequency ablation[49] require precise assessment of TV so that 
maximum energy is deposited in the cancerous tissue with minimal damage to the adjacent normal area[50,51]. Studies 
have found that pathological TV correlates with pathological stage and GS[43,44,52,53]. So, if TV on imaging can truly 
represent the pathological volume, it will also show a similar correlation with GS. A study by McNeal et al[54] de-
monstrated that if TV is less than 4 cm3 the disease is usually confined to the prostate, and when TV is more than 12 cm3 
there is a high likelihood of distant metastasis. TV also correlates with the presence of vascular invasion and seminal 
vesicle involvement[55]. Many studies have shown that TV is better measured on ADC image as compared to other 
sequences, as ADC image best demarcates the margin of the lesion in contrast with the adjacent normal tissue[25,56]. A 
study also advocated an ADC value of 0.0016 mm2/second as the cut-off for accurate measurement of TV (49)[57]. 
PIRADS v.2.1 assessment includes only the two-dimensional method for TV measurement. However, the drawback of 
using one of the most widely used two-dimensional conventional formulae for TV calculation i.e., the ellipsoid formula is 
that it is a linear measurement based on the assumption of the lesion being of ellipsoid shape and does not take into 
account the irregular tumor shape (48)[58]. Three-dimensional measurement techniques of TV have not been thoroughly 
investigated. TV estimation by the ellipsoid fitting model has the potential to measure the tumor maximum dimension 
and TV accurately and may upgrade the PIRADS score (Figure 2) from 4 to score 5 (48)[58].

Shape analysis
Shape analysis is one of the potential quantitative parameters, which can have an important role in staging and prognosis
[59]. Currently, PIRADS V2.1 includes only qualitative shape criteria, which are separate for TZ and PZ lesions. In TZ, 
lenticular shape favors malignancy, while round or oval shape favors benign prostatic hyperplasia (BPH)[22,60,61]. While 
for PZ, wedge, linear, shape, bandlike, diffuse shape have been described to occur more frequently in benign conditions, 
on the other hand, round or oval shape has been associated with PCa[22,62] (Figure 3). Shape assessment is done on DWI 
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Figure 1 PIRADS 4 vs PIRADS 5 lesions on basis of size: T2 weighted axial image. A: A right peripheral zone ill-defined hypointense lesion measuring 
727 mm suggestive of PIRADS 4 lesion; B: T2 weighted axial image showing a left peripheral zone ill-defined hypointense lesion measuring 17 cm suggestive of 
PIRADS 5 lesion.

Figure 2 Three-dimensional ellipsoid fit: Three-dimensional fitting of the segmented lesions from. Diffusion-weighted magnetic resonance images 
(b = 2000 s/mm2) for different PI-RADS scores.

sequence for PZ lesions[6] and on T2 sequence for TZ lesions[6]. Realizing the important role of shape analysis for PZ 
lesions, PIRADS v.2.1 has incorporated shape analysis of PZ lesions as well into decision making, while it was not 
included in the PIRADS V 2[6,22,60]. Various studies have been done to validate the importance of shape analysis in TZ 
and PZ lesions. In a study by Li et al[63], the ability of radiological semantics to discriminate clinically significant PCa 
(CsPCa) was studied on multiparametric MRI and it was found that kappa score for qualitative shape analysis showed 
only moderate interobserver agreement. In another shape metrics study for PZ tumors on DWI in 241 patients, the 
agreement of shape assessment was also moderate. The round or oval shape of the tumor was associated with a higher 
GS as compared to crescentic tumors and linear or wedge-shaped tumors (P = 0.011). In addition, tumors with round or 
oval shapes showed a greater degree of extracapsular extension (ECE) and seminal vesicle invasion[64] (extracapsular 
extension and seminal vesicle invasion: 70.1% and 26.0%) as compared to crescentic tumors (67.3% and 9.1%; P = 0.003) 
and linear or wedge-shaped tumors (40.6% and 9.4%; P = 0.008)[64]. Quantitative descriptors used for round and oval 
lesions were roundness and circularity, which were associated with more aggressive PCa[64]. A quantitative shape 
analysis study by Krishna et al[65] on TZ lesions on T2-weighted imaging compared it with subjective shape analysis. 
Circularity (correlating with round lesions) and convexity (correlating with lentiform lesions) shape features showed 
excellent inter reader agreement in differentiating TZ PCa and BPH; however, the quantitative feature representing lesion 
topology (number of spiculations) was not able to differentiate TZ PCa and BPH and was and thus inferior in accuracy 
than subjective shape analysis. In a study, it was shown that an advanced radiomic feature derived from an ADC map 
known as the surface area to volume ratio came out as a highly accurate and promising tool in discriminating CsPCa 
from non-CsPCa, and even outperforming previously described parameters such as TV and maximum diameter (5,7)[66].
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Figure 3 Shape analysis. A-C: T2-weighted axial image shows a wedge-shaped T2 hypointense lesion (arrow in A) in right peripheral zone which shows no 
diffusion restriction (arrow in B and C) is scored as a category 2 observation according to PIRADS v.2.1.

