REVIEW

10823 New insights into the interplay between intestinal flora and bile acids in inflammatory bowel disease
Zheng L

10840 Role of visfatin in obesity-induced insulin resistance
Abdalla MMI

MINIREVIEWS

10852 Hyperthermic intraperitoneal chemotherapy and colorectal cancer: From physiology to surgery

10862 New-onset diabetes secondary to acute pancreatitis: An update
Yu XQ, Zhu Q

10867 Ketosis-prone diabetes mellitus: A phenotype that hospitalists need to understand
Boiße S, Mir M, Rauf I, Jama AB, Sunesara S, Mushtaq H, Khedr A, Nitesh J, Sunani S, Khan SA

10873 2022 Monkeypox outbreak: Why is it a public health emergency of international concern? What can we do to control it?
Ren SY, Li J, Guo RD

ORIGINAL ARTICLE

Retrospective Cohort Study

10882 Clinical characteristics and prognosis of non-small cell lung cancer patients with liver metastasis: A population-based study

Retrospective Study

10896 Prevalence and risk factors for Candida esophagitis among human immunodeficiency virus-negative individuals
Chen YH, Jao TM, Shiue YL, Feng LJ, Hsu PI

10906 Prognostic impact of number of examined lymph nodes on survival of patients with appendiceal neuroendocrine tumors
Du R, Xiao JW

Observational Study

10921 Clinical and epidemiological features of ulcerative colitis patients in Sardinia, Italy: Results from a multicenter study
<table>
<thead>
<tr>
<th>Page</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>10931</td>
<td>Clinical observation of laparoscopic cholecystectomy combined with endoscopic retrograde cholangiopancreatography or common bile duct lithotripsy</td>
<td>Niu H, Liu F, Tian YB</td>
</tr>
<tr>
<td>10939</td>
<td>Patient reported outcome measures in anterior cruciate ligament rupture and reconstruction: The significance of outcome score prediction</td>
<td>Al-Dadah O, Shepstone L, Donell ST</td>
</tr>
<tr>
<td>10956</td>
<td>Body mass index and outcomes of patients with cardiogenic shock: A systematic review and meta-analysis</td>
<td>Tao WX, Qian GY, Li HD, Su F, Wang Z</td>
</tr>
<tr>
<td>10967</td>
<td>Impact of being underweight on peri-operative and post-operative outcomes of total knee or hip arthroplasty: A meta-analysis</td>
<td>Ma YP, Shen Q</td>
</tr>
<tr>
<td>10984</td>
<td>Branched-chain amino acids supplementation has beneficial effects on the progression of liver cirrhosis: A meta-analysis</td>
<td>Du JY, Shu L, Zhou YT, Zhang L</td>
</tr>
<tr>
<td>10997</td>
<td>Wells’ syndrome possibly caused by hematologic malignancy, influenza vaccination or ibrutinib: A case report</td>
<td>Šajn M, Luzar B, Zver S</td>
</tr>
<tr>
<td>11004</td>
<td>Giant cutaneous squamous cell carcinoma of the popliteal fossa skin: A case report</td>
<td>Wang K, Li Z, Chao SW, Wu XW</td>
</tr>
<tr>
<td>11010</td>
<td>Right time to detect urine iodine during papillary thyroid carcinoma diagnosis and treatment: A case report</td>
<td>Zhang SC, Yan CJ, Li YF, Cui T, Shen MP, Zhang JX</td>
</tr>
<tr>
<td>11031</td>
<td>Neonatal Cri du chat syndrome with atypical facial appearance: A case report</td>
<td>Bai MM, Li W, Meng L, Sang YF, Cui YJ, Feng HY, Zong ZT, Zhang HB</td>
</tr>
<tr>
<td>11037</td>
<td>Complete colonic duplication presenting as hip fistula in an adult with pelvic malformation: A case report</td>
<td>Cai X, Bi JT, Zheng ZX, Liu YQ</td>
</tr>
<tr>
<td>Page</td>
<td>Title</td>
<td>Authors</td>
</tr>
<tr>
<td>------</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>11044</td>
<td>Autoimmune encephalitis with posterior reversible encephalopathy syndrome: A case report</td>
<td>Dai SJ, Yu QJ, Zhu XY, Shang QZ, Qu JB, Ai QL</td>
</tr>
<tr>
<td>11059</td>
<td>Different intraoperative decisions for undiagnosed paraganglioma: Two case reports</td>
<td>Kang D, Kim BE, Hong M, Kim J, Jeong S, Lee S</td>
</tr>
<tr>
<td>11074</td>
<td>Bone marrow metastatic neuroendocrine carcinoma with unknown primary site: A case report and review of the literature</td>
<td>Shi XB, Dong WX, Jin FX</td>
</tr>
<tr>
<td>11101</td>
<td>Severe Klebsiella pneumoniae pneumonia complicated by acute intra-abdominal multiple arterial thrombosis and bacterial embolism: A case report</td>
<td>Bao XL, Tang N, Wang YZ</td>
</tr>
<tr>
<td>11111</td>
<td>Spontaneous bilateral femur neck fracture secondary to grand mal seizure: A case report</td>
<td>Senocak E</td>
</tr>
<tr>
<td>11116</td>
<td>Favorable response after radiation therapy for intraductal papillary mucinous neoplasms manifesting as acute recurrent pancreatitis: A case report</td>
<td>Harigai A, Kume K, Takahashi N, Omata S, Umezawa R, Jingu K, Masamune A</td>
</tr>
<tr>
<td>11139</td>
<td>Perirectal epidermoid cyst in a patient with sacrococcygeal scoliosis and anal sinus: A case report</td>
<td>Ji ZX, Yan S, Guo XC, Lin LF, Li Q, Yao Q, Wang D</td>
</tr>
</tbody>
</table>
Contents

