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Abstract 

BACKGROUND 

The trans-fat containing amylin liver non-alcoholic steatohepatitis (NASH) 

(AMLN) diet has been extensively validated in C57BL/6J mice with or 

without the Lepob/Lepob (ob/ob) mutation in the leptin gene for reliably 

inducing metabolic and liver histopathological changes recapitulating 

hallmarks of NASH. Due to a recent ban on trans-fats as food additive, there 

is a marked need for developing a new diet capable of promoting a 

compatible level of disease in ob/ob and C57BL/6J mice. 

 

AIM 

To develop a biopsy-confirmed mouse model of NASH based on an 

obesogenic diet with trans-fat substituted by saturated fat. 

 

METHODS 

Male ob/ob mice were fed AMLN diet or a modified AMLN diet with trans-fat 

(Primex shortening) substituted by equivalent amounts of palm oil [Gubra 

amylin NASH, (GAN) diet] for 8, 12 and 16 wk. C57BL/6J mice were fed the 

same diets for 28 wk. AMLN and GAN diets had similar caloric content (40% 

fat kcal), fructose (22%) and cholesterol (2%) level. 

 

RESULTS 

The GAN diet was more obesogenic compared to the AMLN diet and 

impaired glucose tolerance. Biopsy-confirmed steatosis, lobular inflammation, 

hepatocyte ballooning, fibrotic liver lesions and hepatic transcriptome 

changes were similar in ob/ob mice fed the GAN or AMLN diet. C57BL/6J 

mice developed a mild to moderate fibrotic NASH phenotype when fed the 

same diets. 

 

CONCLUSION 
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Substitution of Primex with palm oil promotes a similar phenotype of biopsy-

confirmed NASH in ob/ob and C57BL/6J mice, making GAN diet-induced 

obese mouse models suitable for characterizing novel NASH treatments. 

 

Key words: Non-alcoholic steatohepatitis; High-fat diet; Mouse model; 

Histopathology; Fibrosis; Liver biopsy; Liver transcriptome 

 

Core tip: The trans-fat containing amylin liver non-alcoholic steatohepatitis 

(NASH) (AMLN) diet has been extensively validated in mice for reliably 

inducing metabolic and liver histopathological changes recapitulating 

hallmarks of NASH. A recent ban on trans-fats as food additive prompted the 

development of a new diet with similar disease-inducing properties as the 

AMLN diet. Here, we introduce a trans-fat-free diet high in palm oil (Gubra 

amylin NASH, GAN diet) that promotes a highly similar phenotype of 

biopsy-confirmed fibrotic NASH in both ob/ob and C57BL/6J mice, 

highlighting the suitability of GAN diet-induced obese mouse models of 

biopsy-confirmed NASH for the characterization of novel drug therapies for 

NASH. 
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INTRODUCTION 

Liver-related complications have in recent years become widely recognized as 

among the most prevalent co-morbidities in obesity and diabetes. Non-

alcoholic steatohepatitis (NASH) is the most severe form of non-alcoholic 

fatty liver disease (NAFLD), an umbrella term for a range of medical 

conditions with hepatic steatosis unrelated to significant alcohol consumption, 

use of steatogenic medication or hereditary disorders[1]. Notably, presence of 

obesity, dyslipidemia and type 2 diabetes constitutes the strongest risk factors 

for NASH[2,3], which has led to the concept that NASH represents the hepatic 

manifestation of the metabolic syndrome[4,5]. Liver biopsies represents the 

gold standard method for diagnosing and grading of NASH[6]. In NASH, 

lobular inflammation and liver cell damage (hepatocyte ballooning) are 

mandatory histopathological features in addition to steatosis[7]. Notably, the 

vast majority of patients with NAFLD across the disease spectrum is 

asymptomatic with an unpredictable onset of NASH and with rates of fibrosis 

progression not linear with time. As a result, disease severity varies 

considerably among affected NASH patients and may progress to cirrhosis 

undiagnosed[8,9]. Among the various histology‐ based scoring systems 

applied, the NAFLD activity scoring (NAS) system is the most prevalent 

diagnostic tool for defining NASH and assess disease activity[10]. While not 

initially designed for the specific purpose of assessing therapeutic drug 

efficacy, the NAS system is now the most widely used scoring system in 

clinical trials for NASH.  

The conspicuous clustering of obesity, diabetes and metabolic comorbidities 

in NASH patients underscores that overnutrition and dietary factors play an 

important role in the transition from mild NAFLD to manifest NASH. The 

pathogenesis of NASH is complex and multifactorial, implicating multiple 

parallel and converging signaling pathways. Current ‘multiple-hit’ 

hypotheses consider several insults acting sequentially or together on a 

background of genetical predisposition to promote NAFLD and transition to 

NASH. Early pathogenic events are associated with hepatic triglyceride 
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accumulation as result of excessive caloric intake, stimulation of hepatic de 

novo lipogenesis secondary to insulin resistance, and impaired free fatty acid 

clearance. Increasing triglyceride levels in hepatocytes can lead to 

overproduction of reactive lipid metabolites (lipotoxicity) that eventually 

override hepatic adaptive and regenerative mechanisms[11-13], triggering 

detrimental immune cell responses with downstream activation of resident 

fibrogenic myofibroblasts that produce and secrete collagens[13-15]. In the event 

of continuing insufficient regenerative responses, progressive extracellular 

matrix deposition may result in excessive fibrotic liver damage and 

hepatocellular cancer. 

