Contents

EDITORIAL

1549 Multidisciplinary approach toward enhanced recovery after surgery for total knee arthroplasty improves outcomes
Nag DS, Swain A, Sahu S, Sahoo A, Wadhwa G

1555 Using clinical cases to guide healthcare
Colwill M, Baillie S, Pollok R, Poullis A

ORIGINAL ARTICLE

Retrospective Study

1560 Analysis of the causes of primary revision after unicompartmental knee arthroplasty: A case series
Zhao JL, Jin X, Huang HT, Yang WY, Li JH, Luo MH, Liu J, Pan JK

1569 Efficacy and safety of minimally invasive laparoscopic surgery under general anesthesia for ovarian cancer
Qin X, Chen C, Liu Y, Hua XH, Li JY, Liang MJ, Wu F

1578 Factors influencing Frey syndrome after parotidectomy with acellular dermal matrix
Chai XD, Jiang H, Tang LL, Zhang J, Yue LF

Clinical Trials Study

1585 Allogeneic mesenchymal stem cells may be a viable treatment modality in cerebral palsy
Boyalı O, Kabatas S, Civelek E, Ozdemir O, Baha–Ozdemir Y, Kaplan N, Savrunlu EC, Karaöz E

Observational Study

1597 Clinical characteristics of acute non-variceous upper gastrointestinal bleeding and the effect of endoscopic hemostasis
Wang XJ, Shi YP, Wang L, Li YN, Xu LJ, Zhang Y, Han S

Clinical and Translational Research

1606 Construction of the underlying circRNA-miRNA-mRNA regulatory network and a new diagnostic model in ulcerative colitis by bioinformatics analysis
Yuan YY, Wu H, Chen QY, Fan H, Shuai B

1622 Exploring the autophagy-related pathogenesis of active ulcerative colitis
Gong ZZ, Li T, Yan H, Xu MH, Lian Y, Yang YX, Wei W, Liu T

CASE REPORT

1634 Low-molecular-weight heparin and preeclampsia — does the sword cut both ways? Three case reports and review of literature
Shan D, Li T, Tan X, Hu YY
Contents

Thrice Monthly Volume 12 Number 9 March 26, 2024

<table>
<thead>
<tr>
<th>Page</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>1644</td>
<td>Pulmonary alveolar proteinosis induced by X-linked agammaglobulinemia: A case report</td>
<td>Zhang T, Li M, Tan L, Li X</td>
</tr>
<tr>
<td>1649</td>
<td>Gradient inflammation in the pancreatic stump after pancreaticoduodenectomy: Two case reports and review of literature</td>
<td>Wang TG, Tian L, Zhang XL, Zhang L, Zhao XL, Kong DS</td>
</tr>
<tr>
<td>1660</td>
<td>Low interleukin-10 level indicates a good prognosis in Salmonella enterica serovar typhimurium-induced pediatric hemophagocytic lymphohistiocytosis: A case report</td>
<td>Chen YY, Xu XZ, Xu XJ</td>
</tr>
<tr>
<td>1669</td>
<td>Multi-systemic melioidosis in a patient with type 2 diabetes in non-endemic areas: A case report and review of literature</td>
<td>Ni HY, Zhang Y, Huang DH, Zhou F</td>
</tr>
<tr>
<td>1677</td>
<td>Endoscopic ultrasound-guided tissue sampling induced pancreatic duct leak resolved by the placement of a pancreatic stent: A case report</td>
<td>Kim KH, Park CH, Cho E, Lee Y</td>
</tr>
<tr>
<td>1685</td>
<td>Upadacitinib for refractory ulcerative colitis with primary nonresponse to infliximab and vedolizumab: A case report</td>
<td>Xu X, Jiang JW, Lu BY, Li XX</td>
</tr>
<tr>
<td>1691</td>
<td>Exogenous insulin autoimmune syndrome: A case report and review of literature</td>
<td>Xu LL, Chen JX, Cheng JP, Luo N</td>
</tr>
<tr>
<td>1704</td>
<td>Challenging anticoagulation therapy for multiple primary malignant tumors combined with thrombosis: A case report and review of literature</td>
<td>Chen JX, Xu LL, Cheng JP, Xu XH</td>
</tr>
</tbody>
</table>

LETTER TO THE EDITOR

<table>
<thead>
<tr>
<th>Page</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>1712</td>
<td>Epinephrine also acts on beta cells and insulin secretion</td>
<td>Zabuliene L, Ilias I</td>
</tr>
</tbody>
</table>
ABOUT COVER
Peer Reviewer of World Journal of Clinical Cases, Luca Mezzetto, MD, Surgeon, Department of Vascular Surgery, University Hospital of Verona, Verona 37126, Italy. luca.mezzetto@aovr.veneto.it

AIMS AND SCOPE
The primary aim of World Journal of Clinical Cases (WJCC, World J Clin Cases) is to provide scholars and readers from various fields of clinical medicine with a platform to publish high-quality clinical research articles and communicate their research findings online.