Thrice Monthly Volume 10 Number 30 October 26, 2022

<table>
<thead>
<tr>
<th>Page</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>11155</td>
<td>Giant struma ovarii with pseudo-Meigs'syndrome and raised cancer antigen-125 levels: A case report</td>
<td>Liu Y, Tang GY, Liu L, Sun HM, Zha HY</td>
</tr>
<tr>
<td>11162</td>
<td>Longest survival with primary intracranial malignant melanoma: A case report and literature review</td>
<td>Wong TF, Chen YS, Zhang XH, Hu WM, Zhang XS, Lv YC, Huang DC, Deng ML, Chen ZP</td>
</tr>
<tr>
<td>11172</td>
<td>Spontaneous remission of hepatic myelopathy in a patient with alcoholic cirrhosis: A case report</td>
<td>Chang CY, Liu C, Duan FF, Zhai H, Song SS, Yang S</td>
</tr>
<tr>
<td>11178</td>
<td>Cauda equina syndrome caused by the application of DuraSeal™ in a microlaminectomy surgery: A case report</td>
<td>Yeh KL, Wu SH, Fuh CS, Huang YH, Chen CS, Wu SS</td>
</tr>
<tr>
<td>11185</td>
<td>Bioceramics utilization for the repair of internal resorption of the root: A case report</td>
<td>Riyahi AM</td>
</tr>
<tr>
<td>11198</td>
<td>Accidental esophageal intubation via a large type C congenital tracheoesophageal fistula: A case report</td>
<td>Hwang SM, Kim MJ, Kim S, Kim S</td>
</tr>
<tr>
<td>11204</td>
<td>Ventral hernia after high-intensity focused ultrasound ablation for uterine fibroids treatment: A case report</td>
<td>Park JW, Choi HY</td>
</tr>
</tbody>
</table>

LETTER TO THE EDITOR

<table>
<thead>
<tr>
<th>Page</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>11210</td>
<td>C-Reactive protein role in assessing COVID-19 deceased geriatrics and survivors of severe and critical illness</td>
<td>Nori W</td>
</tr>
</tbody>
</table>
ABOUT COVER
Editorial Board Member of *World Journal of Clinical Cases*, Rajeev Gurunath Redkar, FRCS, FRCS (Ed), FRCS (Gen Surg), MBBS, MCh, MS, Dean, Professor, Surgeon, Department of Pediatric Surgery, Lilavati Hospital and Research Centre, Mumbai 400050, Maharashtra, India. rajeev.redkar@gmail.com

AIMS AND SCOPE
The primary aim of *World Journal of Clinical Cases* (*WJCC, World J Clin Cases*) is to provide scholars and readers from various fields of clinical medicine with a platform to publish high-quality clinical research articles and communicate their research findings online.

WJCC mainly publishes articles reporting research results and findings obtained in the field of clinical medicine and covering a wide range of topics, including case control studies, retrospective cohort studies, retrospective studies, clinical trials studies, observational studies, prospective studies, randomized controlled trials, randomized clinical trials, systematic reviews, meta-analysis, and case reports.