The emergence of these theories has played an important role in the 

development of animal models of NASH with more reproducible and robust 

liver histopathology. Diet-induced obese (DIO) mice fed Western diets are 

attractive as they recapitulate the natural history of NASH[16]. In addition, the 

human NAS system largely correlates with similar histopathologic lesions in 

these models[17], which makes obese mouse models of NASH increasingly 

employed in preclinical NASH research. Conventional obesogenic high-fat 

diets promote dyslipidemia, fatty liver, and mild-stage NASH without 

appreciable fibrosis in rodents[16]. Hence, additional dietary stimuli (‘hits’) are 

therefore applied to enhance the pro-fibrogenic properties of the high-fat diets 

employed in preclinical NASH research. Among the various dietary 

approaches, specific modifications in Western-type obesogenic diets have 

consistently been reported to promote fibrotic NASH in mice. Accordingly, 

C57BL/6J mice fed a high-fat/fructose diet supplemented with trans-fat and 

cholesterol (amylin liver NASH diet, i.e., AMLN diet[18]) develop manifest 

NASH, characterized by steatosis, lobular inflammation and hepatocyte 

ballooning. Notably, a significant proportion of C57BL/6J mice fed the AMLN 

diet (AMLN DIO-NASH mice) develop mild to moderate fibrosis following ≥ 

26 wk of feeding[18-23]. The hepatopathology is similar, but accentuated, in 

leptin-deficient C57BL6J-Lepob/Lepob (ob/ob) mice fed the AMLN diet, 

demonstrating a fibrotic NASH phenotype after ≥ 12 wk of feeding[22,24-26]. The 
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two AMLN DOI models of NASH have been extensively characterized in 

pharmacology studies with employment of biopsy-confirmed histopathology 

for grading and staging of baseline liver pathology[23,24,27]. As in the clinic, 

DIO mouse models of NASH have unpredictable onset of disease with 

varying rates of progression. Consequently, any given cohort of DIO mice 

may represent all stages of NAFLD following long-term high-fat 

feeding[18,22,28,29]. This makes it imperative to control for inherently variable 

dynamics in NAFLD progression that could otherwise lead to 

misinterpretation of data obtained in longitudinal studies. Liver biopsy 

procedures have therefore recently been introduced to prevent bias and 

enable stringent within-subject analyses in both mice[18,22,23,27] and rats[30]. 

Addition of dietary trans-fats (also called trans-unsaturated fatty acids or 

trans fatty acids) has been reported to enhance the steatogenic and pro-

fibrotic properties of obesogenic diets in mice, including the AMLN diet[24] 

and variants thereof[21,31-33]. The underlying molecular mechanisms are not 

fully understood, but trans-fats may likely sensitize to the hepatotoxic effects 

of high-fat/carbohydrate diets by increasing insulin resistance, hepatic 

lipogenesis and oxidative stress[24,32,34-36]. A recent FDA ban on trans-fats as 

food additive[37], however, has prompted the development of a non-trans-fat 

Western diet capable of promoting metabolic and liver histopathological 

changes comparable to that afforded by the AMLN diet. The present study 

therefore aimed to develop and characterize a compatible biopsy-confirmed 

obese mouse model of NASH based on an isocaloric palmitic acid-enriched 

diet with a nutrient composition similar to the AMLN diet. 

 

MATERIALS AND METHODS 

Animals 

Male ob/ob and C57BL/6J (C57) mice were from Jackson Laboratory (Bar 

Harbor, ME) or Janvier Labs (Le Genest Saint Isle, France), arrived at 5-8 wk 

of age and housed in a controlled environment (12 h light/dark cycle, 21 ± 

2 °C, humidity 50 ± 10%). Mice were stratified and randomized to individual 
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diet groups according to baseline body weight and had ad libitum access to tap 

water and chow (2018 Teklad Rodent Diet, Envigo, Madison, WI; Altromin 

1324, Brogaarden, Hoersholm, Denmark), AMLN diet (40 kcal-% fat (of these 

22% trans-fat and 26% saturated fatty acids by weight), 22% fructose, 10% 

sucrose, 2% cholesterol; D09100301, Research Diets, New Brunswick, NJ, 

United States)[22,24] or Gubra amylin NASH diet [GAN diet; 40 kcal-% fat (of 

these 0% trans-fat and 46% saturated fatty acids by weight), 22% fructose, 10% 

sucrose, 2% cholesterol; D09100310, Research Diets]. Mice were fed chow, 

AMLN or GAN diet for 8, 12 or 16 wk (ob/ob) and 28 wk (C57BL/6J), 

respectively. The study was approved by The Institutional Animal Care and 

Use Committee at MedImmune (Gaitherburg, MD, United States) and The 

Danish Animal Experiments Inspectorate (license 2013-15-2934-00784) in 

accordance with internationally accepted principles for the use of laboratory 

animals. 

 

Body weight, body composition and liver fat mass 

Body weight was monitored weekly. Whole-body fat mass was analyzed at 

week 8, 12 and 16 of the feeding period by non-invasive EchoMRI scanning 

using EchoMRI-900 (EchoMRI, Houston, TX, United States). During the 

scanning procedure, mice were placed in a restrainer for 90-120 s.  

 

Intraperitoneal glucose tolerance test 

An intraperitoneal glucose tolerance test (ipGTT) was performed in week 7 of 

the feeding period. Animals were fasted for 4 h prior to administration of the 

glucose bolus (1.5 g/kg). Cages were changed at the time of fasting. At t = 0, 

C57 and ob/ob mice received a bolus of glucose by intraperitoneal injection (5 

mL/kg). Blood samples were collected from the tail vein and blood glucose 

was measured at time points t = 0, 15, 30, 45, 60, 90 and 120 min after the 

glucose bolus. Mice were re-fed after the last blood sampling. 

 

Biochemical analyses 
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Biochemical analyses were performed as reported previously[22,26]. Terminal 

plasma samples from fed animals were assayed for alanine aminotransferase 

(ALT), aspartate aminotransferase (AST), total triglycerides (TG) and total 

cholesterol. Total liver lipid mass was determined using a Bruker LF-90 

minispec system (Bruker Biospin Corporation, Billerica, MA, United States) 

and expressed relative (%) to total liver weight. 

 

Liver biopsy 

A separate cohort of ob/ob mice were fed AMLN or GAN diet for 9 wk before 

a liver biopsy procedure was applied as described in detail previously[22]. On 

the surgery day, mice were anesthetized with isoflurane (2%-3%, in 100% 

oxygen), a small abdominal incision in the midline was made, and the left 

lateral lobe of the liver was exposed. A cone-shaped wedge of liver tissue (50-

100 mg) was excised from the distal part of the lobe. The cut surface of the 

liver was closed by electrosurgical bipolar coagulation using an 

electrosurgical unit (ERBE VIO 100C, ERBE, Marietta, GA, United States). The 

liver was returned to the abdominal cavity, the abdominal wall was sutured 

and skin stapled. Carprofen (5 mg/kg, i.p.) was administered at the time of 

surgery and at post-operative day one and two. After the procedure, animals 

were single-housed and kept on the respective diet for a total period of 16 wk. 

