Contents

MINIREVIEWS

54 Chronic hepatitis B-associated liver disease in the context of human immunodeficiency virus co-infection and underlying metabolic syndrome
 Amponsah-Dacosta E, Tamandjou Tchuem C, Anderson M

67 Thymosin alpha 1: A comprehensive review of the literature

SYSTEMATIC REVIEWS

ABOUT COVER
Editorial board member of World Journal of Virology, Dr. Simone Gianneckichini is a Professor at the University of Florence, in Florence, Italy. He received his Bachelor’s degree in Biology in 1993 and his PhD in Immunobiology of Viruses in 1998, both from the University of Pisa, Italy. He undertook the position of Researcher in Microbiology and Clinical Microbiology at University of Florence in 2004, where he advanced to Associate Professor in 2018. His ongoing research interests involve cellular and molecular biology applied to the study of pathogenesis of viral infections and their prevention. His most recent investigations focus on the role of association of viruses to extracellular vesicles in viral persistence. (L-Editor: Filipodia)

AIMS AND SCOPE
The primary aim of World Journal of Virology (WJV, World J Virol) is to provide scholars and readers from various fields of virology with a platform to publish high-quality basic and clinical research articles and communicate their research findings online.

WJV mainly publishes articles reporting research results obtained in the field of virology and covering a wide range of topics including arbovirus infections, viral bronchiolitis, central nervous system viral diseases, coinfection, DNA virus infections, viral encephalitis, viral eye infections, chronic fatigue syndrome, animal viral hepatitis, human viral hepatitis, viral meningitis, opportunistic infections, viral pneumonia, RNA virus infections, sexually transmitted diseases, viral skin diseases, slow virus diseases, tumor virus infections, viremia, and zoonoses.

INDEXING/ABSTRACTING
The WJV is now abstracted and indexed in PubMed, PubMed Central, China National Knowledge Infrastructure (CNKI), and Superstar Journals Database.

RESPONSIBLE EDITORS FOR THIS ISSUE
Production Editor: Yan-Xia Xing; Production Department Director: Yan-Xiaojian Wu; Editorial Office Director: Dong-Mei Wang

NAME OF JOURNAL
World Journal of Virology

ISSN
ISSN 2220-3249 (online)

LAUNCH DATE
February 12, 2012

FREQUENCY
Continuous Publication

EDITORS-IN-CHIEF
Mahmoud El-Bendary, En-Qiang Chen

EDITORIAL BOARD MEMBERS
https://www.wjgnet.com/2220-3249/editorialboard.htm

PUBLICATION DATE
December 15, 2020

COPYRIGHT
© 2020 Baishideng Publishing Group Inc

INSTRUCTIONS TO AUTHORS
https://www.wjgnet.com/bpg/gerinfo/204

GUIDELINES FOR ETHICS DOCUMENTS
https://www.wjgnet.com/bpg/GerInfo/287

GUIDELINES FOR NON-NATIVE SPEAKERS OF ENGLISH
https://www.wjgnet.com/bpg/GerInfo/240

PUBLICATION ETHICS
https://www.wjgnet.com/bpg/GerInfo/288

PUBLICATION MISCONDUCT
https://www.wjgnet.com/bpg/GerInfo/208

ARTICLE PROCESSING CHARGE
https://www.wjgnet.com/bpg/GerInfo/242

STEPS FOR SUBMITTING MANUSCRIPTS
https://www.wjgnet.com/bpg/GerInfo/239

ONLINE SUBMISSION
https://www.f6publishing.com

SeyedAhmad SeyedAlinaghi, Shahram Oliaei, Shaghayegh Kianzad, Amir Masoud Afsahi, Mehrzad MohsseniPour, Alireza Barzegary, Pegah Mirzapour, Farzane Behnezhad, Tayebeh Noori, Esmaeil Mehraeen, Omid Dadras, Fabricio Voltarelli, Jean-Marc Sabatier

ORCID number: SeyedAhmad SeyedAlinaghi 0000-0003-3210-7905; Shahram Oliaei 0000-0002-6359-8770; Shaghayegh Kianzad 0000-0002-8873-1945; Amir Masoud Afsahi 0000-0002-8906-7767; Mehrzad MohsseniPour 0000-0002-1378-2828; Alireza Barzegary 0000-0002-7039-1049; Pegah Mirzapour 0000-0003-3533-8469; Farzane Behnezhad 0000-0003-4925-9067; Tayebeh Noori 0000-0001-9295-0756; Esmaeil Mehraeen 0000-0003-4108-2973; Omid Dadras 0000-0001-9385-2170; Fabricio Voltarelli 0000-0002-8077-8941; Jean-Marc Sabatier 0000-0002-9040-5647.