INDEXING/ABSTRACTING
The *WJCC* is now abstracted and indexed in Science Citation Index Expanded (SCIE, also known as SciSearch®), Journal Citation Reports/Science Edition, Current Contents®/Clinical Medicine, PubMed, PubMed Central, Scopus, Reference Citation Analysis, China National Knowledge Infrastructure, China Science and Technology Journal Database, and Superstar Journals Database. The 2022 Edition of Journal Citation Reports® cites the 2021 impact factor (IF) for *WJCC* as 1.534; IF without journal self cites: 1.491; 5-year IF: 1.599; Journal Citation Indicator: 0.28; Ranking: 135 among 172 journals in medicine, general and internal; and Quartile category: Q4. The *WJCC*’s CiteScore for 2021 is 1.2 and Scopus CiteScore rank 2021: General Medicine is 443/826.

RESPONSIBLE EDITORS FOR THIS ISSUE
Production Editor: Ying-Yi Yuan; Production Department Director: Xu Gan; Editorial Office Director: Jin-Lei Wang.

NAME OF JOURNAL
World Journal of Clinical Cases

ISSN
ISSN 2307-8960 (online)

LAUNCH DATE
April 16, 2013

FREQUENCY
Thrice Monthly

EDITORS-IN-CHIEF
Bao-Gan Peng, Jerzy Tadeusz Chudek, George Kontogeorgos, Maurizio Serati, Ja Hyeon Ku

EDITORIAL BOARD MEMBERS
https://www.wjgnet.com/2307-8960/editorialboard.htm

PUBLICATION DATE
October 26, 2022

COPYRIGHT
© 2022 Baishideng Publishing Group Inc

INSTRUCTIONS TO AUTHORS
https://www.wjgnet.com/bpg/gerinfo/204

GUIDELINES FOR ETHICS DOCUMENTS
https://www.wjgnet.com/bpg/gerinfo/287

GUIDELINES FOR NON-NATIVE SPEAKERS OF ENGLISH
https://www.wjgnet.com/bpg/gerinfo/240

PUBLICATION ETHICS
https://www.wjgnet.com/bpg/gerinfo/288

PUBLICATION MISCONDUCT
https://www.wjgnet.com/bpg/gerinfo/208

ARTICLE PROCESSING CHARGE
https://www.wjgnet.com/bpg/gerinfo/242

STEPS FOR SUBMITTING MANUSCRIPTS
https://www.wjgnet.com/bpg/gerinfo/239

ONLINE SUBMISSION
https://www.filipublishing.com

© 2022 Baishideng Publishing Group Inc. All rights reserved. 7041 Koll Center Parkway, Suite 160, Pleasanton, CA 94566, USA
E-mail: bpgoffice@wjgnet.com https://www.wjgnet.com
Child with adenylosuccinate lyase deficiency caused by a novel complex heterozygous mutation in the ADSL gene: A case report

Xing-Chen Wang, Ting Wang, Rui-Han Liu, Yan Jiang, Dan-Dan Chen, Xin-Yu Wang, Qing-Xia Kong

Abstract

BACKGROUND

Adenylosuccinate lyase (ADSL) deficiency is a rare autosomal-recessive defect of purine metabolism caused by mutation of the ADSL gene. It can cause severe neurological impairment and diverse clinical manifestations, including epilepsy.

CASE SUMMARY

Here, we describe a 3-year-old Chinese boy who had both psychomotor retardation and refractory epilepsy. Magnetic resonance imaging showed myelin hypoplasia. Electroencephalography findings supported a diagnosis of epilepsy. Whole-exon sequencing revealed the presence of a novel complex heterozygous mutation in the ADSL gene: The splicing mutation c.154-3C>G and the missense mutation c.71C>T (p. Pro24Leu). Considering the patient’s clinical presentation and genetic test results, the complex heterozygous mutation was predicted to prevent both ADSL alleles from producing normal ADSL, which may have led to ADSL deficiency. Finally, the child was diagnosed with ADSL deficiency.

CONCLUSION

We identified a novel complex heterozygous mutation in the ADSL gene associated with ADSL deficiency, thus expanding the known spectrum of pa-
thogenic mutations that cause ADSL deficiency. Additionally, we describe epilepsy that occurs in patients with ADSL deficiency.