 

Liver histology and digital image analysis 

Biopsy and terminal liver samples (both from the left lateral lobe) were fixed 

overnight in 4% paraformaldehyde. Liver tissue was paraffin-embedded and 

sectioned (3 µm thickness). Sections were stained with hematoxylin-eosin (HE, 

Dako, Glostrup, Denmark), Picro-Sirius red (Sigma-Aldrich, Broendby, 

Denmark), anti-galectin-3 (cat. 125402, Biolegend, San Diego, CA, United 

States), or anti-type I collagen (Col1a1; cat. 1310-01, Southern Biotech, 

Birmingham, AL, United States) using standard procedures[22,23]. The NAS 

and fibrosis staging system was applied to liver pre-biopsies and terminal 

samples for scoring of steatosis, lobular inflammation, hepatocyte ballooning, 
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and fibrosis outlined by Kleiner et al[10]. Quantitative histomorphometry was 

analyzed using digital imaging software (VIS Software, Visiopharm, 

Hørsholm, Denmark)[22,23]. Proportional (fractional) areas of liver fat (HE-

staining), galectin-3 and Col1a1 were expressed relative to total sectional area. 

All histological assessments were performed by histologists blinded to the 

experimental groups. 

 

RNA sequencing 

Liver transcriptome analysis was performed by RNA sequencing on RNA 

extracts from terminal liver samples (15 mg fresh tissue), as described in detail 

elsewhere[22,23]. The RNA quantity was measured using Qubit® (Thermo 

Scientific, Eugene, OR, United States). The RNA quality was determined 

using a bioanalyzer with RNA 6000 Nano kit (Agilent, Waldbronn, Germany). 

RNA sequence libraries were prepared with NeoPrep (Illumina, San Diego, 

CA, United States) using Illumina TruSeq stranded mRNA Library kit for 

NeoPrep (Illumina, San Diego, CA, United States) and sequenced on the 

NextSeq 500 (Illumina, San Diego, CA, United States) with NSQ 500 hi-

Output KT v2 (75 CYS, Illumina, San Diego, CA, United States). Reads were 

aligned to the GRCm38 v84 Ensembl Mus musculus genome using STAR 

v.2.5.2a with default parameters[38]. Differential gene expression analysis was 

performed with DEseq237. Genes with a Benjamini and Hochberg adjusted P 

≤ 0.05 (5% false discovery rate, FDR) were regarded as statistically 

significantly regulated. The Reactome pathway database[39] was used as gene 

annotation in a gene set analysis using the R package PIANO v.1.18.1[40], with 

the Stouffer method and Benjamini-Hochberg adjusted P values (FDR < 0.01). 

 

Statistical analyses  

Except for RNA sequencing, data were analyzed using GraphPad Prism v7.03 

software (GraphPad, La Jolla, CA, United States). All results are shown as 

mean ± standard error of mean. A two-way ANOVA with Tukey's multiple 

comparisons test was performed for body weight and quantitative 
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histological analyses. A one-way ANOVA with Dunnett’s post-hoc test was 

used for all other parameters. A P value < 0.05 was considered statistically 

significant. 

 

RESULTS 

Metabolic changes in ob/ob mice fed GAN or AMLN diet for up to 16 wk 

The temporal progression of metabolic deficits was determined in ob/ob mice 

fed the GAN (GAN ob/ob-NASH) or AMLN (AMLN ob/ob-NASH) diet for up 

to 16 wk. Body weight curves were significantly different in GAN and AMLN 

ob/ob-NASH mice (overall P < 0.001, two-way ANOVA). Compared to the 

AMLN diet, the GAN diet induced greater body weight gain in ob/ob mice 

from diet week 7 and onwards (Figure 1A). Relative body weight gain over 

the 16-week feeding period was 141.6 ± 2.9% (GAN ob/ob-NASH) and 125.2 ± 

3.6% (AMLN ob/ob-NASH). GAN-ob/ob mice displayed more pronounced 

increases in whole-body fat mass at all time points measured (Figure 1B). The 

GAN and AMLN diets promoted similar degree of hepatomegaly in ob/ob 

mice (Figure 1C). An ipGTT was performed in diet week 7 and demonstrated 

impaired glucose tolerance in GAN, but not AMLN, ob/ob-NASH mice 

compared to chow-fed C57 controls (Figure 1D and E). During the ipGTT, 

plasma insulin levels were equally elevated in GAN and AMLN ob/ob-NASH 

mice (Figure 1F). Plasma ALT and AST levels were significantly increased in 

GAN and AMLN ob/ob-NASH mice after 8 wk on the diet and did not change 

further during the 16-wk feeding period. The GAN and AMLN diets 

promoted a similar degree of hypercholesterolemia (diet week 8-16, P < 0.05) 

in ob/ob mice with slightly reduced TG levels (diet week 16, P < 0.05), as 

compared to chow-fed C57 mice (Table 1). 

Terminal liver lipid levels in GAN and AMLN ob/ob-NASH mice were 

approximately 10-fold higher than that of age-matched C57 mice and were 

maximally elevated after 8 weeks of feeding (Table 1). In addition to 

metabolic changes, the gut microbiome composition in GAN and AMLN ob/ob 

mice was characterized by bacterial 16S rRNA gene sequencing performed on 
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serial fecal samples. The GAN and AMLN diets promoted similar taxonomic 

shifts compared to baseline (chow feeding). The structural modulation of the 

gut microbiota was largely manifest two weeks after the change to GAN or 

AMLN diet, being slightly more accentuated following 16 wk of feeding 

(Supplemental Figure 1). Compared to baseline, the changes in microbiome 

composition in GAN and AMLN ob/ob mice was mainly driven by increases in 

the relative abundance of Akkermansia, Bacteroides and Parasutterella with 

reciprocal decreases in Clostridiales and Porphyromonadaceae. Consistently 

lowered relative abundance of Lactobacillus was also observed in GAN ob/ob-

NASH mice. 