WJCC mainly publishes articles reporting research results and findings obtained in the field of clinical medicine and covering a wide range of topics, including case control studies, retrospective cohort studies, retrospective studies, clinical trials studies, observational studies, prospective studies, randomized controlled trials, randomized clinical trials, systematic reviews, meta-analysis, and case reports.

INDEXING/ABSTRACTING
The WJCC is now abstracted and indexed in Science Citation Index Expanded (SCIE, also known as SciSearch®), Journal Citation Reports/Science Edition, Current Contents®/Clinical Medicine, PubMed, PubMed Central, Reference Citation Analysis, China Science and Technology Journal Database, and Superstar Journals Database. The 2023 Edition of Journal Citation Reports® cites the 2022 impact factor (IF) for WJCC as 1.1; IF without journal self cites: 1.1; 5-year IF: 1.3; Journal Citation Indicator: 0.26; Ranking: 133 among 167 journals in medicine, general and internal; and Quartile category: Q4.

RESPONSIBLE EDITORS FOR THIS ISSUE
Production Editor: Zi-Hang Xu; Production Department Director: Xiang Le; Cover Editor: Jin-Lei Wang.

NAME OF JOURNAL
World Journal of Clinical Cases

ISSN
ISSN 2307-8960 (online)

LAUNCH DATE
April 16, 2013

FREQUENCY
Thrice Monthly

EDITORS-IN-CHIEF
Bao-Gan Peng, Salim Surani, Jerzy Tadeusz Chudek, George Kontogeorgos, Maurizio Serati

EDITORIAL BOARD MEMBERS
https://www.wjgnet.com/2307-8960/editorialboard.htm

PUBLICATION DATE
March 26, 2024

COPYRIGHT
© 2024 Baishideng Publishing Group Inc

INSTRUCTIONS TO AUTHORS
https://www.wjgnet.com/bpg/gerinfo/204

GUIDELINES FOR ETHICS DOCUMENTS
https://www.wjgnet.com/bpg/gerinfo/287

GUIDELINES FOR NON-NATIVE SPEAKERS OF ENGLISH
https://www.wjgnet.com/bpg/gerinfo/240

PUBLICATION ETHICS
https://www.wjgnet.com/bpg/gerinfo/288

PUBLICATION MISCONDUCT
https://www.wjgnet.com/bpg/gerinfo/208

ARTICLE PROCESSING CHARGE
https://www.wjgnet.com/bpg/gerinfo/242

STEPS FOR SUBMITTING MANUSCRIPTS
https://www.wjgnet.com/bpg/gerinfo/239

ONLINE SUBMISSION
https://www.f6publishing.com
Retrospective Study

Factors influencing Frey syndrome after parotidectomy with acellular dermal matrix

Xian-Da Chai, Huan Jiang, Ling-Ling Tang, Jing Zhang, Long-Fei Yue

Abstract

BACKGROUND

Frey syndrome, also known as ototemporal nerve syndrome or gustatory sweating syndrome, is one of the most common complications of parotid gland surgery. This condition is characterized by abnormal sensations in the facial skin accompanied by episodes of flushing and sweating triggered by cognitive processes, visual stimuli, or eating.

AIM

To investigate the preventive effect of acellular dermal matrix (ADM) on Frey syndrome after parotid tumor resection and analyzed the effects of Frey syndrome across various surgical methods and other factors involved in parotid tumor resection.

METHODS

Retrospective data from 82 patients were analyzed to assess the correlation between sex, age, resection sample size, operation time, operation mode, ADM usage, and occurrence of postoperative Frey syndrome.

RESULTS

Among the 82 patients, the incidence of Frey syndrome was 56.1%. There were no significant differences in sex, age, or operation time between the two groups ($P > 0.05$). However, there was a significant difference between ADM implantation and occurrence of Frey syndrome ($P < 0.05$). ADM application could reduce the variation in the incidence of Frey syndrome across different operation modes.