Key Words: Adenylosuccinate lyase deficiency; Compound heterozygous mutations; Epilepsy; Pathogenic mutation; Case report

©The Author(s) 2022. Published by Baishideng Publishing Group Inc. All rights reserved.

Core Tip: A child presented with comprehensive developmental delay and epilepsy. Whole-exon sequencing revealed the presence of a novel complex heterozygous mutation in the adenylosuccinate lyase (ADSL) gene. Bioinformatics analysis suggested that the mutation caused ADSL deficiency.

INTRODUCTION

Adenylosuccinate lyase (ADSL) deficiency is a rare deficiency of purine metabolism. More than 120 cases have been reported[1], and the global prevalence is 1 in 1.25 million[2]. The most common and prominent clinical manifestations are neurological symptoms, including acute encephalopathy, chronic encephalopathy, and behavioral abnormalities. Approximately half of affected patients have epilepsy [2]. Currently, there is no effective treatment for ADSL deficiency; thus, prenatal genetic testing is important for affected families.

ADSL participates in two purine nucleotide metabolic pathways. It catalyzes the conversion of succinylaminomidazole carboxamide ribotide to aminoimidazole carboxamide ribotide as well as the conversion of adenylate succinate to adenosine monophosphate. ADSL deficiency results in the accumulation of succinylaminimidazole carboxamide riboside (SAICAr) and succinyladenosine in various body fluids, particularly cerebrospinal fluid and urine[3]. ADSL deficiency is caused by ADSL gene mutations; two-thirds of confirmed cases involve complex heterozygous mutations[2]. Thus far, more than 150 ADSL gene mutations have been identified, most of which constitute missense mutations[1]; all mutations in the ADSL gene can cause ADSL deficiency.

CASE PRESENTATION

Chief complaints
A 3-year-old boy was admitted to our clinic after he had experienced paroxysmal loss of consciousness for > 1 year.

History of present illness
The patient exhibited loss of consciousness, global lack of muscle tone and presence of cyanotic lips during seizures, and spontaneous remission after 2-3 min. Since the onset of the seizures, he had exhibited poor mentation, additional crying, ingestion of a semiliquid diet, reduced appetite, and worsened sleep. Convulsion episodes had continued after treatment with sodium valproate 9 mL twice daily (ineffective) and topiramate 75 mg twice daily (effective but poor control). Oxazepine was added on January 5, 2021. No seizures were observed, but a rash appeared 4 week later and sleep increased. Oxazepine was discontinued on February 25, 2021, and the rash abated. Perampanel, two tablets once daily, was added on February 26, 2021. However, the patient continued to experience seizures that manifested as sudden rapid head drop (myoclonus), sometimes accompanied by lip smacking, slow shaking of both upper extremities, and sudden freezing. These seizures often occurred after excitement and diminished after 1 min. At the time of admission, the patient was receiving sodium valproate 12 mL twice daily, topiramate 25 mg twice daily, and perampanel 8 mg once daily.

History of past illness
The patient had no abnormal birth history. He had a history of poor growth milestones (e.g., he began to
roll over slowly and could not sit unassisted at the age of 9 months) and had been diagnosed with developmental delay. At the time of admission, he could not sit unassisted, could not recognize people, could not speak, and exhibited unconscious pronunciation.

Personal and family history
The patient’s parents were healthy, non-blood relatives. The patient was the only child in his family, and neither parent had other offspring. There was no obvious family history of developmental delay or seizures.

Physical examination
Physical examination findings were temperature 37.3 °C, pulse 102 beats/min, respiration 24 breaths /min, and weight 17.7 kg. The patient exhibited a clear mind, poor spirit, frequent crying, limited development, moderate nutrition, pharyngeal congestion, coarse breath sounds in both lungs, and slightly elevated muscle tension.

Laboratory examinations
Laboratory findings were within normal limits.

Genetic analysis: Genomic DNA was isolated from peripheral blood that had been collected from the patient and his parents. Candidate mutation sites were examined by Sanger sequencing. Complex heterozygous mutations were found in the patient’s **ADSL** gene: The splicing mutation c.154-3C>G (present in his father; Figure 1A-C) and the missense mutation c.71C>T (p. Pro24Leu) (present in his mother; Figure 1D-F).