 

Biopsy-confirmed progression of liver histopathology in ob/ob mice fed GAN 

or AMLN diet for 16 wk 

Liver histopathological changes in GAN ob/ob mice were assessed in ob/ob 

mice fed GAN or AMLN diet for 16 wk (n = 8-10 per group). A liver biopsy 

was sampled after 9 wk on the respective diet for within-subject analysis of 

disease progression. Representative histological stainings are shown in Figure 

2A. Comparable changes in composite NAS and fibrosis scores from feeding 

week 9 to 16 were observed in GAN ob/ob and AMLN ob/ob mice (Figure 2B). 

At feeding week 9, GAN ob/ob and AMLN ob/ob mice showed mild-to-

moderate fibrosis (F1-F2) with an equal distribution of mice progressing in 

fibrosis severity. A major proportion of GAN or AMLN diet fed ob/ob mice 

demonstrated moderate fibrosis after 16 weeks of feeding (Figure 2C). 

Individual pre-biopsy and terminal histopathological scores on steatosis, 

lobular inflammation and hepatocyte ballooning are indicated in 

Supplemental Figure 2. Steatosis severity was severe (score 3) and sustained 

after 9 weeks of feeding in both GAN and AMLN ob/ob-NASH mice. Both 

diets induced moderate-grade (score 2) lobular inflammation in almost all 

ob/ob mice without significant changes from feeding week 9 to 16. The rate of 

hepatocyte ballooning was low in ob/ob mice fed the GAN or AMLN diet for 9 

weeks, however, increased during the remainder of the feeding period. 



 13 / 43 
 

Hepatocyte ballooning did not progress beyond grade 1 in ob/ob mice. 

Terminal quantitative histopathological changes were also similar in ob/ob 

mice fed the GAN or AMLN diet, as indicated by morphometric analyses of 

steatosis, inflammation and Col1a1 (Figure 3).  

 

Liver transcriptome changes in ob/ob mice fed AMLN or GAN diet for 16 wk 

To characterize the effect of 16-week feeding on global liver gene expression, 

the transcriptome of GAN and AMLN ob/ob-NASH mice vs. chow-fed C57 

mice were analyzed by RNA sequencing. To assess the overall similarity of 

the individual transcriptome samples, a principal component analysis (PCA) 

was performed. The primary PCA (accounting for the major variability in the 

data set) yielded conspicuous clustering of transcriptome samples from GAN 

and AMLN ob/ob-NASH mice, being clearly separated from chow-fed C57 

controls (Figure 4A), indicating that the two NASH-promoting diets overall 

promoted substantial, however highly similar, alterations in liver global gene 

signatures of ob/ob mice. In accordance, a total pool of 9725 and 9760 

differentially expressed genes (DEGs) were identified in GAN and AMLN 

ob/ob-NASH mice, respectively, with virtually all regulated genes being 

shared in the two ob/ob-NASH groups (Figure 4B). For initial evaluation of the 

DEGs identified, we probed for candidate gene transcripts associated with 

NASH and fibrosis (see Supplemental Table 1). GAN and AMLN ob/ob-NASH 

mice showed significant and overlapping regulations of candidate genes 

(Figure 4C), particularly associated to modulated fatty acid synthesis (Fasn, 

Scd1), reduced fatty acid β-oxidation (Cpt-1), lowered triglyceride synthesis 

(Gpat4), reduced cholesterol synthesis (Hmgcr, Hmgcs1) and transport (ApoCIII, 

Ldlr, Lrp1, Scarb1); impaired insulin (Akt, Irs1, Irs2) and FXR (Cyp7a1, Cyp8b1, 

Ostb) signaling; enhanced monocyte differentiation/recruitment (Ccr1, Ccr2, 

Cd14, Cd68, Cd86, Il1a, Il1a, Mac-2, Mcp-1), pro-inflammatory signaling (Nfkb, 

P38, Tgfbr, Tnfa); inflammasome (Ipaf, Nlrp1b, Nlrp3, Tlr4) and pro-apoptotic 

activity (Casp-8, Rip-1, Rip-3), and enhanced extracellular matrix (ECM) 

reorganization (a-Sma, Col1a1, Col1a2, Col3a1, Col5a1/2/3, Col6a1/2/3, Mmp2, 
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Mmp13, Timp1/2/3). When performing a group-wise comparison of global 

gene expression profiles in GAN vs. AMLN ob/ob mice, liver transcriptome 

signatures were distinguished by only nine DEGs (Ces3b, Cfhr1, Cyp1a1, 

Cyp2f2, Gm4788, Keg1, Serpina3k, Ugt1a9, Ugt2a3). To obtain further resolution 

of the liver transcriptome changes in GAN and AMLN ob/ob-NASH mice vs. 

chow-fed C57 controls, a gene set enrichment analysis was subsequently 

conducted. The Reactome gene annotation analysis identified several disease-

relevant biological pathways significantly enriched in both GAN and AMLN 

ob/ob-NASH mice. Notably, all significantly enriched pathways were 

completely overlapping between GAN and AMLN ob/ob-NASH mice (Figure 

4D). 

 

Liver histopathology in C57 mice fed GAN or AMLN diet for 28 wk 

To investigate liver histological changes in wild-type mice, C57 mice were fed 

chow (n = 15), GAN (n = 30) or AMLN (n = 30) diet for 28 wk. 

Histopathological scores and proportionate area of Col1a1 are shown in 

Figure 5. GAN and AMLN diets were both highly obesogenic in C57 (GAN 

DIO-NASH, AMLN DIO-NASH) mice. GAN DIO-NASH mice showed 

significantly higher endpoint body weight (46.0 ± 0.8 g) compared to AMLN 

DIO-NASH (40.6 ± 0.6 g, P < 0.001) and chow-fed C57 mice (30.7 ± 0.4 g, P < 

0.001 vs GAN DIO-NASH and AMLN-DIO NASH mice). While age-matched 

chow-fed C57 mice displayed normal liver histology, GAN DIO-NASH mice 

developed severe steatosis (score 3, 30/30 mice) and moderate-to-severe 

lobular inflammation (score 0, 1/30 mice; score 1, 3/30 mice; score 2, 19/30 

mice; score 3, 7/30 mice) upon 28 wk of feeding (Figure 5A and B). 

