EDITORIAL
1247 Interactive platform for peer review: A proposal to improve the current peer review system
Emile SH

MINIREVIEWS
1251 Animal models of cathartic colon

ORIGINAL ARTICLE
Case Control Study
1259 New indicators in evaluation of hemolysis, elevated liver enzymes, and low platelet syndrome: A case-control study
Kang SY, Wang Y, Zhou LP, Zhang H

Retrospective Study
1271 Analysis of hospitalization costs related to fall injuries in elderly patients
Su FY, Fu ML, Zhao QH, Huang HH, Luo D, Xiao MZ
1284 Effect of alprostadil in the treatment of intensive care unit patients with acute renal injury
Jia Y, Liu LL, Su JL, Meng XH, Wang WX, Tian C

Clinical Trials Study
1293 Etomidate vs propofol in coronary heart disease patients undergoing major noncardiac surgery: A randomized clinical trial
Dai ZL, Cai XT, Guo WL, Lin M, Lin J, Jiang YX, Jiang X

Observational Study
1304 Healthy individuals vs patients with bipolar or unipolar depression in gray matter volume
Zhang YN, Li H, Shen ZW, Xu C, Huang YJ, Wu RH
1318 Impact of metabolism-related mutations on the heart rate of gastric cancer patients after peritoneal lavage
Yuan Y, Yao S, Luo GH, Zhang XY

