Contents

EVIDENCE REVIEW
3639 Tilt and decentration with various intraocular lenses: A narrative review

REVIEW
3647 Role of zonula occludens in gastrointestinal and liver cancers
Ram AK, Vairappan B

MINIREVIEWS
3662 Pathophysiological mechanisms of hepatic stellate cells activation in liver fibrosis
Garbuzenko DV

ORIGINAL ARTICLE
Retrospective Cohort Study
3677 Predictors of unfavorable outcome at 90 days in basilar artery occlusion patients
Chiu YC, Yang JL, Wang WC, Huang HY, Chen WL, Yen PS, Tseng YL, Chen HH, Tsai ST

Retrospective Study
3686 Role of multidetector computed tomography in patients with acute infectious colitis
Yu SJ, Heo JH, Choi EJ, Kim JH, Lee HS, Kim SY, Lim JH

3698 Efficacy and prognostic factors of neoadjuvant chemotherapy for triple-negative breast cancer
Ding F, Chen RY, Hou J, Guo J, Dong TY

3709 Relationship between subgroups of central and lateral lymph node metastasis in clinically node-negative papillary thyroid carcinoma
Zhou J, Li DX, Gao H, Su XL

3720 Nomogram to predict postoperative complications in elderly with total hip replacement
Tan XJ, Gu XX, Ge FM, Li ZY, Zhang LQ

3729 Flap failure prediction in microvascular tissue reconstruction using machine learning algorithms
Shi YC, Li J, Li SJ, Li ZP, Zhang HJ, Wu ZY, Wu ZY

Observational Study
3739 Surgery in platinum-resistant recurrent epithelial ovarian carcinoma
Zhao LQ, Gao W, Zhang P, Zhang YL, Fang CY, Shou HF
Contents

Thrice Monthly Volume 10 Number 12 April 26, 2022

<table>
<thead>
<tr>
<th>Page</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>3754</td>
<td>Anorectal dysfunction in patients with mid-low rectal cancer after surgery: A pilot study with three-dimensional high-resolution manometry</td>
<td>Pi YN, Xiao Y, Wang ZF, Lin GL, Qiu HZ, Fang XC</td>
</tr>
<tr>
<td></td>
<td>Randomized Controlled Trial</td>
<td></td>
</tr>
<tr>
<td></td>
<td>META-ANALYSIS</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CASE REPORT</td>
<td></td>
</tr>
<tr>
<td>3801</td>
<td>Anti-programmed death 1 antibody in the treatment of coexistent Mycobacterium fortuitum and lung cancer: A case report</td>
<td>Zhang CC, Chen P</td>
</tr>
<tr>
<td>3814</td>
<td>Successful management of life-threatening aortoesophageal fistula: A case report and review of the literature</td>
<td>Zhong XQ, Li GX</td>
</tr>
<tr>
<td>3822</td>
<td>Isolated coagulopathy without classic CRAB symptoms as the initial manifestation of multiple myeloma: A case report</td>
<td>Zhang Y, Xu F, Wen JJ, Shi L, Zhou QL</td>
</tr>
<tr>
<td>3828</td>
<td>Evaluation of intracoronary function after reduction of ventricular rate by esmolol in severe stenotic myocardial bridge: A case report</td>
<td>Sun LJ, Yan DG, Huang SW</td>
</tr>
<tr>
<td>3834</td>
<td>Pediatric living donor liver transplantation using liver allograft after ex vivo backtable resection of hemangioma: A case report</td>
<td>Li SX, Tang HN, Lv GY, Chen X</td>
</tr>
<tr>
<td>3842</td>
<td>Kimura's disease in soft palate with clinical and histopathological presentation: A case report</td>
<td>Li W</td>
</tr>
<tr>
<td>3849</td>
<td>Combined targeted therapy and immunotherapy in anaplastic thyroid carcinoma with distant metastasis: A case report</td>
<td>Ma DX, Ding XP, Zhang C, Shi P</td>
</tr>
</tbody>
</table>
Contents

Successful multimodality treatment of metastatic gallbladder cancer: A case report and review of literature

Ischemic colitis after receiving the second dose of a COVID-19 inactivated vaccine: A case report
Cui MH, Hou XL, Liu JY

Cryoballoon pulmonary vein isolation and left atrial appendage occlusion prior to atrial septal defect closure: A case report
Wu YC, Wang MX, Chen GC, Ruan ZB, Zhang QQ

Surgical treatment for a combined anterior cruciate ligament and posterior cruciate ligament avulsion fracture: A case report
Yoshida K, Hakozaki M, Kobayashi H, Kimura M, Konno S