Length of capsular contact
Length of capsular contact (LCC) is the length for which the prostatic tumor is in contact with the prostatic capsule[67]. It 
is a simple measurement, relatively independent of the radiologist’s experience, and more objective with good inter-
reader reproducibility. This makes it a good quantitative criterion for diagnosing ECE, which is a crucial point in PCa 
staging and prognosis[68] (Figure 4). ECE in patients with T3bN0 PCa is linked with a greater risk of systemic spread of 
the disease and mortality. The presence of ECE is also an important treatment deciding point. If present, it upgrades the 
disease stage from T2 (organ-confined disease) to T3a (locally advanced disease)[68]. The curative treatment is most likely 
if the stage is ≤ T2c[69]. Currently, the criteria being used for diagnosing ECE in PIRADS v.2.1 include abutment or 
bulging of the capsule, irregularity of prostatic capsule, adjacent neurovascular bundle thickening, invasion of peri-
prostatic fatty tissue and obliteration of the recto-prostatic angle[70]. However, these criteria are subjective and the 
reader’s experience profoundly affects ECE detection as shown in a study by Wibmer et al[68]. Also, these criteria 
diagnose visible macroscopic ECE, not microscopic one[70]. Thus, there should be some relatively more objective criterion 
such as LCC to overcome the shortcomings of above listed subjective criteria.

LCC is found to be an independent and reproducible predictor of ECE in multiple studies[67,71-73]. In a study by Baco 
et al[67], the logistic regression analysis revealed that the pathological-LCC (0.821) superiorly correlated with microscopic 
ECE as compared to the pathological cancer volume (0.685). Spearman correlation between the pathological-LCC and 
MRI-LCC was significant with r = 0.839 (P < 0.0001). MRI-LCC threshold of 20 mm showed superior accuracy compared 
to subjective analysis in diagnosing microscopic ECE (82% vs 67%, P = 0.015). This concludes that LCC can outperform 
subjective criteria in predicting microscopic ECE. A meta-analysis by Kim et al[74] concluded, the more the MRI-LCC 
value, the higher is the probability of ECE. In a cohort study[75], LCC was found to be an independent predictor of 
pathological lymph node, and biochemical recurrence along with pathological ECE. A retrospective study also found, 
LCC and ADC when used in combination, improved the diagnostic performance in demonstrating microscopic ECE[76]. 
Limitations of LCC are the inter-individual differences in measurement technique (by linear or curvilinear method)[72,
73], no defined threshold (varying between 6-20 mm)[72,76,77], no consensus on which sequence to be used for mea-
surement. These points need further validation before its integration into routine clinical practice.

Dynamic contrast-enhanced MRI-based parameters (Ktrans, Kep)
Angiogenesis is considered as a hallmark of any malignancy including PCa and dynamic contrast-enhanced (DCE) 
imaging enables non-invasive assessment of tissue vascularity at the cellular level. And by assessing that, it has the 
potential to assess the aggressiveness of the tumor[24,78-81]. In PIRADS v.2.1, DCE imaging has accessory role as 
compared to the primary sequences such as T2 in TZ and DWI in PZ. Its main role is in PZ PIRADS 3 lesion, positive 
finding on DCE MRI upgrades score to PIRADS 4[22]. Lack of quantification is one of the major reasons behind its 
diminished role in PIRADS and quantification can help in utilizing the full potential of this technique. DCE is a functional 
imaging technique that offers qualitative, semiquantitative as well as quantitative assessment of PCa[82] (Figure 5). 
Quantitative assessment is preferred, as it provides objective reproducible numerical values and commutation is also easy 
these days due to easy availability of software packages. Quantitative kinetic parameters encompass Ktrans (volume 
transfer constant) and Kep (rate constant). Ktrans is equal to the product of permeability and surface area (P × S) per unit 
volume of the tissue[82]. Kep (Ktrans/Ve), refers to the efflux of contrast from the extracellular compartment back into 
plasma (Ve refers to extracellular extravascular volume fraction)[82]. A retrospective study of PZ lesions at 3T found a 
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Figure 4 Length of capsular contact. A: T2-weighted axial image shows T2 hypointense lesion in right peripheral zone having wide contact (9.6 mm) with the 
capsule i.e., wider length of capsular contact suggesting the possibility of microscopic capsular invasion which was confirmed on histopathology along with its high 
grade (Gleason score 4 + 5); B: T2-weighted axial image in another case shows T2 hypointense lesion in left transitional and peripheral zone having wide contact 
with capsule i.e., wider length of capsular contact with adjacent neurovascular invasion (arrow).