CASE REPORT
1329 Efficacy of afatinib in a patient with rare EGFR (G724S/R776H) mutations and amplification in lung adenocarcinoma: A case report
He SY, Lin QF, Chen J, Yu GP, Zhang JL, Shen D
<table>
<thead>
<tr>
<th>Page</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>1336</td>
<td>Esophageal superficial adenosquamous carcinoma resected by endoscopic submucosal dissection: A rare case report</td>
<td>Liu GY, Zhang JX, Rong L, Nian WD, Nian BX, Tian Y</td>
</tr>
<tr>
<td>1343</td>
<td>Do medullary thyroid carcinoma patients with high calcitonin require bilateral neck lymph node clearance? A case report</td>
<td>Gan FJ, Zhou T, Wu S, Xu MX, Sun SH</td>
</tr>
<tr>
<td>1353</td>
<td>Femoral epithelioid hemangioendothelioma detected with magnetic resonance imaging and positron emission tomography/computed tomography: A case report</td>
<td>Zhao HG, Zhang KW, Hou S, Dai YY, Xu SB</td>
</tr>
<tr>
<td>1359</td>
<td>Noninvasive tools based on immune biomarkers for the diagnosis of central nervous system graft-vs-host disease: Two case reports and a review of the literature</td>
<td>Lyu HR, He XY, Hao HJ, Lu WY, Jin X, Zhao YJ, Zhao MF</td>
</tr>
<tr>
<td>1367</td>
<td>Periodontally accelerated osteogenic orthodontics with platelet-rich fibrin in an adult patient with periodontal disease: A case report and review of literature</td>
<td>Xu M, Sun XY, Xu JG</td>
</tr>
<tr>
<td>1379</td>
<td>Subtalar joint pigmented villonodular synovitis misdiagnosed at the first visit: A case report</td>
<td>Zhao WQ, Zhao B, Li WS, Assan I</td>
</tr>
<tr>
<td>1394</td>
<td>Unexplained elevation of erythrocyte sedimentation rate in a patient recovering from COVID-19: A case report</td>
<td>Pu SL, Zhang XY, Liu DS, Ye BN, Li JQ</td>
</tr>
<tr>
<td>1402</td>
<td>Thoracic pyogenic infectious spondylitis presented as pneumothorax: A case report</td>
<td>Cho MK, Lee BJ, Chang JH, Kim YM</td>
</tr>
<tr>
<td>1408</td>
<td>Unilateral pulmonary hemorrhage caused by negative pressure pulmonary edema: A case report</td>
<td>Park HJ, Park SH, Woo UT, Cho SY, Jeon WJ, Shin WJ</td>
</tr>
<tr>
<td>1433</td>
<td>Unusual presentation of granulomatosis with polyangiitis causing periaortitis and consequent subclavian steal syndrome: A case report</td>
<td>Cho U, Kim SK, Ko JM, Yoo J</td>
</tr>
<tr>
<td>1439</td>
<td>Postoperative discal pseudocyst and its similarities to discal cyst: A case report</td>
<td>Fu CF, Tian ZS, Yao LY, Yao JH, Jin YZ, Liu Y, Wang YY</td>
</tr>
<tr>
<td>Page</td>
<td>Title</td>
<td>Authors</td>
</tr>
<tr>
<td>------</td>
<td>--</td>
<td>---</td>
</tr>
<tr>
<td>1446</td>
<td>Treatment of oral lichen planus by surgical excision and acellular dermal matrix grafting: Eleven case reports and review of literature</td>
<td>Fu ZZ, Chen LQ, Xu YX, Yue J, Ding Q, Xiao WL</td>
</tr>
<tr>
<td>1455</td>
<td>Nonalcoholic fatty liver disease as a risk factor for cytomegalovirus hepatitis in an immunocompetent patient: A case report</td>
<td>Khiatah B, Nasrollah L, Covington S, Carlson D</td>
</tr>
<tr>
<td>1469</td>
<td>Intrahepatic cholangiocarcinoma is more complex than we thought: A case report</td>
<td>Zeng JT, Zhang JF, Wang Y, Qing Z, Luo ZH, Zhang YL, Zhang Y, Luo XZ</td>
</tr>
<tr>
<td>1475</td>
<td>Congenital hepatic fibrosis in a young boy with congenital hypothyroidism: A case report</td>
<td>Xiao FF, Wang YZ, Dong F, Li XL, Zhang T</td>
</tr>
<tr>
<td>1483</td>
<td>Polidocanol sclerotherapy for multiple gastrointestinal hemangiomas: A case report</td>
<td>Yao H, Xie YX, Guo JY, Wu HC, Xie R, Shi GQ</td>
</tr>
<tr>
<td>1490</td>
<td>Gastrointestinal stromal tumor with multisegmental spinal metastases as first presentation: A case report and review of the literature</td>
<td>Kong Y, Ma XW, Zhang QQ, Zhao Y, Feng HL</td>
</tr>
</tbody>
</table>
ABOUT COVER
Editorial Board Member of World Journal of Clinical Cases, Dr. Quach is an Associate Professor of Gastroenterology at the University of Medicine and Pharmacy at Ho Chi Minh City, Viet Nam, where he received his MD in 1997 and his PhD in 2011. Dr. Quach has published more than 100 reviews and original papers in local and international journals. He has received several awards, including Outstanding Presentation at the Biannual Scientific Congress of Vietnamese Nationwide Medical Schools, Medal of Creativeness from the Vietnamese Central Youth League, etc. Currently, he serves as a Vice President of the Vietnamese Association of Gastroenterology and Secretary General of the Vietnam Federation for Digestive Endoscopy. (L-Editor: Filipodia)

AIMS AND SCOPE
The primary aim of World Journal of Clinical Cases (WJCC, World J Clin Cases) is to provide scholars and readers from various fields of clinical medicine with a platform to publish high-quality clinical research articles and communicate their research findings online.

WJCC mainly publishes articles reporting research results and findings obtained in the field of clinical medicine and covering a wide range of topics, including case control studies, retrospective cohort studies, retrospective studies, clinical trials studies, observational studies, prospective studies, randomized controlled trials, randomized clinical trials, systematic reviews, meta-analysis, and case reports.

INDEXING/ABSTRACTING
The WJCC is now indexed in Science Citation Index Expanded (also known as SciSearch®), Journal Citation Reports/Science Edition, Scopus, PubMed, and PubMed Central. The 2020 Edition of Journal Citation Reports® cites the 2019 impact factor (IF) for WJCC as 1.013; IF without journal self cites: 0.991; Ranking: 120 among 165 journals in medicine, general and internal; and Quartile category: Q3. The WJCC's CiteScore for 2019 is 0.3 and Scopus CiteScore rank 2019: General Medicine is 394/529.

RESPONSIBLE EDITORS FOR THIS ISSUE
Production Editor: Ji-Hong Liu; Production Department Director: Xiang Li; Editorial Office Director: Jin-Lei Wang.