Successful robot-assisted partial nephrectomy for giant renal hilum angiomyolipoma through the retroperitoneal approach: A case report
Luo SH, Zeng QS, Chen JX, Huang B, Wang ZR, Li WJ, Yang Y, Chen LW

Cryptococcal antigen testing of lung tissue homogenate improves pulmonary cryptococcosis diagnosis: Two case reports
Wang WY, Zheng YL, Jiang LB

Combined use of extracorporeal membrane oxygenation with interventional surgery for acute pancreatitis with pulmonary embolism: A case report
Yan LL, Jin XX, Yan XD, Peng JB, Li ZY, He BL

Dynamic navigation system-guided trans-inferior alveolar nerve implant placement in the atrophic posterior mandible: A case report
Chen LW, Zhao KE, Yan Q, Xia HB, Sun Q

Anti-glomerular basement membrane disease with IgA nephropathy: A case report
Guo C, Ye M, Li S, Zhu TT, Rao XR

Amniotic membrane transplantation in a patient with impending perforated corneal ulcer caused by Streptococcus mitis: A case report and review of literature
Hsiao FC, Meir YY, Yeh LK, Tan HY, Hsiao CH, Ma DHK, Wu WC, Chen HC

Steroid for Autoimmune pancreatitis complicating by gastric varices: A case report
Hao NB, Li X, Hu WW, Zhang D, Xie J, Wang XL, Li CZ

Antithrombotic treatment strategy for patients with coronary artery ectasia and acute myocardial infarction: A case report
Liu RF, Gao XY, Liang SW, Zhao HQ

Mesh plug erosion into the small intestine after inguinal hernia repair: A case report

Recurrence of infectious mononucleosis in adults after remission for 3 years: A case report
Zhang XY, Teng QB
Vertical direction impaction of kissing molars: A case report

Wen C, Jiang R, Zhang ZQ, Lei B, Yan YZ, Zhong YQ, Tang L

LETTER TO THE EDITOR

Comment on “Outcomes of different minimally invasive surgical treatments for vertebral compression fractures: An observational study”

Ma L, Luo ZW, Sun YY
AHBEH COVER

Editorial Board Member of World Journal of Clinical Cases, Potluri Leela Ravishankar, MDS, Professor, Department of Periodontics, SRM Kattankulathur Dental College and Hospital, SRM University, Chennai 603203, Tamil Nadu, India. plrs6@yahoo.com

AIMS AND SCOPE

The primary aim of World Journal of Clinical Cases (WJCC, World J Clin Cases) is to provide scholars and readers from various fields of clinical medicine with a platform to publish high-quality clinical research articles and communicate their research findings online.

WJCC mainly publishes articles reporting research results and findings obtained in the field of clinical medicine and covering a wide range of topics, including case control studies, retrospective cohort studies, retrospective studies, clinical trials studies, observational studies, prospective studies, randomized controlled trials, randomized clinical trials, systematic reviews, meta-analysis, and case reports.

INDEXING/ABSTRACTING

The WJCC is now indexed in Science Citation Index Expanded (also known as SciSearch®), Journal Citation Reports/Science Edition, Scopus, PubMed, and PubMed Central. The 2021 Edition of Journal Citation Reports® cites the 2020 impact factor (IF) for WJCC as 1.337; IF without journal self cites: 1.301; 5-year IF: 1.742; Journal Citation Indicator: 0.33; Ranking: 119 among 169 journals in medicine, general and internal; and Quartile category: Q3. The WJCC's CiteScore for 2020 is 0.8 and Scopus CiteScore rank 2020: General Medicine is 493/793.

RESPONSIBLE EDITORS FOR THIS ISSUE

Production Editor: Ying-Yi Yuan; Production Department Director: Xu Guo; Editorial Office Director: Jin-Lei Wang.

NAME OF JOURNAL
World Journal of Clinical Cases

ISSN
ISSN 2307-8960 (online)

LAUNCH DATE
April 16, 2013

FREQUENCY
Thrice Monthly

EDITORS-IN-CHIEF
Bao-Gan Peng, Jerzy Tadeusz Chudek, George Kontogeorgos, Maurizio Serati, Ja Hyeon Ku

EDITORIAL BOARD MEMBERS
https://www.wjgnet.com/2307-8960/editorialboard.htm

PUBLICATION DATE
April 26, 2022

COPYRIGHT
© 2022 Baishideng Publishing Group Inc

INSTRUCTIONS TO AUTHORS
https://www.wjgnet.com/bpg/gerinfo/204

GUIDELINES FOR ETHICS DOCUMENTS
https://www.wjgnet.com/bpg/gerInfo/287

GUIDELINES FOR NON-NATIVE SPEAKERS OF ENGLISH
https://www.wjgnet.com/bpg/gerinfo/240