Author contributions: Mehraeen E and SeyedAlinaghi S conceived and designed the study; Afsahi AM and Behnezhad F acquired the data; Kianzad S, Oliari S, and Barzegary A analyzed and interpreted the data; Mehraeen E and Noori T drafted the article; SeyedAlinaghi S, MohsseniPour M, and Mirzapour P critically revised the manuscript for important intellectual content; Dadras O, Voltarelli F, and Sabatier JM completed final approval of the version to be submitted.

Conflict-of-interest statement: The authors confirm that they have no conflict of interest.

SeyedAhmad SeyedAlinaghi, Mehrzad MohsseniPour, Pegah Mirzapour, Iranian Research Center for HIV/AIDS, Iranian Institute for Reduction of High Risk Behaviors, Tehran University of Medical Sciences, Tehran 1586489615, Iran

Shahram Oliaei, HBOT Research Center, Golestan Hospital, Islamic Republic of Iran, Navy and AJA Medical University, Tehran 7134845794, Iran

Shaghayegh Kianzad, School of Medicine, Iran University of Medical Sciences, Tehran 7134845794, Iran

Amir Masoud Afsahi, Department of Radiology, School of Medicine, University of California, San Diego (UCSD), California, CA 587652458, United States

Alireza Barzegary, School of Medicine, Islamic Azad University, Tehran 7134845794, Iran

Farzane Behnezhad, Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran 7134845794, Iran

Tayebeh Noori, Department of Health Information Technology, Zabol University of Medical Sciences, Zabol 5486952364, Iran

Esmaeil Mehraeen, Department of Health Information Technology, Khalkhal University of Medical Sciences, Khalkhal 1419733141, Iran

Omid Dadras, Department of Global Health and Socioepidemiology, Graduate School of Medicine, Kyoto University, Kyoto 215789652, Japan

Fabricio Voltarelli, Graduation Program of Health Sciences, Faculty of Medicine, Federal University of Mato Grosso, Cuiabá 458796523, Brazil

Jean-Marc Sabatier, Université Aix-Marseille, Institutde Neuro-physiopathologie (INP), UMR 7051, Faculté de Pharmacie, 27 Bd Jean Moulin, Marseille 546789235, France

Corresponding author: Esmaeil Mehraeen, PhD, Assistant Professor, Department of Health Information Technology, Khalkhal University of Medical Sciences, Azizi, Khalkhal 1419733141, Iran. es.mehraeen@gmail.com
Abstract

BACKGROUND
There is recently a concern regarding the reinfection and reactivation of previously recovered coronavirus disease 2019 (CoVID-19) patients.

AIM
To summarize the recent findings and reports of CoVID-19 reinfection in patients previously reCoVered from the disease.

METHODS
This study was a systematic review of current evidence conducted in August 2020. The authors studied the probable reinfection risk of novel coronavirus (CoVID-19). We performed a systematic search using the keywords in online databases. The investigation adheres to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) checklist to ensure the reliability and validity of this study and results.

RESULTS
We reviewed 31 studies. Eight studies described reCoVered patients with reinfection. Only one study reported reinfected patients who died. In 26 studies, there was no information about the status of the patients. Several studies indicated that reinfection is not probable and that post-infection immunity is at least temporary and short.

CONCLUSION
Based on our review, we concluded that a positive polymerase chain reaction retest could be due to several reasons and should not always be considered as reinfection or reactivation of the disease. Most relevant studies in positive retest patients have shown relative and probably temporary immunity after the reCoVer of the disease.

Key Words: Reactivation; Reinfection; Postinfection; Coronavirus; CoVID-19; SARS-CoV-2

©The Author(s) 2020. Published by Baishideng Publishing Group Inc. All rights reserved.