NAME OF JOURNAL
World Journal of Clinical Cases

ISSN
ISSN 2307-8960 (online)

LAUNCH DATE
April 16, 2013

FREQUENCY
Thrice Monthly

EDITORS-IN-CHIEF
Dennis A Bloomfield, Sandro Vento, Bao-Gan Peng

EDITORIAL BOARD MEMBERS
https://www.wjgnet.com/2307-8960/editorialboard.htm

PUBLICATION DATE
February 26, 2021

COPYRIGHT
© 2021 Baishideng Publishing Group Inc

INSTRUCTIONS TO AUTHORS
https://www.wjgnet.com/bpg/gerinfo/204

GUIDELINES FOR ETHICS DOCUMENTS
https://www.wjgnet.com/bpg/gerinfo/287

GUIDELINES FOR NON-NATIVE SPEAKERS OF ENGLISH
https://www.wjgnet.com/bpg/gerinfo/240

PUBLICATION ETHICS
https://www.wjgnet.com/bpg/gerinfo/288

PUBLICATION MISCONDUCT
https://www.wjgnet.com/bpg/gerinfo/208

ARTICLE PROCESSING CHARGE
https://www.wjgnet.com/bpg/gerinfo/242

STEPS FOR SUBMITTING MANUSCRIPTS
https://www.wjgnet.com/bpg/gerinfo/239

ONLINE SUBMISSION
https://www.f6publishing.com
Gastrointestinal stromal tumor with multisegmental spinal metastases as first presentation: A case report and review of the literature

Yan Kong, Xiao-Wei Ma, Qian-Qian Zhang, Yi Zhao, He-Lin Feng

ORCID number: Yan Kong 0000-0002-2087-6267; Xiao-Wei Ma 0000-0003-2689-8157; Qian-Qian Zhang 0000-0001-7883-4409; Yi Zhao 0000-0002-2028-2485; He-Lin Feng 0000-0002-7260-5485.

Author contributions: Kong Y, Ma XW, and Zhao Y contributed to data collection, literature review, and manuscript writing; Zhang QQ analyzed the data from the patient; Zhao Y and Feng HL were responsible for the treatment and management of the patient; all authors were involved in writing the manuscript and read and approved the final manuscript.

Abstract

BACKGROUND
Gastrointestinal stromal tumor (GIST) usually originates in the stomach, followed by the small intestine, rectum, and other parts of the gastrointestinal tract. The most common sites of metastasis are the liver and peritoneum, whereas spinal metastases from GIST are extremely rare.

CASE SUMMARY
We found a case of GIST with the first presentation of multilevel spinal metastases involving the thoracic and lumbar vertebrae. A 61-year-old Chinese man presented to our clinic because of pain in his lower back and hip for 10 d without cause. Subsequently, computed tomography (CT) and magnetic resonance imaging (MRI) revealed abnormal signals in the vertebral appendages of T12 and L4 accompanied by spinal canal stenosis, which was considered as tumor metastasis. As there were no metastases to vital organs, posterior thoracic and lumbar spinal decompression + adnexal mass resection + pedicle internal fixation was adopted to achieve local cure and prevent nerve compression. The results of histopathological studies were consistent with the metastasis of GIST. No local recurrence or new metastases were found at the 6-mo follow-up at the surgical site. The patient has no neurological symptoms at present. It is worth mentioning that a rectal mass was found and surgically removed 1 mo after the patient was discharged from hospital, and the pathological diagnosis of the mass was GIST.

CONCLUSION
INTRODUCTION

Gastrointestinal stromal tumor (GIST) is the most common mesenchymal tumor in the digestive tract. It originates from Cajal stromal cells or related stem cells and is usually located in the stomach, small intestine, colon, and rectum[9-12]. Although GIST is rare, accounting for only 1 to 2 percent of gastrointestinal tumors, it accounts for 60% of all gastric stromal tumors[9,14]. Because GIST does not respond to conventional chemotherapy and radiation therapy, the gold standard for the treatment of GIST is surgical resection[9]. In addition, the use of Imatinib mesylate, a selective tyrosine kinase receptor inhibitor (TKI), significantly reduced the morbidity and mortality associated with GIST[20]. GIST metastasis usually occurs in the liver (28%), mesentery and omentum (30%), and less often in the lungs (7%), subcutaneous tissue (4.7%), and lymph nodes (4.7%), whereas GIST bone metastasis is very rare (only 0.47%). We report a case of GIST in a 61-year-old man with multisegmental spinal metastasis as the first presentation and review the literature. As far as we know, this is the first report of a GIST with the first presentation of multisegmental spinal metastases from the thoracolumbar spine. This case highlights the importance of resection of metastatic tumors of the spine as an effective treatment for GIST.