PUBLICATION ETHICS
https://www.wjgnet.com/bpg/gerinfo/288

PUBLICATION MISCONDUCT
https://www.wjgnet.com/bpg/gerinfo/208

ARTICLE PROCESSING CHARGE
https://www.wjgnet.com/bpg/gerinfo/242

STEPS FOR SUBMITTING MANUSCRIPTS
https://www.wjgnet.com/bpg/gerinfo/239

ONLINE SUBMISSION
https://www.fi6publishing.com

© 2022 Baishideng Publishing Group Inc. All rights reserved. 7041 Koll Center Parkway, Suite 160, Pleasanton, CA 94566, USA
E-mail: bpgoffice@wjgnet.com https://www.wjgnet.com
Pediatric living donor liver transplantation using liver allograft after ex vivo backtable resection of hemangioma: A case report

Shu-Xuan Li, He-Nan Tang, Guo-Yue Lv, Xuan Chen

Abstract

BACKGROUND

Use of liver allograft with hepatic hemangioma after in vivo resection of hemangioma in living donor liver transplantation (LDLT) has been previously reported. However, there are few reports describing ex vivo backtable resection of hemangioma from liver allografts in LDLT.

CASE SUMMARY

A 55-year-old male was evaluated as a donor for an 8-month-year old patient with acute hepatic failure due to biliary atresia. Pre-operative contrast enhanced computed tomography revealed a 9 cm hemangioma in segment 4 with vascular variations in the donor. During LDLT, an intra-operative intrahepatic cholangiography was performed to ensure no variation in the anatomy of the intrahepatic bile duct. After intra-operative pathological diagnosis, ex vivo backtable resection of the hemangioma was performed and the liver allograft was transplanted into the recipient. The donor’s and recipient’s post-operative course were uneventful. At the 2-year follow-up, the liver allograft showed good regeneration without any recurrence of hemangioma.

CONCLUSION

Liver allografts with hemangiomas are an acceptable alternative strategy for LDLT. Ex vivo backtable resection of hemangioma from the donor liver during pediatric LDLT is safe and feasible, and can effectively reduce the operative time and intra-operative bleeding for the donor.

Key Words: Hemangioma; Liver allograft; ex vivo resection; Backtable resection; Pediatric living donor liver transplantation; Case report
Core Tip: It is of great significance to expand the liver donor pool due to the shortage of donor livers. In this paper, we describe how a discard left lobe of the liver with hemangioma after hepatectomy was fixed backtable to meet the criteria for transplantation. Subsequently, a successful liver transplantation was performed for a 2-year-old child with congenital biliary atresia by using this liver with satisfactory outcome. Two years of follow-up showed that the child recovered well with no significant complications.

INTRODUCTION

Liver transplantation has brought a paradigm shift in the management and outcomes of pediatric patients with liver failure. However, due to the shortage of donor livers, many children on organ transplant waiting lists die[1]. Use of marginal liver allografts to expand the donor pool can help reduce the waiting time[2]. One type of liver allograft from marginal donors includes the use of livers with benign tumors, such as hepatic hemangioma. Hepatic hemangiomas usually remain asymptomatic[3] and have a benign course[4]. According to previous reports, liver allograft with hepatic hemangioma or after resection of hemangioma can be safely transplanted[5-10]. Sanada et al[11] described the use of a living donor liver allograft after in vivo hemangioma resection. This case report indicates that the liver allograft can be safely used for liver transplantation after removal of the hemangioma. In pediatric patients, especially infants, a small liver allograft is required for liver transplantation. Thus, we proposed that we could use liver segments from patients with symptomatic hemangioma undergoing hepatectomy after backtable resection of the hemangioma for pediatric liver transplantation.

Herein, we describe the first case of pediatric living donor liver transplantation (LDLT) using a liver allograft following backtable resection of hemangioma.

CASE PRESENTATION

Chief complaints
An 8-month-old female infant presented to the emergency department with jaundice and high-grade fever. At the same time, a 55-year-old male was admitted at our center due to discomfort in the right upper abdomen.

History of present illness
The pediatric patient had jaundice with high fever for 3 days. The jaundice subsided after the Kasai operation and gradually worsened over a month, and by the time she was admitted to the hospital, she had altered sensorium.

The adult patient had discomfort in the right upper abdomen for one month. The upper abdominal discomfort was aggravated by heavy meals and relieved by fasting. He denied any recent fever, jaundice, allergy, chills, or changes in bowel habits.

History of past illness
The pediatric patient had undergone Kasai portoenterostomy at the age of one month. The adult patient denied any past illness.

Personal and family history
They both did not have any addictions or any significant family history.