INTRODUCTION

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), a new strain of coronavirus, causes coronavirus disease 2019 (CoVID-19), which was first reported in
China in late 2019 and then spread rapidly worldwide\(^1\). The symptoms of COVID-19 are high temperature, dry cough, shortness of breath, headache, tiredness, loss of taste or smell, and gastrointestinal symptoms such as diarrhea, anorexia, nausea, and abdominal pain\(^2\). Increased liver enzyme and low counts of lymphocytes (lymphocytopenia) along with increased C-reactive protein (CRP) levels are often present in COVID-19 patients\(^3\). It could eventually lead to acute respiratory distress syndrome (ARDS) and death\(^4\). Although there is currently no certainty in virus biological behavior and risk of recurrence in the human body, recent studies reported evidence of the virus reactivation following an asymptomatic COVID-19 infection in a small group of patients\(^5\).\(^6\).

The risk factors of SARS-CoV-2 reactivation are related to the type of immunosuppressive therapies, factors in the host such as older age, gender, underlying diseases such as diabetes, heart disease, obesity, cancer, and virologic factors\(^1\)\(^4\). Some viruses such as varicella-zoster can remain dormant in host cells for some time, not causing any illness and then reactivate and cause the disease. Recent evidence indicates that SARS-CoV-2 could present similar behavior and reactivate in patients with previously confirmed COVID-19 infection and cause illness and person-to-person transmission\(^7\).\(^8\).

Recent studies reported that some recovered COVID-19 patients tested positive for virus nucleic acid again\(^9\)\(^10\). Elderly people with comorbidities are more likely to present with COVID-19 reinfection\(^11\). Studies suggested that there are three major mechanisms for the reinfection of COVID-19, including short-lived, ineffective, and strain-specific immune response\(^12\).\(^13\).

The gold standard test for diagnosing SARS-CoV-2 infection is nasopharyngeal swab. Swabs from patients who recovered from COVID-19 infection are negative, indicating full recovery from COVID-19 infection. However, a certain number of individuals could be a false negative\(^14\), because the samples for identifying SARS-CoV-2 viral load depend on the result of reverse transcription polymerase chain reaction (RT-PCR). SARS-CoV-2 uses angiotensin-converting enzyme-2 (ACE-2) as the receptor for cellular entry. The expression of ACE2 protein in the lungs is more than that in the upper respiratory tract. Therefore, it is important from which site the sample was taken in a patient with COVID-19, as it may cause false-negative RT-PCR results\(^15\).

In recent studies, SARS-CoV-2 was detected in fecal and sputum specimens of patients who were discharged from the hospital with a negative pharyngeal swab after a couple of weeks\(^16\)\(^17\). In other coronavirus pandemics such as Middle East respiratory syndrome (MERS) and severe acute respiratory syndrome (SARS), immunoglobulin levels in patients lasted for a minimum of 2 years, indicating that patients could be vulnerable to reinfection after 3 years\(^18\).\(^19\). The tests that detect SARS-CoV-2 genetic material are very sensitive; however, in patients who have recovered from COVID-19, virus fragments can persist in the body and can be detected by the test. This should not be considered as a new infection\(^20\).

The reinfection in patients recovered from COVID-19 could create a serious challenge in tackling the COVID-19 pandemic as the recovered patients could be a source of virus spread in society\(^21\).\(^22\). Previous studies have found a positive viral ribonucleic acid (RNA) test in some discharged COVID-19 patients 10 to 27 d after recovery\(^23\).\(^24\). Recurrence of COVID-19 after recovery should be differentiated from secondary medical conditions such as super infection, pulmonary embolism, or persistent RNA virus that can be discovered in respiratory specimens in clinically cured COVID-19 patients\(^25\). This review aims to provide a systematic compilation of SARS-CoV-2 reactivation in recovered COVID-19 patients.

MATERIALS AND METHODS

This study was a systematic literature review of current evidence conducted in August 2020. The authors studied the probable reinfection risk of novel coronavirus (COVID-19). Our study adheres to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) checklist to ensure the reliability and validity of this study and results.

Data sources

By application of a systematic search and using the keywords in the online databases including PubMed, Scopus, Web of Science, and Science Direct, we extracted all the relevant papers and reports published in English from December 2019 through August
2020. We included several combinations of keywords in the following orders to conduct the search strategy: (1) “Coronavirus” or “CoVID-19” or “SARS-CoV-2” or “Novel Coronavirus” or “2019-nCoV” [Title/Abstract]; (2) “Reactivation” or “Reinfection” or “Postinfection” [Title/Abstract]; and (1) and (2).