Core Tip: Gastrointestinal stromal tumor (GIST) is the most common mesenchymal tumor in the digestive tract and originates from Cajal stromal cells or related stem cells. GIST metastasis usually occurs in the liver (28%), mesentery and omentum (30%), and less often in the lungs (7%), subcutaneous tissue (4.7%), and lymph nodes (4.7%), whereas GIST bone metastasis is very rare (only 0.47%). We report a case of GIST in a 61-year-old man with multisegmental spinal metastasis as the first presentation and review the literature. As far as we know, this is the first report of a GIST with the first presentation of multisegmental spinal metastases from the thoracolumbar spine. This case highlights the importance of resection of metastatic tumors of the spine as an effective treatment for GIST.

Key Words: Spinal metastasectomy; Gastrointestinal stromal tumor; Multisegmental spinal metastases; Magnetic resonance imaging; Case report

©The Author(s) 2021. Published by Baishideng Publishing Group Inc. All rights reserved.
Kong Y et al. GIST with multisegmental spinal metastases

GIST with the first presentation of multisegmental spinal metastases in the thoracolumbar spine.

CASE PRESENTATION

Chief complaints
A 61-year-old Chinese man had pain in his lower back and buttocks for 10 d without incentive, and no relief after rest.

History of present illness
Although the patient received oral non-steroidal anti-inflammatory drugs, no significant effect was observed. Then, he went to Hebei Medical University Fourth Affiliated Hospital to seek further treatment.

History of past illness
The patient had an anal leiomyoma resection about 8 years ago.

Personal and family history
The patient’s other medical history was not noteworthy.

Physical examination
The physical examination showed that the patient had percussion pain on the 11th and 12th thoracic vertebrae and percussion pain on the spinous processes of the 4th and 5th lumbar vertebrae, which both radiated to the buttocks and both lower limbs. As a result, the thoracolumbar movement was restricted, and muscle strength of both lower limbs was grade 4 (according to Manual Muscle Testing). There was no obvious abnormality in the saddle area and lower limbs. The physiological radiation existed, and pathological signs were not elicited. According to the Frankel grading standard of spinal cord injury, the patient was diagnosed with grade D.

Laboratory examinations
Laboratory testing showed a high level of C-reactive protein (11.70 mm/L, reference range 0-6.0 mm/L), high erythrocyte sedimentation rate (29.00 mm/h, reference range 0-15 mm/h), high neutrophil count (6.45 × 10⁹/L, reference range 1.8-6.3 × 10⁹/L), and low lymphocyte count (0.86 × 10⁹/L, reference range 1.1-3.2 × 10⁹/L).

Imaging examinations
computed tomography (CT) showed bone destruction in the left pedicle of T12 (Figure 1). Liver and kidney function, electrolyte, coagulation function, routine urine tests, and cardiopulmonary function were normal. In order to further evaluate the patient’s condition, the patient underwent magnetic resonance imaging (MRI) examination, and the results showed abnormal signals in the vertebral appendages of T12 and L4 accompanied by spinal canal stenosis, and metastasis was considered (Figure 2).

FINAL DIAGNOSIS
The final diagnosis of the presented case was multiple spinal mass.

TREATMENT
As there were no metastases to vital organs, surgical treatment was adopted to achieve local cure and prevent nerve compression. After successful general intravenous anesthesia, the patient was placed in a prone position. Surgical exploration showed that L4 vertebral spinous process and vertebral lamina had obvious bone destruction, and tumor tissues were infiltrated. T12 vertebral spinous process and left vertebral pedicle tumor were significantly invaded, with bone destruction and dural sac compression. Spinal canal decompression and pedicle internal fixation were performed. Visual inspection using the intraoperative fluoroscopy showed optimal position of all pedicle screws. Intraoperative blood loss was approximately 550 mL.
Figure 1 Preoperative computed tomography image revealing bone destruction of the left pedicle of the 12th thoracic vertebra.