The bioinformatics software programs PSIPRED V4.0 (http://bioinf.cs.ucl.ac.uk/psipred/) and RaptorX (http://raptorx.uchicago.edu) were used to predict the secondary and tertiary structures, respectively, of mutant and wild-type ADSL proteins. The missense mutation c.71C>T causes an amino acid change from proline to leucine (p. Pro24Leu), possibly leading to a change in polarity (Figure 2). The splicing mutation c.154-3C>G was predicted to be pathogenic, according to the SD-Score Algorithm (Figure 3).

Imaging examinations
Magnetic resonance imaging in July 2020 showed bilateral external frontal temporal space widening and abnormal signals around the posterior horns of both lateral ventricles, suggestive of myelin hypoplasia; follow-up examination showed similar findings (Figures 4 and 5).

Electroencephalography: Electroencephalography performed in July 2020 revealed an abnormal electroencephalogram with slightly more medium-high amplitude in the left and right frontal regions, a few full-conduction irregular medium-high amplitude spikes, sharp slow waves, and a slow background rhythm. In July 2021, video electroencephalography revealed highly rhythmical patterns during most of the waking period and the entire sleep period. On the basis of irregular slow waves with full diffusion of 2-7 Hz, the patient exhibited multifocal slow waves, spiky slow waves, and polyspinous slow waves, with left and right asymmetry, asynchronous anterior and posterior findings, pronounced anterior activity, and an obvious sleep period (Figure 5).

FINAL DIAGNOSIS
Based on the patient’s clinical characteristics and the results of genetic tests and bioinformatics analyses, the child was diagnosed with ADSL.

TREATMENT
Oral valproate solution, topiramate, and perampanel tablet.

OUTCOME AND FOLLOW-UP
The patient was seizure-free for > 1 year, but he did not show clinically significant improvements in intelligence or motor ability.
DISCUSSION

There are four types of ADSL deficiency, according to the clinical manifestations. The neonatal type is characterized by fatal neonatal encephalopathy, lack of autonomous movement, respiratory failure, and intractable epilepsy, leading to death within a few weeks after birth. Type I (the most common type) is characterized by severe psychomotor retardation, early epileptic seizures, microcephaly, and autistic features. Type II is a milder form in which symptoms usually develop within a few years after birth; affected patients usually exhibit mild to moderate psychomotor retardation and transient contact disturbances, sometimes accompanied by epilepsy. There is an additional phenotype that solely involves solitary psychomotor retardation or ataxia [1,4].

The phenotypic severity of ADSL deficiency may reflect the structural stability and residual enzymatic activity of the mutant ADSL enzyme complex. The pathogenic effects of biochemically benign and structurally stable mutations may be related to abnormalities that arise only under in vivo conditions in eukaryotic cells, rather than their intrinsic structural and/or catalytic properties [5]. Diffuse cortical atrophy and delayed myelination are the main neuroimaging findings in patients with ADSL deficiency [6].

Type II is a milder clinical phenotype of ADSL deficiency that involves slow disease progression and no specific symptoms. This phenotype was previously suspected to occur in approximately 15%-20% of patients with ADSL deficiency, but there is some evidence that it may be more common [7]. Patients with type II ADSL deficiency have only minor neurological involvement and a low incidence of epilepsy; they also have milder brain anomalies and generally do not exhibit microcephaly [7]. Our patient presented with comprehensive developmental delay and epilepsy, but he lacked autism or microcephaly. His magnetic resonance results were suggestive of myelin dysplasia, genetic analysis demonstrated a complex heterozygous mutation in the ADSL gene, and his clinical manifestations had not substantially progressed in recent years. Thus, he was diagnosed with type II ADSL deficiency.

The pathogenesis of ADSL deficiency is currently unclear. The underlying mutations are presumed to cause enzyme instability, which leads to the accumulation of SAICAr and succinyladenosine; the accumulation of SAICAr then produces neurotoxic effects. Other hypotheses regarding the pathogenesis of ADSL deficiency include a lack of the de novo purine biosynthetic pathway or the absence of a fully functional purine cycle in the muscles and brain [2]. We searched for common ADSL deficiency-related gene mutations in ADSLD (http://www1.lf1.cuni.cz/udmp/adsl) and PubMed (Table 1). c.1277G>A was the most common missense mutation, followed by c.340T>C; c.-49T>C was the most common splicing mutation. We speculate that the complex heterozygous mutation c.71C>T and c.154-3C>G in the ADSL gene, which is present in Chinese families, may be responsible for the phenotype in our patient. The c.71C>T mutation may cause a change in amino acid polarity, such that a hydrophobic
Table 1 Common genetic mutations that cause adenylosuccinate lyase deficiency