Study selection

Three independent investigators retrieved the studies that were the most relevant by titles and abstracts. Subsequently, the full text of the retrieved papers was reviewed and the most relevant papers were chosen according to the eligibility criteria. Then, we extracted the relevant data and organized them in Tables. The original papers that were peer-reviewed and published in English and fulfilled the eligibility criteria were included in the final report.

We considered the exclusion criteria for this study as follows: (1) Papers conveying non-human studies including in vitro observations or articles focusing on animal experiments, or discussing CoVID-19 as a whole subject, without citation of the keywords of this study; (2) Papers in which their full text were out of access; and (3) Any suspicious and duplicated results in the databases.

Data extraction

After summarizing, we transferred the information of the authors, type of article (e.g., case reports), publication date, country of origin, sample size, age, gender, and clinical symptoms to a data extraction sheet. Two independent investigators collected this information and subsequently organized them in the Tables. Finally, to ensure no duplications or overlap exist in the content, all the selected articles were cross-checked by other authors.

Quality assessment

As aforementioned, we applied the PRISMA checklist to ensure the quality and reliability of selected articles. Two independent researchers evaluated the consistency and quality of the articles and the bias risk. In either case of discrepancy in viewpoints, a third independent researcher resolved the issue. The full text of selected articles was fully read, and the key findings were extracted.

RESULTS

In this study, 981 documents were identified using a systematic search strategy. After a primary review of retrieved articles, 498 duplicates were removed, and the title and abstract of the remaining 483 resources were reviewed. After applying the selection criteria, 552 articles were excluded, and only 31 articles met the inclusion criteria and were included in the final review (Figure 1).

We have reviewed 35 studies. Eight studies described reCoVered patients with reinfection. Only one study reported reinfected patients who died. In 26 studies, there was no information about the status of the patients (Table 1).

Several studies indicated that reinfection is not probable and that postinfection immunity is at least temporarily and short; however, other studies, particularly from South Korea and China, reported some reinfection cases. South Korea reported that 116 reCoVered cases of CoVID-19 were found to be positive again. Another study from South Korea reported that up to 163 patients who were presumed to have reCoVered from SARS-CoV-2 ended up testing positive again. Several studies from China do not support reinfection. There is only one study from China that reported five cases of reactivation. The results of the present study showed that there are many factors that we need to take into account about reinfection. Some cases may have resulted in a false negative at discharge or patients did not completely meet discharge criteria. Although we should not forget that reinfection could be possible, because some studies have shown humoral immunity weakens over time.

DISCUSSION

Due to the widespread expansion of the CoVID-19 epidemic around the world, there are more and more infected cases, and of course, many people have reCoVered from this viral infection. However, there is recently a concern regarding the reinfection in
Table 1 Identified reinfection risk of novel coronavirus