CONCLUSION

ADM can effectively prevent Frey syndrome and delay its onset.
INTRODUCTION

Frey syndrome, also known as ototemporal nerve syndrome or gustatory sweating syndrome, is one of the most common complications of parotid gland surgery. This condition is characterized by abnormal sensations in the facial skin accompanied by episodes of flushing and sweating triggered by cognitive processes, visual stimuli, or eating [1]. This syndrome was first described by Lucie Frey in 1923; however, its precise pathogenesis remains unclear. The incidence rate of Frey syndrome varies greatly, ranging from 4% to 96% [2,3], attributed, in part, to differences in the diagnostic criteria for Frey syndrome [4] and differences in methods [5] and techniques used in parotid gland surgery. The primary therapeutic approach is managing associated symptoms. Notably, some researchers have diagnosed Frey syndrome using a minor test and evaluated its severity. Unfortunately, this diagnostic method only assesses subclinical patients without overt clinical symptoms. This inclusion has inadvertently increased the recorded incidence of Frey syndrome [6-8]. This retrospective study investigated the factors influencing the acellular dermal matrix (ADM) in the prevention of Frey syndrome in patients who have undergone parotid surgery.

MATERIALS AND METHODS

Research methods

In this retrospective analysis of clinical data from 126 patients who underwent parotid gland surgery in the Department of Oral and Maxillofacial Surgery at Anshun People's Hospital between January 2018 and December 2020, a total of 82 patients were deemed eligible for the study. Patients with parotid gland inflammation, patients who had undergone lymph node dissection, and patients who had undergone periparotid gland surgery during the same period were excluded. All patients provided informed consent for both computed tomography examinations and surgeries. Before the use of ADM, patients were informed regarding the manufacturer, safety, cost, and surgical benefits of ADM. The ADM used was the Hiao B-type oral repair membrane produced by Yantai Zhenghai Biological Technology (registration number: 20153460386).

Surgical method

A modified ‘S’ incision [9] was made in the conventional parotid area. The platysma muscle under the skin was incised, the parotid gland envelope was opened, and the envelope was preserved for tumors that did not invade it. The facial nerve was dissected retrogradely, and any tumor-invading segments of the facial nerve were resected. Partial parotid resection or total parotid lobectomy was performed, depending on the size and location of the tumor. The surgical method randomly categorized the patients into either the partial parotid resection group or the total parotid lobectomy group. The patients were randomly divided into a tissue patch implantation group and a control group according to their preoperative informed consent and willingness to undergo tissue patch implantation. After surgery, all patients underwent negative pressure ball drainage; for patients with an implanted tissue patch, the drainage tube was placed above the patch according to the product guidelines (Figure 1). Pressure was applied routinely for 14 d after surgery.

Diagnostic criteria for Frey syndrome

Patients were contacted by phone each month after surgery, during which they were questioned regarding symptoms, such as facial flushing, facial paresthesia, and facial sweating during eating. These responses were used to assess Frey syndrome using a subjective questionnaire. Positive Frey syndrome was defined as the presence of any of the four indicators.

Statistical analysis

Data analysis was performed using SPSS (version 25.0) to assess the correlations between age, sex, surgical method, size
of surgically removed samples, time of occurrence of postoperative Frey syndrome, and intraoperative application of ADM for the prevention of Frey syndrome. A logistic regression model was established to analyze the risk factors associated with Frey syndrome. Additionally, a receiver operating characteristic (ROC) curve was constructed to predict the diagnostic value of certain risk factors for Frey syndrome. The significance level for the tests was set at $\alpha = 0.05$.

RESULTS

Data of patients with Frey syndrome

A total of 82 patients were included in this study, 46 of whom developed Frey syndrome, an incidence rate of 56.1%. Among them, 43 (52.4%) experienced facial paresthesia after eating, 29 (35.4%) experienced facial flushing after eating, 13 (15.9%) exhibited facial sweating after eating, and 4 (4.9%) reported that these symptoms seriously affected their daily lives (Table 1).

Analysis of related Frey syndrome factors

The 82 patients were categorized into the Frey and non-Frey groups (Table 2). No significant differences were observed in terms of sex, age, or operation time between the two groups. However, a significant difference was noted in the occurrence of Frey symptoms between patients with and without ADM implantation ($P = 0.027$ and $P < 0.05$, respectively). Regarding the surgical methods, no significant difference was observed between the Frey and non-Frey groups ($P = 0.295$); however, there were significant differences in the various surgical approaches without ADM implantation ($P = 0.006$ and $P < 0.05$). All 82 patients were followed up for 16 months postoperatively. In the group with ADM implantation, the median time for Frey symptoms onset was 7.54 ± 3.2 months, whereas in the group without ADM implantation, it was 3.43 ± 2.33 months; these differences were significant ($P = 0.001$ and $P < 0.05$, respectively).