Hepatocyte ballooning was largely absent in GAN DIO-NASH mice (score 0, 

26/30 mice; score 1, 4/30 mice, Figure 5C). Generally, a NAS of 5-6 was 

observed in GAN DIO-NASH mice (score 3, 1/30 mice; score 4, 3/30 mice; 

score 5, 17/30 mice; score 6, 7/30 mice; score 7, 2/30 mice, Figure 5D). 

Fibrosis was typically mild to moderate in GAN DIO-NASH mice (F0, 1/30 

mice; F1, 10/30 mice; F2, 18/30 mice; F3, 1/30 mice), see Figure 5E. AMLN 
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DIO-NASH mice showed a liver histological phenotype very similar to GAN 

DIO-NASH mice, as indicated by severe steatosis (score 3, 30/30 mice), 

moderate to severe lobular inflammation (score 0, 1/30 mice; score 1, 3/30 

mice; score 2, 19/30 mice; score 3, 7/30 mice), inconsistent hepatocyte 

ballooning (score 0, 17/30 mice; score 1, 13/30 mice), and mild-to-moderate 

fibrosis (F0, 3/30 mice; F1, 4/30 mice; F2, 23/30 mice; F3, 0/30 mice). In 

addition, Col1a1 proportionate areas were increased to a similar degree in 

GAN and AMLN DIO-NASH mice, as compared to chow-fed C57 mice, see 

Figure 5F. 

 

DISCUSSION 

The AMLN DIO-NASH and ob/ob-NASH mouse models have been 

extensively validated and characterized in an increasing number of 

pharmacology studies. Here, we compared the metabolic and liver 

histological phenotype in ob/ob mice fed the AMLN diet or a modified AMLN 

diet (GAN diet) with Primex shortening, a trans-fat containing food additive, 

substituted with equivalent amounts of palm oil. The GAN and AMLN diets 

promoted similar biopsy-confirmed liver lesions with hallmarks of fibrotic 

NASH in both ob/ob and C57 mice. Hence, the maintained NASH phenotype 

in both ob/ob and C57 mice indicates the utility of GAN DIO mouse models of 

biopsy-confirmed NASH for the preclinical characterization of novel drug 

therapies for NASH. 

The composition of the AMLN diet, containing high levels of saturated fat, 

fructose, trans-fat and cholesterol, reflects dietary factors considered 

important in the pathogenesis of NAFLD/NASH. Accordingly, excess energy 

intake from dietary fat and simple sugars (Western diets) has been strongly 

linked to NAFLD/NASH[41,42]. In particular, increased consumption of 

saturated fats and fructose has been associated with the deleterious effects of 

intrahepatic lipid accumulation, enhanced lipogenesis, insulin resistance, 

hepatocyte oxidative stress and inflammation in NAFLD/NASH[43-47]. 

Although less well-characterized in NASH, trans-unsaturated fat 
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consumption and dietary cholesterol may sensitize to the hepatotoxic effects 

of excessive fat and fructose intake[31,32,48,49]. Because the FDA has recently 

imposed a ban on the use of trans-fat additives in foods, this prompted us to 

develop a compatible mouse model of NASH based on an obesogenic diet 

high in saturated fat and with a nutrient composition and caloric density 

similar to the AMLN diet. 

The GAN and AMLN diets were both highly obesogenic in ob/ob mice. 

Notably, weight gain and adiposity were even more pronounced in mice fed 

the GAN diet. Other high-fat/trans-fat diets have been reported inducing 

slightly less weight gain in wild-type mice compared to trans-fat-free 

hypercaloric diets[36]. Although not specifically addressed in the present study, 

it may be speculated that substitution of trans-fat with palm oil led to 

improved diet palatability and/or fat absorption rates. This is also indirectly 

supported by the observation that hyperphagic ob/ob mice fed the AMLN diet 

attain slightly less weight gain compared to chow feeding[22,23]. Consistent 

with previous reports[22,24,27], the AMLN diet did not influence glucose 

homeostasis in ob/ob mice which contrasts findings of mild glucose intolerance 

in obese wild-type mice fed other high-fat/trans-fat diet types[31,36,50]. The 

AMLN diet has been reported to elevate endogenous glucose production in 

C57 mice[51], suggesting development of peripheral insulin resistance. As also 

C57 mice fed the AMLN diet maintain normal oral glucose tolerance[22,24], it 

may be speculated that glucoregulatory effects of trans-fats depend on the 

composition of trans-fat species in obesogenic diets. In contrast, GAN ob/ob-

NASH mice displayed significantly impaired glucose tolerance compared to 

chow-fed C57 mice, indicating a more robust insulin-resistant phenotype in 

GAN ob/ob-NASH mice. Because insulin resistance is closely associated with 

NAFLD and is recognized as an important pathophysiological factor in the 

progression to NASH[52-54], this lends further support to the translatability of 

the GAN ob/ob-NASH mouse model. It should be noted that GAN and AMLN 

ob/ob-NASH mice both showed suppressed expression of hepatic genes 

related to lipid and glucose handling. This points to the possibility that 
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extrahepatic mechanisms contribute to impaired glucose handling in GAN 

ob/ob-NASH mice. GAN and AMLN ob/ob-NASH mice demonstrated similarly 

profound hyperinsulinemia, which argues for sustained pancreatic β-cell 

compensation in both models. Importantly, however, glucose intolerance in 

leptin-deficient ob/ob mice has been attributed to failure to suppress hepatic 

glucose production in conjunction with impaired muscle glucose uptake, 

likely precipitated by defective triglyceride handling in these tissues[55-57]. In 

addition, ob/ob mice show impaired glucose uptake in adipose tissues[58,59]. 

Although the present study did not specifically determine insulin sensitivity 

by hyperinsulinemic-euglycemic clamp techniques, the marked adipogenic 

properties of the GAN diet may therefore promote insulin resistance at both 

the hepatic and extrahepatic level to facilitate manifest glucose intolerance in 

GAN ob/ob-NASH mice. 