<table>
<thead>
<tr>
<th>ID</th>
<th>Ref.</th>
<th>Type of study</th>
<th>Country</th>
<th>Study population</th>
<th>Reinfection outcome</th>
<th>Other findings</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Alizargar et al[16]</td>
<td>Letter to the editor</td>
<td>South Korea</td>
<td>CoVID-19 patients</td>
<td>No</td>
<td>South Korea reported that 116 reCoVered cases of CoVID-19 were found positive again</td>
</tr>
<tr>
<td>2</td>
<td>Gousseff et al[25]</td>
<td>Letter to the editor</td>
<td>France</td>
<td>CoVID-19 patients</td>
<td>Yes</td>
<td>Between April 6 and May 14, 2020, 11 patients were identified (sex ratio M/F 1.2, median age 55, range 19-91 yr). The median duration of symptoms was 18 (13-41) d for the first episode and 10 d for the second one for the 7 patients who eventually reCoVered</td>
</tr>
<tr>
<td>3</td>
<td>Chaturvedi et al[17]</td>
<td>Review</td>
<td>South Korea</td>
<td>CoVID-19 patients</td>
<td>No</td>
<td>Concerning reports released from the Korea Centers for Disease Control and Prevention (KCDC) have noted that up to 163 patients who were presumed to have reCoVered from SARS-CoV-2 infection ended up testing positive with PCR testing yet again</td>
</tr>
<tr>
<td>4</td>
<td>Gomez-Mayordomo et al[18]</td>
<td>Short communication</td>
<td>Spain</td>
<td>A case study in a patient with relapsing-remitting MS treated with fingolimod</td>
<td>No</td>
<td>This case suggests that discontinuation of fingolimod during CoVID-19 could imply a worsening of SARS-CoV-2 infection. No information about reinfection</td>
</tr>
<tr>
<td>5</td>
<td>Hageman et al[19]</td>
<td>Editorial</td>
<td>United States</td>
<td>CoVID-19 in children</td>
<td>Yes</td>
<td>Limited data suggest that reCoVer might confer immunity</td>
</tr>
<tr>
<td>6</td>
<td>Hoang et al[23]</td>
<td>Letter to the editor</td>
<td>France</td>
<td>Patients reCoVered from CoVID-19</td>
<td>No</td>
<td>Recurrence of SARS-CoV-2 in patients who had reCoVered from CoVID-19 has been described. However, it is possible that recurrences could actually be persistent infections in which the PCR resulted falsely negative at discharge</td>
</tr>
<tr>
<td>7</td>
<td>Inamo et al[24]</td>
<td>Letter of biomedical and clinical research</td>
<td>Japan</td>
<td>CoVID-19 patients</td>
<td>No</td>
<td>-</td>
</tr>
<tr>
<td>8</td>
<td>Islam et al[24]</td>
<td>Review article</td>
<td>Bangladesh</td>
<td>CoVID-19 patients</td>
<td>No</td>
<td>There is a possibility of reinfection as the humoral immunity weakens over time</td>
</tr>
<tr>
<td>9</td>
<td>Kang et al[26]</td>
<td>Commentary</td>
<td>China</td>
<td>CoVID-19 patients</td>
<td>No</td>
<td>ReCoVered patients become retest positive due to false-negative PCR or patients did not completely meet discharge criteria or due to dead viruses</td>
</tr>
<tr>
<td>10</td>
<td>Kannan et al[29]</td>
<td>Review article</td>
<td>India</td>
<td>Gene study between SARS-CoV-2 and SARS-CoV-1 and batCoV and MERS-CoV</td>
<td>No</td>
<td>Many researchers observed that there is SARS-CoV-2 reinfection in the same treated patients</td>
</tr>
<tr>
<td>11</td>
<td>Karimi et al[30]</td>
<td>Letter to the editor</td>
<td>Iran</td>
<td>CoVID-19 patients</td>
<td>Yes</td>
<td>-</td>
</tr>
<tr>
<td>12</td>
<td>Kassa et al[31]</td>
<td>Analytic article</td>
<td>Botswana</td>
<td>CoVID-19 patients</td>
<td>No</td>
<td>Not related to our topic but it is said “reinfection” by the family of coronavirus is possible</td>
</tr>
<tr>
<td>13</td>
<td>Kellam et al[32]</td>
<td>Review article</td>
<td>United Kingdom</td>
<td>Patients with coronavirus infection</td>
<td>No</td>
<td>Immediate reinfection is not possible but reinfection of previously mild SARS-CoV-2 cases is a realistic possibility</td>
</tr>
<tr>
<td>14</td>
<td>Kirkcaldy et al[33]</td>
<td>Viewpoint</td>
<td>United States</td>
<td>CoVID-19 Patients</td>
<td>No</td>
<td>ReCoVer from CoVID-19 might confer immunity against reinfection, at least temporarily</td>
</tr>
<tr>
<td>No</td>
<td>Authors</td>
<td>Type</td>
<td>Country</td>
<td>Diagnosis</td>
<td>Reinfected</td>
<td>Recovered</td>
</tr>
<tr>
<td>----</td>
<td>--------------------------</td>
<td>-----------------</td>
<td>---------</td>
<td>----------------------------</td>
<td>------------</td>
<td>-----------</td>
</tr>
<tr>
<td>15</td>
<td>Koks et al[40]</td>
<td>Commentary</td>
<td>Australia</td>
<td>CoVID-19 patients</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>16</td>
<td>Law et al[49]</td>
<td>Letter to the editor</td>
<td>China/Hong Kong</td>
<td>Patients reCoVered from CoVID-19</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>17</td>
<td>Laxminarayan et al[41]</td>
<td>Perspective</td>
<td>India</td>
<td>CoVID-19 in children</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>18</td>
<td>Leslie et al[42]</td>
<td>Letter</td>
<td>United States</td>
<td>SARS-CoV-2 patients</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>19</td>
<td>Luo et al[43]</td>
<td>Case report</td>
<td>China</td>
<td>Woman with CoVID-19</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>20</td>
<td>Meca-Lallana et al[44]</td>
<td>Correspondence</td>
<td>Spain</td>
<td>CoVID-19 patients with MS</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>21</td>
<td>Okhuese et al[45]</td>
<td>Statistical</td>
<td>Nigeria</td>
<td>CoVID-19 patients</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>22</td>
<td>Omer et al[46]</td>
<td>Viewpoint</td>
<td>United States</td>
<td>CoVID-19 patients in the United States</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>23</td>
<td>Ota et al[47]</td>
<td>In brief</td>
<td>United States</td>
<td>Rhesus monkeys</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>24</td>
<td>Ozdinc et al[48]</td>
<td>Statistical</td>
<td>Turkey</td>
<td>Turkish people infected with CoVID-19</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>25</td>
<td>Roy et al[49]</td>
<td>Review</td>
<td>India</td>
<td>CoVID-19 patients</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>26</td>
<td>Steinchen et al[50]</td>
<td>Case report</td>
<td>Germany</td>
<td>A case of rheumatoid arthritis and CoVID-19 patient</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>27</td>
<td>Ueffing et al[51]</td>
<td>Review</td>
<td>Germany</td>
<td>CoVID-19 patients</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>28</td>
<td>Verhagen et al[52]</td>
<td>Research study</td>
<td>England and Wales</td>
<td>CoVID-19 patients</td>
<td>No</td>
<td>No</td>
</tr>
</tbody>
</table>
Patients presenting with COVID-19 associated post-infectious cytokine release syndrome appear to present with prolonged fever (5 d or greater) and GI symptoms with or without rash. This syndrome may overlap with features of Kawasaki Disease and Toxic Shock Syndrome. Patients who present with this clinical picture should have frequent vital signs and will require admission due to the potential for rapid deterioration.