ROC curve analysis was performed to assess the relationship between the maximum diameter of the surgically resected sample and the occurrence of symptoms of Frey syndrome. The results indicated that the larger the diameter of the resected sample, the higher the probability of Frey syndrome occurrence, with an area under the curve (AUC) of 0.661 (Figure 2).

ROC curve analysis comparing the timing of ADM implantation with the timing of the occurrence of symptoms of Frey syndrome revealed that ADM could significantly delay the occurrence of Frey syndrome, with an AUC of 0.842 (Figure 3).

DISCUSSION

Frey syndrome is now commonly believed to be most likely caused by parotid gland surgery or injury. Destruction of parotid gland cyst integrity exposes the parasympathetic branch, which controls the parotid gland acinar secretion in the auriculotemporal nerve issued by the trigeminal nerve within the parotid gland and leads to its misplacement with the sympathetic nerve, which controls the skin sweat glands. Consequently, upon seeing or eating food, an individual’s parasympathetic branch is stimulated, resulting in secretion from skin sweat glands, leading to facial paresthesia, flushing, or sweating[10]. Frey syndrome occurred in 56.1% of the patients in this study, a rate similar to that reported in...
Table 1 Number and proportion of patients with different symptoms in the Frey symptoms group, n (%)

<table>
<thead>
<tr>
<th>Symptoms</th>
<th>Number and proportion of cases, n = 82</th>
</tr>
</thead>
<tbody>
<tr>
<td>Facial paresthesia after eating</td>
<td>43 (52.4)</td>
</tr>
<tr>
<td>Flushed cheeks after eating</td>
<td>29 (35.4)</td>
</tr>
<tr>
<td>Facial sweating after eating</td>
<td>13 (15.9)</td>
</tr>
<tr>
<td>Feeling that life is severely affected after surgery</td>
<td>4 (4.9)</td>
</tr>
</tbody>
</table>

Table 2 Baseline characteristics of patients after parotidectomy

<table>
<thead>
<tr>
<th>Clinical features</th>
<th>Frey group (n = 46)</th>
<th>Non-Frey group (n = 36)</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sex (male)</td>
<td>26 (56.52%)</td>
<td>20 (55.56%)</td>
<td>0.93</td>
</tr>
<tr>
<td>Age (yr)</td>
<td>48.09 ± 14.95</td>
<td>47.08 ± 16.31</td>
<td>0.97</td>
</tr>
<tr>
<td>Surgically removed sample size (maximum diameter, cm)</td>
<td>3.40 ± 0.97</td>
<td>2.878 ± 0.79</td>
<td>0.029²</td>
</tr>
<tr>
<td>Method of surgery</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ADM implants</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Partial removal of parotid gland</td>
<td>8</td>
<td>9</td>
<td>0.295</td>
</tr>
<tr>
<td>Complete removal of parotid gland</td>
<td>3</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>No-implant ADM</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Partial removal of parotid gland</td>
<td>21</td>
<td>18</td>
<td>0.006¹</td>
</tr>
<tr>
<td>Complete removal of parotid gland</td>
<td>14</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Procedure time (min)</td>
<td>198.54 ± 43.87</td>
<td>185.97 ± 57.75</td>
<td>0.92</td>
</tr>
<tr>
<td>Implanted ADM</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>11</td>
<td>17</td>
<td>0.027¹</td>
</tr>
<tr>
<td>No</td>
<td>35</td>
<td>19</td>
<td></td>
</tr>
<tr>
<td>Time of Frey sign occurrence (months)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Implant ADM</td>
<td>7.54 ± 3.2</td>
<td>0</td>
<td>0.001¹</td>
</tr>
<tr>
<td>Non-implant ADM</td>
<td>3.43 ± 2.33</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

¹Comparison of the time when Frey signs occurred with and without acellular dermal matrix implantation.
ADM: Acellular dermal matrix.