Consistent with the obese phenotype in GAN and AMLN ob/ob-NASH mice, 

the two models demonstrated pronounced hepatomegaly and intrahepatic 

lipid accumulation. Development of hypercholesterolemia, but not 

hypertriglyceridemia, was also a shared feature in GAN and AMLN ob/ob-

NASH mice, possibly attributed to suppressed hepatic triglyceride secretion, 

as high dietary cholesterol intake can downregulate hepatic cholesterol ester 

and lipoprotein synthesis[60,61]. This is supported by our finding of reduced 

expression of several hepatic genes involved in cholesterol synthesis and 

transport. Enhanced hepatic fat uptake combined with impaired capacity to 

secrete fatty acids may thus be important mechanisms leading to marked 

steatosis in GAN and AMLN ob/ob mice. Hepatic injury was suggested by 

increased levels of plasma transaminases in GAN and AMLN ob/ob mice, 

subsequently confirmed by liver histology. We have previously reported that 

ob/ob mice develop reliably manifest NASH when maintained on AMLN diet 

for a relatively short feeding period (≥ 12 wk). The AMLN ob/ob-NASH model 

is characterized by biopsy-confirmed severe hepatic steatosis, moderate to 

severe lobular inflammation, mild hepatocyte ballooning and fibrotic lesions 

increasing in severity with prolonged feeding periods[22,24-26], recapitulating 
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clinical histopathological criteria for the diagnosis of fibrosing NASH[7,62]. 

Also, the AMLN ob/ob-NASH model has been extensively characterized in 

pharmacology studies[23-25,27]. Notably, ob/ob mice fed the GAN and AMLN 

diet, respectively, developed a highly similar fibrotic NASH phenotype with 

comparable within-subject disease progression rates during the feeding 

period. Accordingly, GAN and AMLN-ob/ob-NASH mice demonstrated 

similar liver histopathology, as determined by both standard clinical 

histopathological scoring and imaging-based quantitative histological 

assessment of steatosis, inflammation and fibrosis.  

The GAN and AMLN diets induced virtually identical hepatic 

transcriptome signatures with marked alterations in candidate genes 

associated with NAFLD/NASH. An unsupervised analysis for full-scale 

mapping and functional annotation of liver transcriptome signatures 

confirmed completely overlapping GAN and AMLN diet-induced hepatic 

signaling pathway perturbations with signatures of inefficient intrahepatic 

lipid and carbohydrate handling, stimulated immune cell activity, increased 

apoptotic activity, ECM remodeling and cell cycle modulation. In addition to 

suppressed transcription of genes associated with cholesterol metabolism 

(discussed above), a subset of genes involved in fatty acid catabolism (β-

oxidation) and storage (triglyceride synthesis) were also downregulated. This 

could indirectly suggest free fatty acid overload and defective lipid 

compartmentation, which has been associated with hepatocyte cytotoxicity 

(lipotoxicity), inflammation and apoptosis in NASH[11-13]. Also, increased 

immune activity and hepatocyte damage was supported by upregulation of 

genes involved in monocyte differentiation/recruitment, pro-inflammatory 

cytokine production, inflammasome activation and pro-apoptotic signaling. 

The significant upregulation of a-Sma, multiple collagen isoforms (Col1a1, 

Col1a2, Col3a1, Col5a1/2/3, Col6a1/2/3) and molecules involved in ECM 

reorganization (Mmp2, Mmp13, Timp1/2/3), suggests that hepatic collagen 

accumulation in GAN and AMLN ob/ob-NASH mice is a combined effect of 

stimulated fibrogenesis and altered balance between the activity of collagen-
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degrading matrix metalloproteinases and tissue inhibitors of 

metalloproteinases. 

The observation that the GAN and AMLN diets both promoted consistent 

fibrotic NASH in ob/ob mice indicates that palm oil supplementation fully 

compensated for the lack of trans-fat in the GAN diet. The extent of hepatic 

saturated fatty acid accumulation parallels disease severity in NAFLD/NASH 

patients[63], and inefficient disposal of saturated free fatty acids is considered 

hepatotoxic[64,65]. Specifically, the particularly high levels of palmitic acid in 

the GAN diet (37% of total fat by weight) compared to the AMLN diet (17% of 

total fat by weight) invites the possibility that this nutritional component 

played an integral role in the development and progression of liver pathology 

in GAN ob/ob-NASH mice. In support of this view, high palmitic acid 

(palmitate at physiological pH) levels in hepatocytes and non-parenchymal 

liver cells can trigger substantial lipotoxic damage through various 

mechanism associated with NASH pathology, including oxidative stress[66], 

endoplasmic reticulum stress[67], pro-apoptotic signaling[68] as well as Kupffer 

cell[69] and hepatic stellate cell activation[70]. In addition to direct cytotoxicity, 

hepatic palmitic acid overload can also promote hepatotoxic effects via 

increased formation palmitate-derived complex lipids, including ceramides[71]. 

Interestingly, long-term AMLN diet feeding has been reported to elevate 

hepatic levels of palmitate-containing ceramides in C57 mice, most likely due 

to incomplete mitochondrial fatty acid oxidation nutritional as result of 

nutritional overload[20]. 

Compared to AMLN ob/ob-NASH mice, longer AMLN diet feeding periods 

(≥ 26 wk) are required for inducing consistent fibrotic NASH in C57 

mice[18,19,22,23], which is likely explained by hyperphagia-driven excessive 

AMLN diet intake in leptin-deficient ob/ob-NASH mice. A comparative study 

was therefore also performed in C57 mice fed the GAN or AMLN diet for 28 

wk (DIO-NASH mice). Similar to ob/ob mice, C57 mice showed significantly 

greater weight gain when fed the GAN diet compared to AMLN diet. 

Histological assessments of biopsied liver specimens revealed highly 
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compatible liver lesions in GAN and AMLN DIO-NASH mice. Both models 

presented with manifest NASH (NAS ≥ 4), characterized by severe steatosis, 

moderate-to-severe lobular inflammation. In GAN DIO-NASH mice, fibrosis 

stage was mild to moderate with significantly increased proportionate area of 

Col1a1 compared to chow-fed C57 mice showing normal liver histology. 