Figure 2 Preoperative sagittal magnetic resonance imaging revealing that T12 and L4 vertebral appendages showed obvious bone destruction. A tumor in the spine compressed the spinal cord accompanied by spinal canal stenosis.

After the operation, the patient returned to the ward safely with stable vital signs and no obvious abnormalities in the heart, lung, and abdomen. The patient had normal upper and lower limb movements.
OUTCOME AND FOLLOW-UP

X-ray examination confirmed that the implant was in the correct position and there were no signs of screw and rod displacement (Figure 3). The results of histopathological studies were consistent with the metastasis of GIST. The results of immunohistochemistry suggested positive staining for Vimentin, indicating a mesenchymal origin. CD34, CD117, and CD31 were all positive, and Ki-67 positive cells accounted for 20%. According to immunohistochemical and morphological changes, it was consistent with GIST (Figure 4). c-KIT and PDGFRA gene tests were performed on the patient, and the test results showed a mutation in exon 11 of c-KIT gene [KIT exon 11 C.1667_1672delAGAg (p.W557_K558del)]. No mutation was found in exons 9, 13, and 17 of c-KIT and PDGRFA. The wound healed at the first stage after the operation without postoperative complications. One week after the operation, the patient was discharged from hospital and we followed the patient for 6 mo. Percussive pain in the lower back and radiating pain in both lower extremities disappeared. According to the Frankel grading standard of spinal cord injury, the patient was diagnosed with grade E. At the 6-mo follow-up, no local recurrence or new metastasis was observed on CT or MRI. It is worth mentioning that a rectal mass was found and surgically removed 1 mo after the patient was discharged from hospital, and the pathological diagnosis of the mass was GIST.

DISCUSSION

GIST is the most common stromal tumor in the gastrointestinal tract, which has a potential tendency of malignancy. GIST metastasis usually occurs in the liver, mesentery, and omentum, whereas GIST bone metastasis is very rare. We report a case of GIST with the first presentation of multilevel spinal metastases involving the thoracic and lumbar vertebrae. What makes this case unique is that GIST metastasized to thoracic and lumbar vertebrae as the first manifestation. This is the first report of GIST with multi-segmental spinal metastasis (thoracic and lumbar) as the first manifestation.

GIST is a mesenchymal neoplasm that arises in the gastrointestinal tract. GIST is a fusiform (70%), epithelioid (20%), or mixed mesenchymal tumor of the digestive tract that secretes CD117 (c-KIT). Approximately 18% of patients with GIST, especially those in the small intestine, had no symptoms at all. Symptomatic patients may experience nonspecific symptoms such as nausea, vomiting, bloating, early satiety, and abdominal pain, but there is rarely a significant abdominal mass. GIST metastasis usually occurs in the liver, mesentery, and omentum, whereas GIST bone metastasis is very rare (only 0.47%). GIST bone metastasis involves the spine, pelvis, ribs, humerus, clavicle, and other sites. The most common symptoms of bone metastasis in GIST are local pain and limb weakness, followed by pathological fractures or no symptoms. The spine is the most common site for bony metastases of malignant tumors, and GIST is no exception. And GIST patients with spinal involvement have a worse prognosis than those without. We review the literature and find that only 26 cases of GIST spine metastasis have been reported so far (Table 1). In most cases, the spinal metastasis of GIST occurs in the late stage of the disease. Of the 26 reported cases of GIST, only four had a single segment of spinal metastasis as the first presentation. However, few reports have been reported on GIST with multisegmental metastasis of the spine as the first manifestation.

Bone is a common site of metastasis in advanced malignant tumors. Skeletal metastasis can cause a series of related events, such as pain and pathological fractures, which seriously affect the quality of life of patients. The occurrence of skeletal metastasis indicates that patients will have a worse prognosis. Therefore, early diagnosis of bone metastases can change the treatment plan as soon as possible and reduce the suffering of patients. As a non-invasive and repeatable examination, imaging examination is widely used in the diagnosis of tumor bone metastasis. CT, MRI, bone scintigraphy, and other imaging techniques show obvious advantages in the detection of bone metastasis in tumor patients, and have important significance in improving the early diagnosis rate of bone metastasis.