most studies[11]. ROC analysis of the tumor sample diameter demonstrated that a resected sample with a larger area was correlated with a higher probability of Frey syndrome occurrence (AUC = 0.661). This finding was consistent with the results presented by Lin et al[12]. Therefore, it was concluded that the probability of Frey syndrome increased when the resected tumor diameter exceeded 4 cm[12,13]. ADM can effectively prevent the occurrence of Frey syndrome after resection. Favorable outcomes have been achieved using sternocleidomastoid flap[14] and superficial muscle aponeurotic system flap[15]. For the prevention of Frey syndrome. However, it is important to note that the flap preparation process inevitably prolongs the operation time. In this study, there was no significant difference in operation time between the ADM and non-ADM groups, indicating that this method did not extend the operation time in the context of Frey syndrome prevention. Significant differences in the incidence of Frey syndrome were evident among different surgical methods without ADM. Total parotid excision was more likely to result in Frey syndrome, likely because of the removal of excessive parotid tissue that could potentially damage more ototemporal nerve endings[16]. This can contribute to more dislocation-related complications during nerve injury reconstruction. The use of ADM reduced the variability in the occurrence of Frey syndrome between surgical methods. According to the currently available parotid surgery guidelines [17] for benign tumors, preference is given to extracapsular resection or endoscopic minimally invasive surgery[18,19] to reduce the risk of Frey syndrome. However, in cases of tumors > 4 cm in diameter or located deeper within the parotid gland, total parotid excision combined with ADM[20] to decrease postoperative recurrence and prevent Frey syndrome is recommended.

Regarding the timing of Frey syndrome occurrence, non-implantation of ADM resulted in Frey syndrome occurring approximately 3 months after the operation, consistent with the neural reconstruction theory that the occurrence time for the middle auriculotemporal nerve is abnormal[16]. After ADM implantation, the onset of Frey syndrome was delayed by...
CONCLUSION

In conclusion, the application of ADM affects Frey syndrome prevention. However, it is important to note that ADM degrades within approximately six months, and Frey syndrome may still occur after this degradation. Nonetheless, because of the limited number of Frey syndrome cases following ADM implantation in this study, the results may be biased. Additionally, controlling the diameter of the excised samples can help prevent the occurrence of Frey syndrome.
ARTICLE HIGHLIGHTS

Research background
Frey syndrome, also known as ototemporal nerve syndrome or guest-sweating syndrome, is one of the most common complications of parotid gland surgery. It is characterized by abnormal facial skin sensations, flushing, or sweating when the patient thinks, sees, or eats.

Research motivation
This inclusion has inadvertently increased the recorded incidence of Frey syndrome. This retrospective study investigated the factors influencing the acellular dermal matrix (ADM) in the prevention of Frey syndrome in patients who have undergone parotid surgery.

Research objectives
Because of the effects of frey syndrome, there was a need to find a way to reduce its incidence

Research methods
The data of 82 patients were retrospectively analyzed using SPSS 25.0, and the correlations between sex, age, resection sample size, operation time, operation mode, ADM use, and postoperative Frey syndrome were analyzed.

Research results
The incidence of Frey syndrome was 56.1% among the 82 patients. There were no significant differences in sex, age, or operation time between the two groups ($P > 0.05$). There was a significant difference between ADM implantation and the onset of symptoms of Frey syndrome ($P < 0.05$). ADM can reduce the variation in Frey syndrome onset. ADM can delay the onset of Frey signs.

Research conclusions
the application of ADM affects Frey syndrome prevention. However, it is important to note that ADM degrades within approximately six months, and Frey syndrome may still occur after this degradation. Additionally, controlling the diameter of the excised samples can help prevent the occurrence of Frey syndrome.

Research perspectives
The incidence of Frey syndrome was reduced by surgery and the implantation of ADM.

FOOTNOTES

Author contributions: Chai XD and Yue LF designed the study, analyzed the data and prepared the manuscript; Jiang H, Tang LL and Zhang J collected the data; Chai XD interpreted the data; All authors have read and approved the manuscript.

Institutional review board statement: The study was reviewed and approved by the Anshun People's Hospital Ethics Committee (Approval No. 3).

Informed consent statement: The patient provided informed written consent prior to study enrollment.

Conflict-of-interest statement: The authors declare no conflict-of-interest.

Data sharing statement: Technical appendix, statistical code, and dataset available from the corresponding author at email lonhfei_yue@163.com. Participants gave informed consent for data.

Open-Access: This article is an open-access article that was selected by an in-house editor and fully peer-reviewed by external reviewers. It is distributed in accordance with the Creative Commons Attribution NonCommercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commerially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: https://creativecommons.org/Licenses/by-nc/4.0/

Country/Territory of origin: China

ORCID number: Xian-Da Chai 0009-0002-2896-8921; Long-Fei Yue 0000-0001-5086-7866.

S-Editor: Zhang H
L-Editor: A
P-Editor: Xu ZH
REFERENCES