Consistent with previously reported studies in AMLN DIO-NASH mice[23,72], 

hepatocyte ballooning was only detected in a subset of GAN and AMLN DIO-

NASH mice. In addition to the GAN diet, other isocaloric variants of the 

AMLN diet were tested for the ability to induce a metabolic and NASH 

phenotype comparable to the AMLN diet. Compared to the GAN diet, ob/ob 

and C57 mice did not consistently develop fibrotic NASH when fed these 

diets, including diets supplemented with trans-fat from partially 

hydrogenated corn oil (Supplemental Table 2). As the trans-fatty acids 

(largely trans-oleic acid) in the AMLN diet are derived from partially 

hydrogenated soybean and palm oils, the differences in liver histopathology 

may therefore relate to the source of dietary fat used to prepare the partially 

hydrogenated vegetable oil. 

We also characterized the gut microbiome composition in ob/ob mice fed the 

GAN and AMLN diet. GAN and AMLN ob/ob-NASH mice exhibited a similar 

gut microbiome signature, which further emphasizes the comparable 

phenotype in GAN and AMLN ob/ob-NASH mice. Both high-fat diets 

promoted sustained bacterial taxonomic shifts which were evident only two 

weeks after switching from chow feeding. Other high-fat diet feeding 

regimens have been reported to induce rapid gut microbiome structural 

changes in mice[73-75], suggesting that dietary fat played a major role in 

modulating gut bacterial communities in GAN and AMLN ob/ob-NASH mice. 

At the genus level, the microbiome signature in GAN and AMLN ob/ob-NASH 

mice was dominated by increased abundance of Bacteroides and Akkermansia 

paralleled by reductions in unclassified Porphyromonadaceae. Although various 

fecal microbiome profiles have been associated with NASH[76], recent studies 

have indicated increased Bacteroides[77-79] and reduced Porphyromonadaceae[80] 
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abundance in NASH patients compared to healthy control subjects. Bacteroides 

have a large number and diversity of genes encoding enzymes converting 

complex polysaccharides to short-chain fatty acids that serve as energy 

substrates and signaling molecules[81,82]. Increased energy harvest from 

bacterial degradation of dietary polysaccharides has been suggested to 

contribute to adiposity in ob/ob mice[83]. In addition, Bacteroides and 

Akkermansia include prominent mucosa-degrading species[84], which have 

been linked to modulation of gut barrier integrity and immune responses in 

obesity-associated diseases, including NASH[85,86]. It should be considered 

that high-fat diet feeding has been reported to promote similar gut 

microbiome signatures in obesity-prone and obesity-resistant mice, which 

signifies efficient gut ecosystem adaptations to dietary changes independent 

of the metabolic phenotype[87]. Given the early and stable changes in 

dominant gut bacterial genera following the shift from chow to GAN/AMLN 

diet feeding, it cannot be ruled out that microbial adaptive responses 

secondary to altered nutrient intake played a role in shaping the gut 

microbiome in GAN and AMLN ob/ob mice. 

 

CONCLUSION 

In conclusion, modification of the AMLN diet by substitution of Primex 

shortening with palm oil (GAN diet) resulted in a maintained NASH 

phenotype in both ob/ob and C57 mice. The GAN diet was more obesogenic 

than the AMLN diet in both ob/ob and C57 mice and impaired glucose 

intolerance in ob/ob mice. Hence, the clear metabolic and histopathological 

hallmarks of NASH in ob/ob and C57 mice fed the GAN diet highlights the 

suitability of these mouse model for characterizing novel drug therapies for 

NASH. 

 

ARTICLE HIGHLIGHTS 

Research background 
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Non-alcoholic steatohepatitis (NASH) is an obesity-associated liver disease 

with marked unmet medical need. Various diet-induced obese animal models 

of NASH have been employed in preclinical research, target discovery and 

drug development. The trans-fat containing amylin liver NASH (AMLN) diet, 

high in fat, fructose and cholesterol, has been widely used in ob/ob and 

C57BL/6J mice for reliably inducing metabolic and liver histopathological 

changes recapitulating hallmarks of NASH. 

 

Research motivation 

A recent ban on trans-fats as food additive has prompted the development of 

a trans-fat free high-fat diet capable of promoting a compatible level of 

disease in ob/ob and C57BL/6J mice. 

 

Research objectives 

The present study aimed to develop and characterize a liver biopsy-confirmed 

obese mouse model of NASH based on an isocaloric palmitic acid-enriched 

diet with a nutrient composition similar to the AMLN diet. 

 

Research methods 

Male ob/ob mice were fed AMLN diet or a modified AMLN diet with trans-fat 

(Primex shortening) substituted by equivalent amounts of palm oil [Gubra 

Amylin NASH, (GAN) diet] for 8, 12 and 16 wk. In addition, C57BL/6J mice 

were fed AMLN or GAN diet for 28 wk. AMLN and GAN diets were 

isocaloric (40% fat kcal; 10% sucrose, 22% fructose, 2% cholesterol). Disease 

phenotyping included metabolic, liver 

biochemical/histopathological/transcriptomics as well as gut microbiome 

analyses. 

 

Research results 

In ob/ob mice, the GAN diet was more obesogenic and adipogenic compared 

to the AMLN diet. Whereas the GAN diet promoted impaired oral glucose 
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tolerance in ob/ob mice, the AMLN diet had no effect on glucose regulation. 

The GAN and AMLN diets induced similar severity of liver biopsy-confirmed 

steatosis, lobular inflammation, hepatocyte ballooning and fibrotic lesions. 

Also, hepatic transcriptome and gut microbiome changes were similar in ob/ob 

mice fed the GAN and AMLN diet. Also, C57BL/6J mice fed the GAN and 

AMLN developed a similar histological phenotype of mild to moderate 

fibrotic NASH. 

 

Research conclusions 

Substitution of trans-fat (Primex in the AMLN diet) with saturated fat (palm 

oil in the GAN diet) promotes a consistent phenotype of biopsy-confirmed 

fibrotic NASH in both ob/ob and C57BL/6J mice. 