<table>
<thead>
<tr>
<th>Mutant protein</th>
<th>Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>c.1277G>A</td>
<td>36</td>
</tr>
<tr>
<td>c.340T>C</td>
<td>12</td>
</tr>
<tr>
<td>c.-49T>C</td>
<td>5</td>
</tr>
<tr>
<td>c.907C>T</td>
<td>4</td>
</tr>
<tr>
<td>c.736A>G</td>
<td>3</td>
</tr>
<tr>
<td>c.1187G>A</td>
<td>3</td>
</tr>
<tr>
<td>c.569G>A</td>
<td>3</td>
</tr>
</tbody>
</table>

leucine replaces a small non-polar proline. This adversely affects ADSL function (Figure 2). c.154-3C>G is a splicing mutation in the intron before nucleotide 154 in the coding region, which may influence the heterogenous nuclear RNA splicing process and produce an altered form of ADSL (Figure 3). We hypothesized that the ADSL alleles in our patient could not produce normal ADSL, leading to the clinical manifestation of ADSL deficiency. Our report of a complex heterozygous mutation in the ADSL gene in a Chinese patient could help expand the known spectrum of mutations and provide guidance for genetic counseling.

Epilepsy is a common clinical manifestation of ADSL deficiency, such that it occurs in approximately half of patients with ADSL deficiency. Epilepsy phenotypes in patients with ADSL deficiency include...
Figure 3 SD-Score Algorithm predicted that the mutation would affect gene splicing. Ri: Information contents; CV: Position weight matrix; $\triangle SD$-Score: Differences in the SD-Score; $\triangle Ri$: Differences in the information contents; $\triangle CV$: Differences in the position weight matrix.

Figure 4 Brain magnetic resonance images findings. A and B: T2-weighted images; C and D: Diffusion-weighted images; E and F: Fluid-attenuated inversion recovery images. Magnetic resonance images showed bilateral external frontal temporal space widening and abnormal signals around the posterior horns of both lateral ventricles.

CONCLUSION
ADSL deficiency is a rare deficiency of purine metabolism. ADSL deficiency should be suspected in children with psychomotor retardation and refractory epilepsy as well as in patients with magnetic resonance imaging findings of diffuse cortical atrophy and delayed myelination. Genetic testing is
Wang XC et al. A case report of ADSL deficiency

Electroencephalography findings. Necessary to confirm the diagnosis. Metabolic epilepsy caused by ADSL deficiency can be controlled by the administration of antiepileptic drugs.

ACKNOWLEDGEMENTS
We thank the patient and his parents for providing relevant information and allowing us to publish this information. We also thank the Affiliated Hospital of Jining Medical University for providing support and assistance with this work.

FOOTNOTES

Author contributions: Wang XC, Liu RH, and Kong QX designed the study; Chen DD, Jiang Y, Wang XY, and Wang T collected the data; Wang XC, Wang T, and Liu RH contributed to data analysis and interpretation; Wang XC drafted the manuscript; Kong QX and Liu RH contributed to revisions; all authors approved the final version of the manuscript.

Supported by the Natural Science Foundation of Shandong Province, No. ZR2019MH060.

Informed consent statement: Informed written consent was obtained from the patients for the publication of this report and any accompanying images.

Conflict-of-interest statement: The authors declare that they have no conflict of interest.

CARE Checklist (2016) statement: The authors have read the CARE Checklist (2016), and the manuscript was prepared and revised according to the CARE Checklist (2016).

Open-Access: This article is an open-access article that was selected by an in-house editor and fully peer-reviewed by external reviewers. It is distributed in accordance with the Creative Commons Attribution NonCommercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license
their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: https://creativecommons.org/Licenses/by-nc/4.0/

Country/Territory of origin: China

ORCID number: Xing-Chen Wang 0000-0003-4974-2243; Ting Wang 0000-0002-4513-9627; Yan Jiang 0000-0003-3009-172X; Dan-Dan Chen 0000-0002-6346-1942; Xin-Yu Wang 0000-0003-4088-4755; Qing-Xia Kong 0000-0003-3808-7490.

S-Editor: Chen YL
L-Editor: Filipodia
P-Editor: Wu RR

REFERENCES