These results implied that the positive result is unlikely caused by the reinfection from others or the remained virus. Rather, it may derive from the remained virus transferred from the lower respiratory tract to the throat or nose with coughing. Accordingly, it is suggested that the specimen detection of bronchoalveolar lavage fluid from the lower respiratory tract should be used as the discharge criteria.

Re-fever and positive nucleic acid test after discharge from the hospital might be due to the biological characteristics of SARS-CoV-2, and might also be related to the basic disease, clinical status, glucocorticoid use, sampling, processing, and detecting of patients, and some even related to the reinfection or secondary bacterial virus infection.

CoVID-19: Coronavirus disease 2019; F: Female; GI: Gastrointestinal; HBV: Hepatitis B virus; M: Male; MERS-CoV: Middle East respiratory syndrome-coronavirus; MS: Multiple sclerosis; PCR: Polymerase chain reaction; SARS-CoV-2: Severe acute respiratory syndrome coronavirus 2.

<table>
<thead>
<tr>
<th>Case reports</th>
<th>United States</th>
<th>Children with CoVID-19 infection</th>
<th>No</th>
<th>No</th>
<th>Yes</th>
</tr>
</thead>
<tbody>
<tr>
<td>29 Waltuch et al[52]</td>
<td>United States</td>
<td>Children with CoVID-19 infection</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Research study</td>
<td>China</td>
<td>CoVID-19 patients</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Tao et al[29]</td>
<td>Review</td>
<td>China</td>
<td>CoVID-19 patients</td>
<td>No</td>
<td>No</td>
</tr>
</tbody>
</table>

CoVID-19: Coronavirus disease 2019; F: Female; GI: Gastrointestinal; HBV: Hepatitis B virus; M: Male; MERS-CoV: Middle East respiratory syndrome-coronavirus; MS: Multiple sclerosis; PCR: Polymerase chain reaction; SARS-CoV-2: Severe acute respiratory syndrome coronavirus 2.
SeyedAlinaghi S et al. Reinfection risk of COVID-19

Figure 1 Flow diagram for the selection process of identified articles.

particular type\cite{24}. Although there are previous studies that suggest the reinfection with SARS-CoV-2 is unlikely, we must maintain vigilance during the convalescence period and consider the probability of genetic mutations as observed rather than reinfection by the same strain\cite{6,29,33,34}.