 

Research perspectives 

GAN diet-based ob/ob and C57BL/6J mouse models of biopsy-confirmed 

NASH are applicable for preclinical characterization of novel NASH 

treatments. 
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Figure Legends 

 

Figure 1 Metabolic parameters in ob/ob mice fed amylin liver non-alcoholic 

steatohepatitis or Gubra amylin non-alcoholic steatohepatitis diet for 8-16 

wk. A: Body weight; B: Body composition; C: Terminal liver weight (week 16); 

D: An intraperitoneal glucose tolerance test was performed in week 7 of the 

feeding period, glucose excursion curves; E: Area under the curve glucose 

(area under the curve, 0-180 min); F: Plasma insulin (0, 15, 30 min). aP < 0.05, 

bP < 0.01, cP < 0.001 vs chow-fed C57BL/6J (Chow C57) controls; dP < 0.001 vs 

amylin liver non-alcoholic steatohepatitis diet (n = 5-6 mice per group). 

AMLN: Amylin liver non-alcoholic steatohepatitis; GAN: Gubra amylin non-

alcoholic steatohepatitis; iPGTT: Intraperitoneal glucose tolerance test. 
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Figure 2 Liver biopsy-confirmed non-alcoholic fatty liver disease activity 

score and fibrosis scores in ob/ob mice fed amylin liver or Gubra amylin 

non-alcoholic steatohepatitis diet for 16 wk. A: Representative images of 

terminal liver morphology (upper panel: hematoxylin-eosin staining, lower 

panel: Picro-Sirus red staining, 20× magnification, scale bar 100 µm); B: 

Number of animals with higher, same or lower post-biopsy histopathology 

score compared to corresponding pre-biopsy score (n = 8-10 mice per group). 

Left panel: Non-alcoholic fatty liver disease activity score (NAS); right panel: 

Fibrosis score; C: Individual pre-biopsy and terminal NAS and fibrosis scores. 
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AMLN: Amylin liver non-alcoholic steatohepatitis; GAN: Gubra amylin non-

alcoholic steatohepatitis; NAFLD: Non-alcoholic fatty liver disease; NAS: 

Non-alcoholic fatty liver disease activity score. 

 

 

Figure 3 Quantitative histopathological changes in ob/ob mice fed amylin 

liver non-alcoholic steatohepatitis or Gubra amylin non-alcoholic 

steatohepatitis diet for 16 wk. Fractional (%) area of steatosis (hematoxylin-

eosin staining), inflammation [galectin-3 immunostaining and fibrosis 

(collagen-1a1) immunostaining] determined by imaging-based morphometry 

(n = 8-10 mice per group). A: Steatosis; Galectin-3; C: Collagen-1a1. Scale bar 
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100 µm. AMLN: Amylin liver non-alcoholic steatohepatitis; GAN: Gubra 

amylin non-alcoholic steatohepatitis; Col1a1: Collagen-1a1. 

 

 

Figure 4 Liver transcriptome changes in ob/ob mice fed amylin liver non-

alcoholic steatohepatitis or Gubra amylin non-alcoholic steatohepatitis diet 

for 16 wk. Overview of hepatic gene expression profiles in ob/ob mice fed 

amylin liver non-alcoholic steatohepatitis (NASH) (AMLN) or Gubra amylin 

non-alcoholic steatohepatitis (GAN) diet compared to age-matched chow-fed 
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ob/ob mice (n = 8-10 mice per group). A: Principal component analysis of 

samples based on top 500 most variable gene expression levels; B: Group-wise 

comparison of total number of differentially expressed genes (false discovery 

rate < 0.05) between ob/ob mice fed AMLN or GAN diet for 16 wk vs chow-fed 

C57BL/6J (Chow C57) mice; C: Relative gene expression levels (z-scores) of 

differentially regulated candidate genes associated with NASH and fibrosis. 

In-house gene panel on candidate genes is indicated in Supplemental Table 1; 

D: Group-wise comparison of global liver transcriptome changes according to 

enrichment of individual gene sets in the Reactome pathway database. 

Regulated pathways are ranked according to level of statistical significance (P 

value). AMLN: Amylin liver non-alcoholic steatohepatitis; GAN: Gubra 

amylin non-alcoholic steatohepatitis; NASH: Non-alcoholic steatohepatitis. 
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Figure 5 Liver histopathological scores in C57BL/6J mice fed chow, amylin 

liver non-alcoholic steatohepatitis, or Gubra amylin non-alcoholic 

steatohepatitis diet for 28 wk. A: Steatosis; B: Lobular inflammation; C: 

Hepatocyte ballooning; D: Non-alcoholic fatty liver disease activity score; E: 

Fibrosis; F: Collagen-1a1 fractional area (mean ± SEM). cP < 0.001 vs chow-fed 

C57BL/6J (Chow C57) mice.  
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Table 1 Plasma and liver biomarkers in ob/ob mice fed amylin liver non-alcoholic steatohepatitis or Gubra 

amylin non-alcoholic steatohepatitis diet for 8-16 wk 

Group Weeks on diet n ALT (U/L) AST (U/L) Plasma TG 

(mmol/L) 

Plasma TC 

(mmol/L) 

Liver lipid mass (% 

of liver weight) 

 

Chow C57 

8 6 115 ± 60 192 ± 77 1.7 ± 0.2 3.8 ± 0.2 3.5 ± 0.4 

12 6 67 ± 10 93 ± 16 1.7 ± 0.1 3.5 ± 0.1 4.9 ± 0.7 

16 6 61 ± 18 82 ± 18 2.2 ± 0.2 3.8 ± 0.3 3.6 ± 0.4 

 

GAN ob/ob 

8 4 913 ± 113a 663 ± 37a 1.2 ± 0.2 11.8 ± 0.9a 31.6 ± 1.3a 

12 5 959 ± 93a 660 ± 52a 1.4 ± 0.1 12.4 ± 1.3a 33.3 ± 0.7a 

16 5 868 ± 102a 674 ± 25a,d 1.5 ± 0.2a 14.3 ± 0.8a,d 28.4 ± 1.4a,d 

AMLN ob/ob 16 6 654 ± 39a 399 ± 23a 1.0 ± 0.1a 11.0 ± 0.4a 35.4 ± 0.8a,d 

aP < 0.05 vs chow-fed C57BL/6J (Chow C57) mice. dP < 0.05 vs amylin liver non-alcoholic steatohepatitis ob/ob mice. 

TC: Total cholesterol; ALT: Alanine aminotransferase; AST: Aspartate aminotransferase; TG: Total triglycerides. 