significant correlation between Ktrans, Kep values, and aggressiveness of PCa[83]. The quantitative DCE parameters, 
Ktrans and Kep are highly correlated with the histopathology of the prostate tumor tissue and act as independent 
predictors of malignancy. Higher the Ktrans and Kep values, the lesion is more likely to be malignant. The study 
identified cutoff points of ± 0.2905 for Ktrans and ± 0.3365 for Kep, with sensitivities of 88.2% and 94.1%, specificities of 
84.6% for both, positive predictive values of 88.2% and 88.9%, and negative predictive values (NPV) of 84.6% and 91.7%, 
respectively[84]. Few studies have also assessed the combined diagnostic accuracy of DCE with diffusion tensor imaging 
(DTI)[85] and also DCE with DWI[86] in PCa diagnosis. The combination helps in assessing different facets of the disease 
process, DCE assesses the micro-vessel density and permeability, while DTI and diffusion focus on cellular density. One 
such study by Li et al[85] in PZ lesions on 3T MRI found that DTI + DCE was significantly better than either DTI [area 
under the receiver operating characteristic curve (AUC) 0.93 vs 0.86, P = 0.0017] or DCE (AUC 0.93 vs 0.84, P = 0.0034) 
alone. On the contrary, many studies have also found an overlap of Ktrans and Kep values for benign and malignant 
lesions[87,88] and also there are studies that demonstrated no correlation between any of the DCE parameters and GS
[89]. The study performed by Feng et al[90], showed that as a single predictor DCE [the odds ratios (OR) of Kep (0.987, P > 
0.05) and Ktrans (0.794, P > 0.05) closer to 1] does not contribute to the CsPCa model. However, the diagnostic and 
positive predictive value of the multiparametric model were significantly higher than those of the biparametric model 
(prostate MRI without DCE)[90]. This concludes DCE should be interpreted always in conjunction with other MRI 
parameters for better results.

Intravoxel incoherent motion and Kurtosis
Le Bihan et al[91] and Le Bihan[92] first introduced the concept of intravoxel incoherent motion (IVIM), merging the 
diffusion and perfusion components, for quantitative analysis of the microstructure and microvasculature of the tissue. It 
is an extended version of DWI and can be used in the detection of PCa in PZ and TZ. DWI is based on the mono-
exponential decay theory, assuming the gaussian distribution of Brownian motion of water molecules. However, such an 
assumption doesn’t always hold true in vivo, where countless numbers of barriers and inter and intracellular compart-
ments restrict diffusion. This leads to non-gaussian distribution pattern[93,94]. IVIM tries to capture this intravoxel 
diffusion heterogeneity of the tumor. Multiple b-values ranging from 0 to 2000 s/mm2 are used. A study by Malagi et al
[95] concluded that a combination of 8 b values provides reasonably good accuracy in IVIM parameters. IVIM is based on 
a bi-exponential model and yields pure diffusion parameters (D) and perfusion-related diffusion parameters (D* is 
perfusion-related diffusion coefficient and f is perfusion fraction) (Figure 6). Kurtosis imaging is another upgradation of 
conventional DWI, which utilizes kurtosis-based diffusion model to characterize the multiexponential behavior of 
diffusion decay. IVIM-diffusion kurtosis imaging (DKI) model is traditionally a 3 T model. However, a study by Malagi et 
al[96] demonstrated that using an advanced spatial penalty-based reconstruction method on 1.5 T can be used as an 
alternative to 3 T with fewer estimation errors in distinguishing PCa and BPH.