The results of the present study showed that there are many factors that we need to take into account about reinfection. Some cases may have resulted in false negative at discharge or patients did not completely meet discharge criteria. We should not forget, however, that reinfection could be possible because some studies have shown humoral immunity weakens over time. The certainty regarding the reinfection in CoVID-19 patients is limited, and we strongly recommend further studies to explore the virological, immunological, and epidemiologic characteristics of SARS-CoV-2 to determine the biological behavior of the virus and describe the potential mechanisms of disease recurrences.

CONCLUSION

In conclusion, positive PCR retest results could be due to several reasons such as the type of specimen collection and technical errors associated with each component of swab testing, the methods used before discharging patients, prolonged viral shedding, and infection by mutated SARS-CoV-2. Thus, it should not always be considered as a reinfection or reactivation of the disease. Furthermore, most relevant studies on symptomatic and positive retest patients have shown relative and probably temporary immunity after the reCoVery of the disease, which means that immunity acquired following primary infection with SARS-CoV-2 may protect from subsequent exposure to the virus at least for a limited period.
ARTICLE HIGHLIGHTS

Research background
Due to the high rate of transmission of coronavirus disease 2019 (CoVID-19), a large number of people around the world became infected with the virus. There is evidence of reinfection with this virus. Therefore, people who get the disease once may be reinfected after recovery. Further investigation of reinfection by CoVID-19 is one of the necessities for better management of current conditions.

Research motivation
There have been reports of recovered individuals who have a second positive coronary test. This has raised concerns that there is no guarantee that the body will be safe after corona disease, even in the short term.

Research objectives
The aim of the present study was to investigate the available evidence of reinfection in patients with CoVID-19 who have recovered.

Research methods
This is a review study of different research types. Since there are myriads of publications released each and every day, with each trying to shed light on this pandemic from different perspectives, we aimed to summarize the very recent and of course the most trustworthy studies regarding the possibility of reinfection of CoVID-19 in this review in order to provide health care professionals and researchers imminent access to a multitude of these studies via a concise resource to save their invaluable time for other yet to do tasks.

Research results
The results have shown that there is a slight chance of reinfection. Though the duration of immunity is still unknown and needs to be determined; there is no guarantee that infected patients will not be infected again according to our results. These reinfections can be related to immunity system problems in cases of immunosuppressive disease or drugs that can misdirect our results, but there were many cases that got reinfected without any sign of the problems mentioned above.

Research conclusions
Based on the available evidence, reinfection in improved patients has been proven. Still, there is not enough data to definitely distinguish reinfection, reactivation, or infection with a new mutated severe acute respiratory syndrome coronavirus 2. So, further studies are necessary to understand if a CoVID-19 recurrence is possible and whether it could be considered a real threat.

Research perspectives
We strongly suggest further studies to follow up discharged CoVID-19 patients, check their course of symptoms periodically, and analyze related antibody levels; widespread virological studies are necessary to understand better this new global predicament.

ACKNOWLEDGEMENTS
The present study was conducted in collaboration with Khalkhal University of Medical Sciences, Iranian Institute for Reduction of High Risk Behaviors, Tehran University of Medical Sciences and Department of Global Health and Socio-epidemiology, Kyoto University.

REFERENCES

36 Karimi A, Shirvani F, Seif K. Reinfection or relapse in sars-CoV-2-infected patients; does it occur? Arch Pediatr Infect Dis 2020; 8: e103466 [DOI: 10.5812/archid.103466]

42 Leslie M. T cells found in coronavirus patients ‘bode well’ for long-term immunity. Science 2020; 368: 809-810 [PMID: 32439770 DOI: 10.1126/science.368.6493.809]

45 Ohukeae AV. Estimation of the Probability of Reinfection With CoVID-19 by the Susceptible-Exposed-Infectious-Removed-Undetectable-Susceptible Model. JMIJ Public Health Surferv 2020; 6: e19007 [DOI: 10.2196/19007]

47 Ota M. Will we see protection or reinfection in CoVID-19? Nat Rev Immunol 2020; 20: 351 [PMID: 32303697 DOI: 10.1038/s41577-020-0316-3]

51 Verhagen MD, Brazel DM, Dowd JB, Kashnitsky I, Mills MC. Forecasting spatial, socioeconomic