It is likely that bone metastasis in GIST will become more common due to the extensive use of imaging techniques and improved treatments such as TKI combined with surgical resection, which have greatly extended the life expectancy and overall survival rate of GIST patients. At present, although TKI treatment of GIST can significantly prolong the median survival of GIST patients, surgical resection is still the...
Table 1 Clinical data for 26 cases of gastrointestinal stromal tumor with spinal metastases

<table>
<thead>
<tr>
<th>Patient</th>
<th>Age/sex</th>
<th>Primary tumor location</th>
<th>Location of metastases</th>
<th>Spinal metastases treatment</th>
</tr>
</thead>
<tbody>
<tr>
<td>1[23]</td>
<td>62/M</td>
<td>Small intestine</td>
<td>Liver, spine, pelvis, rib</td>
<td>Zoledronic acid + radiotherapy + TKI</td>
</tr>
<tr>
<td>2[23]</td>
<td>82/F</td>
<td>Stomach</td>
<td>Liver, spine, pelvis</td>
<td>Zoledronic acid + TKI</td>
</tr>
<tr>
<td>3[23]</td>
<td>54/F</td>
<td>Small intestine</td>
<td>Liver, rib, spine, iliac bone</td>
<td>Zoledronic acid + TKI</td>
</tr>
<tr>
<td>4[23]</td>
<td>55/M</td>
<td>Sigmoid colon</td>
<td>Liver, spine, skull, pelvis</td>
<td>TKI + zoleodronic acid</td>
</tr>
<tr>
<td>5[23]</td>
<td>56/M</td>
<td>Esophagus</td>
<td>Spine, rib</td>
<td>TKI + zoleodronic acid</td>
</tr>
<tr>
<td>6[23]</td>
<td>49/M</td>
<td>Stomach</td>
<td>Liver, spleen, peritoneum, soft tissue, spine, rib, pelvis, femur, humerus</td>
<td>TKI</td>
</tr>
<tr>
<td>7[23]</td>
<td>52/F</td>
<td>Stomach</td>
<td>Liver, spleen, spine, rib, pelvis</td>
<td>TKI</td>
</tr>
<tr>
<td>8[23]</td>
<td>48/M</td>
<td>Stomach</td>
<td>Liver, spleen, spine</td>
<td>TKI</td>
</tr>
<tr>
<td>9[23]</td>
<td>51/M</td>
<td>Stomach</td>
<td>Liver, spleen, soft tissue, rib, humerus</td>
<td>TKI</td>
</tr>
<tr>
<td>10[23]</td>
<td>60/M</td>
<td>Small intestine</td>
<td>Liver, spine</td>
<td>TKI</td>
</tr>
<tr>
<td>11[23]</td>
<td>71/M</td>
<td>Rectum</td>
<td>Liver, spleen, spine, rib, pelvis, femur, humerus</td>
<td>TKI</td>
</tr>
<tr>
<td>12[23]</td>
<td>56/M</td>
<td>Small intestine</td>
<td>Liver, hip, spine, femur</td>
<td>TKI + radiotherapy + zoleodronic acid</td>
</tr>
<tr>
<td>13[23]</td>
<td>70/M</td>
<td>Small intestine</td>
<td>Liver, spine</td>
<td>TKI + radiotherapy + zoleodronic acid</td>
</tr>
<tr>
<td>14[23]</td>
<td>66/M</td>
<td>Stomach</td>
<td>Liver, spine, pelvis, rib, sternum, scapula</td>
<td>TKI</td>
</tr>
<tr>
<td>15[23]</td>
<td>51/M</td>
<td>Rectum</td>
<td>Spine</td>
<td>resection</td>
</tr>
<tr>
<td>16[23]</td>
<td>69/F</td>
<td>Stomach</td>
<td>Liver, spine, subcutaneous</td>
<td>TKI + radiotherapy</td>
</tr>
<tr>
<td>17[23]</td>
<td>46/M</td>
<td>Stomach</td>
<td>Liver, spine, rib, humerus, clavicle</td>
<td>TKI + radiotherapy</td>
</tr>
<tr>
<td>18[23]</td>
<td>61/F</td>
<td>Stomach</td>
<td>Spine, liver, lung</td>
<td>resection + TKI</td>
</tr>
<tr>
<td>19[23]</td>
<td>58/M</td>
<td>Small intestine</td>
<td>Spine, humerus, liver, peritoneum</td>
<td>resection + TKI</td>
</tr>
<tr>
<td>20[23]</td>
<td>71/M</td>
<td>Small intestine</td>
<td>Spine, humerus, liver, pleura</td>
<td>resection + TKI</td>
</tr>
<tr>
<td>21[23]</td>
<td>58/M</td>
<td>Small intestine</td>
<td>Liver, spine, sternoclavicular joint</td>
<td>TKI + radiotherapy</td>
</tr>
<tr>
<td>22[23]</td>
<td>37/M</td>
<td>Small intestine</td>
<td>Liver, spine</td>
<td>resection + TKI + radiotherapy + chemotherapy</td>
</tr>
<tr>
<td>23[23]</td>
<td>54/M</td>
<td>Small intestine</td>
<td>Liver, spine</td>
<td>resection + sorafenib + regorafenib</td>
</tr>
<tr>
<td>24[23]</td>
<td>76/F</td>
<td>Rectum</td>
<td>Spine, rib</td>
<td>resection + TKI</td>
</tr>
<tr>
<td>25[23]</td>
<td>57/M</td>
<td>Rectum</td>
<td>Liver, lung, spine, clivus, temporal bone</td>
<td>TKI + radiotherapy</td>
</tr>
<tr>
<td>26[23]</td>
<td>83/M</td>
<td>Colon</td>
<td>Spine</td>
<td>resection + radiotherapy</td>
</tr>
</tbody>
</table>