Previous studies demonstrated that IVIM parameters were inferior to ADC in the evaluation of TZ lesions[97]; 
however, could increase the diagnostic yield in PZ lesions[95]. A study by Chang et al[98], found that D mean and 
D*kurtosis were important predictors of the postoperative ISUP high-risk group (P < 0.05). Liu et al[99] in comparison of 
the following models i.e., the monoexponential model (conventional DWI), IVIM, IVIM kurtosis, and kurtosis model, 
found that each model was useful for PCa diagnosis, however, diagnostic efficacy was similar amongst them. A recent 
study by Das et al[100] evaluated the role of combined IVIM-DKI and their machine-learning-based texture analysis (TA) 
for the detection and assessment of severity in PCa. The results of the study reported that D, f, and k computed using the 
IVIM-DKI model with the TV method were able to differentiate PCa from BPH and normal PZ. Texture features of 
combined IVIM-DKI parameters showed high accuracy and AUC in PCa detection[100]. Few studies have also demon-
strated that D performed better than ADC and other parameters in distinguishing high-grade and low-grade PCa[95,101-
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Figure 5 Dynamic contrast-enhanced magnetic resonance imaging based parameters. A: Multiphasic magnetic resonance imaging images show 
PIRAD 5 lesion in right transitional zone, peripheral zone and left peripheral zone (asterisk); B: Dynamic contrast-enhanced magnetic resonance imaging images 
show various quantitative parameters. Region of interest has been drawn depicting prostatic cancer and benign prostatic hyperplasia (BPH) nodule. The table in B 
demonstrates higher Ktrans and Ve value in the prostatic cancer region as compared to BPH nodule. While Kep value is lower in the prostatic cancer region as 
compared to BPH nodule. The qualitative signal intensity curve in B demonstrates rapid wash in (steeper slope) and fast wash out in prostatic cancer region which is 
the characteristic curve for malignant tumors.
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Figure 6 Intravoxel incoherent motion: Intravoxel incoherent motion-diffusion kurtosis imaging at b value 2000 second/mm2 showing 
apparent diffusion coefficient map, D map, D* map, f map and k map. The prostatic cancer region is hyperintense in the background of hypointense 
gland on b 2000 second/mm2 image and hypointense on apparent diffusion coefficient image.

103]. Thus, there is a controversy as to whether IVIM adds some value over and above ADC or not as there are studies 
that have found no added role of IVIM over ADC[104].

T1 relaxometry and MR fingerprinting
T1 relaxometry is a potential quantitative technique that enables the assessment of tissue properties by measuring the T1 
relaxation time. T1 relaxation is an intrinsic property of any specific tissue and it is defined as the time taken by the 
longitudinal magnetization to recover 66.6% of its initial value[105]. Conventional sequences can quantify either T1 or T2 
relaxation at one time, while the recently introduced MR fingerprinting technique enables quick and concomitant 
production of quantitative maps of different tissue properties including T1 and T2 relaxation time[106-109]. This 
technique is based on the pseudorandom variation of MRI properties like repetition time and flip angle so that unique 
signals are generated for each combination of tissue properties and then a chain of all possible signal evolutions is 
calculated for that particular sequence[110]. So far, multiple studies have been carried out to verify the role of T2 
relaxation time[108,109]. In a recent study including 104 PZ cases, it was found that a combination of T1, T2 relaxometry, 
and ADC mapping could be useful for quantitative analysis of PCa grades and distinguishing it from benign lesions on 
T2-weighted images[110].

In comparison to T2 relaxometry, T1 relaxometry is relatively less studied in TZ and PZ lesions. It could be specifically 
more useful in differentiating prostatitis from PCa in TZ, as these both share a similar appearance on T2 images[111]. In 
one such study by Panda et al[111] in TZ lesions, the best results were shown by the combination of T1 and ADC in distin-
guishing benign and malignant lesions (AUC = 0.94) as well as in discriminating CsPCa from non-CsPCa (AUC = 0.81). 
ADC value lower than 0.70 × 10-3 mm2/second was highly sensitive and a T1 value lower than 1510 ms was found to be 
more specific for distinguishing benign and malignant lesions. There was an overlap of T2 values between the groups as 
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Figure 7 Overview of the framework for texture analysis. MRI: Magnetic resonance imaging; ADC: Apparent diffusion coefficient; DWI: Diffusion-weighted 
imaging; FOS: First-order statistics; GLCM: Grey level co-occurrence matrix; GLRLM: Grey level run length matrix; KNN: K-nearest neighbor; LTEM: Laws texture 
energy measures; ROI: Region of interest; SFM: Statistical feature matrix; SVM: Support vector machine.

expected. A study by Yu et al[112] in 2017 was the first one in the literature to study T1 differences between benign and 
malignant PZ lesions. In their study, T1 was significantly less in PZ Ca as compared to adjacent normal PZ. They also 
pointed out that the history of recent biopsy should always be elicited from the patient, as post-biopsy haemorrhage itself 
shortens the T1 time, resulting in fallacious results. However, the role of T1 relaxometry in PZ lesions still needs 
validation by larger studies.

TA
Tumour heterogeneity plays an important role in predicting a tumour’s aggressiveness. TA is a statistical tool to measure 
this tumor heterogeneity through a complex analysis of the spatial distribution of image pixels, grossly not recognizable 
on conventional sequences[113] (overview of framework for TA shown in Figure 7). Thus, TA could become a non-
invasive imaging biomarker for PCa diagnosis, prognosis, and follow-up. The most widely used and verified technique of 
quantitative TA is the filtration-histogram technique[114]. First-order TA features are based on the extraction of pixel 
intensity values within a specific area of interest. Second-order statistics measure the association between two pixels 
while higher-order TA analyses the association among more than two pixels. Some of the texture features which are most 
widely studied and commonly employed in PCa are entropy (represents histogram’s randomness) and kurtosis (re-
presents histogram’s peakedness/flatness)[115]. A recent study suggested that after applying the filtration technique, a 
medium texture scale (3-5 mm) is better to assess tumoral heterogeneity compared to a fine texture scale (2 mm)[116]. A 
study by Wibmer et al[117] showed that ADC-derived higher entropy values (P = 0.0069) and lower energy values (P = 
0.0039) showed good correlation with GS, but there was no association of T2-based texture features with GS. Association 
between any specific texture feature and GS was studied by Baek et al[118] using bi-parametric MRI. They found that 
ADC-derived grey level co-occurrence matrix entropy was associated with GS in patients with PCa, with moderately 
good (82%) accuracy for discriminating CsPCa from non-CsPCa. Significant association between ADC entropy and PCa 
aggressiveness has also been shown by studies, with improved sensitivity for ECE detection compared to subjective 
analysis[119]. A recent study compared ADC-derived texture features and T2-derived texture features[120]. They found 
that the combination of three ADC texture features i.e., skewness, kurtosis, and entropy predicted high-grade PCa. 
Texture features of combined IVIM-DKI parameters showed high accuracy and AUC in PCa detection[100]. All these 
above-mentioned studies bring us to conclude that texture features based on the ADC map have proven to be better in 
PCa diagnosis and risk stratification. T2-weighted textural features correlation with GS has varied among various studies, 
few studies have found a correlation while others have not[117,120]. TA can also better detect intraductal carcinoma 
which usually remains undetected on conventional MRI sequences[121].
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Magnetic resonance elastography
Magnetic resonance elastography (MRE) is a non-invasive method that uses low-frequency vibrations to quantitatively 
measure tissue elasticity and stiffness. In comparison to other quantitative MR techniques, it has the potential to 
overcome the common limitation of all techniques i.e., inter-observer variability. In a prospective study by Li et al[122] 
involving 73 patients, stiffness and fluidity quantification using tomoelastography improved the diagnostic yield of 
multiparametric MRI in detecting PCa in both PZ and TZ. Pre-operative MRE-based PCa stiffness measurement can even 
help in predicting the degree of lymph node metastasis, with sensitivity and specificity as high as 100% and 86.5%, 
respectively[123].

MRE is a non-invasive method that uses low-frequency vibrations to quantitatively measure tissue elasticity and 
stiffness. In comparison to other quantitative MR techniques, it has the potential to overcome the common limitation of all 
techniques i.e., inter-observer variability. In a prospective study by Li et al[122] involving 73 patients, stiffness and fluidity 
quantification using tomoelastography improved the diagnostic yield of multiparametric MRI in detecting PCa in both 
PZ and TZ. Pre-operative MRE-based PCa stiffness measurement can even help in predicting the degree of lymph node 
metastasis, with sensitivity and specificity as high as 100% and 86.5%, respectively[123].

CONCLUSION
Quantitative imaging has many advantages over conventional qualitative assessment. A few parameters have also been 
shown to correlate with the GS and can help in deciding disease prognosis and clinical management. Many such MRI 
based quantitative imaging metrics have been discussed thoroughly in this article. Few of these are already part of 
PIRADS, while many are under study and can be incorporated into clinical practice in the future after validation by 
rigorous multicentre studies. One major hurdle in achieving the quantification is the fact that numerical values obtained 
tend to differ from center to center because of many factors including differences in scanners, individual imaging 
protocols, and techniques, etc. The applications of features like TV and size, LCC, ADC values need a standardized cut off 
values to achieve their full clinical potential. An ideal metric would be one that is easy to calculate, and less prone to 
errors because of differences in scanners, individual imaging protocols, and techniques. A quantitative imaging marker 
could improve PCa detection by minimizing inter-radiologist subjectivity, thereby reducing overdiagnosis. This would 
help avoid unnecessary biopsies and decrease the overtreatment of slow-growing PCa.
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