TKI: Tyrosine kinase receptor inhibitor.

most important treatment strategy for primary GIST. GIST spinal metastases lead to neurological deficits due to nerve compression, which can lead to deterioration in functional status or survival. Previous studies have shown that the involvement of the spine in GIST bone metastasis affects the prognosis of patients. The average survival of patients with spinal involvement was 41.78 mo, while that of patients without spinal involvement was 82.49 mo. In addition, patients treated with surgery combined with TKI for GIST bone metastasis had a significantly longer survival than patients treated with TKI alone[27]. What is different from previous reports is that this case is an isolated metastasis involving only thoracolumbar metastases and no other metastases, and the patient has developed symptoms of nerve compression. Therefore, we used posterior thoracic and lumbar spinal decompression, adnexal mass resection, and pedicle internal fixation to treat the spinal metastasis of GIST. However, this only alleviated pain and prevented pathologic fractures and other bone-related events. For the primary disease, the patient still needed to receive further treatment. We followed the patient for 6 mo. CT and MRI showed no local recurrence or new metastasis at the surgical site at the 6-mo follow-up. However, a rectal mass was found 1 mo after discharge. After the tumor was surgically removed, the pathological diagnosis of the
mass was GIST. In addition, the patient received targeted drugs for GISTs. This patient had a good prognosis, which indicates that resection of spinal metastases and pedicle internal fixation are effective treatments for GIST.

CONCLUSION

Overall, bone metastases in GIST are rare, accounting for only 0.47% of the cases, while multisegmental metastases of the thoracolumbar spine are even rarer. The extensive use of imaging technology has shown obvious advantages in the detection of bone metastasis in tumor patients. It is of great significance to use appropriate imaging methods to improve the early diagnosis rate of bone metastasis. We found a case of GIST with the first presentation of multilevel spinal metastases involving the thoracic and lumbar vertebrae. And in this case, posterior thoracic and lumbar spinal decompression + adnexal space-occupying resection + pedicle internal fixation was adopted to treat the spinal metastasis of GIST, and satisfactory results were obtained, indicating that the resection of spinal metastatic tumor is an effective method to treat the spinal metastasis of GIST.
REFERENCES

Kong Y et al. GIST with multisegmental spinal metastases