Physical examination
On clinical examination, there was a 6-cm postoperative scar in the abdomen due to previous Kasai portoenterostomy of the pediatric patient. The adult patient’s abdominal examination was unremarkable with no organomegaly.
Laboratory examinations
The pediatric patient’s liver function tests at admission were as follows: Serum total bilirubin = 120.5 μmol/L, direct bilirubin = 78.8 μmol/L, international normalized ratio = 1.37, aspartate aminotransferase = 153.2 U/L, and alanine aminotransferase = 119.9 U/L. Pre-operative liver functions of the adult patient were within the normal range and there was no evidence of coagulopathy.

Imaging examinations
The CT of the pediatric patient showed dilated intrahepatic biliary system and diffuse hepatomegaly (Figure 1). Triple phase contrast enhanced computed tomography of the abdomen of the adult revealed a 9.0 cm × 5.8 cm hemangioma in segment 4 of the liver (Figure 1).

FINAL DIAGNOSIS
On the second day of hospitalization, the pediatric patient was diagnosed to have Child-Pugh grade C hepatic failure due to congenital biliary atresia with grade 2 hepatic encephalopathy. The adult was diagnosed as hemangioma in segment 4 of the liver.

TREATMENT
The pediatric patient was listed for emergency liver transplantation. There was a strong possibility that the adult patient would develop ischemic necrosis of segments 2 and 3 if simple enucleation of the hemangioma was performed. We therefore performed a left hepatic lobectomy[6]. Since the liver parenchyma was normal and soft in consistency, we considered using segments 2 and 3 after excising the hemangioma of the resected left lobe as an allograft for the pediatric patient with acute liver failure presented above. After consulting the adult patient and his family, we obtained informed consent to donate the left hepatic lobe as an allograft. The therapeutic decision was approved by the Ethical Committee of the First Hospital of Jilin University.
The left hepatic lobe was resected using the standard technique described previously[12]. We found a 9 cm diameter mass in the left hepatic lobe. Intra-operative ultrasonography and pathological examination confirmed the diagnosis of hemangioma. Intrahepatic cholangiography was conducted, and no intrahepatic bile duct anomaly was detected (Figure 2). After harvest of the left hepatic lobe, *ex vivo* resection of segment 4 of the graft and hepatic vein reconstruction was performed (Figure 3). The left hepatic vein of the donor liver and the left lateral marginal vein of the left lobe were opened and reconstructed to obtain a width of approximately 2.5 cm in order to avoid venous outflow obstruction [13]. The cold ischemic time was 4 h 17 minutes, and the estimated blood loss during the donor operation was 210 mL.

The liver allograft and recipient weighed 190 g and 8.7 kg, respectively, with a graft-to-recipient weight ratio (GRWR) of 2.1%. The liver allograft was implanted into the recipient using a piggyback orthotopic liver transplant procedure. Intra-operatively, the native liver was cirrhotic, 12 cm × 10 cm × 8 cm in size, yellow-green in color, and firm in consistency. There were multiple nodules of different sizes on the liver surface. There were no palpable emboli in the main portal vein and no obvious masses in the abdominal organs. The liver allograft was placed on the right side in the abdominal cavity of the recipient (Figure 2). First, the inferior vena cava of the recipient was anastomosed to the left hepatic vein of the donor liver by continuous suture in an inverted triangle pattern. Then, the donor and recipient portal veins were anastomosed with continuous valgus suture followed by anastomosis between the left hepatic artery of the donor and the recipient. After reperfusion, there was no bleeding from the resection site. Roux-en-Y hepaticojejunostomy was performed by anastomosing the left hepatic duct of the donor liver to the recipient Roux-en-Y jejunal limb in an end-to-side fashion under magnification. Intra-operative ultrasound revealed satisfactory blood flow of the liver allograft and no constriction of the hepatic vein (Figure 2). The operation time was 8 h, the warm ischemic time was 35 min, and the estimated blood loss was 150 mL.
Figure 3 Preoperative contrast-enhanced abdominal computed tomography and reconstruction of the donor liver allograft vessels. A: Yellow arrow indicate the left hepatic artery supplying the segment 2 and 3 of the liver which is not big enough to be clearly seen in reconstruction figure; B: Hepatic artery reconstruction of the liver allograft (white arrow indicate right hepatic artery supplying right lobe of the liver; yellow arrow indicate middle hepatic artery supplying segment 4 of the liver; orange arrows indicate the left hepatic artery supplying the segment 2 and 3 of the liver); C: Portal vein reconstruction of the liver allograft (white arrow indicate right portal vein; yellow arrow indicate left portal vein); D: Hepatic vein reconstruction of the liver allograft (white arrow indicate right hepatic vein; yellow arrow indicate middle hepatic vein; orange arrows indicate the left hepatic vein).

OUTCOME AND FOLLOW-UP
The post-operative course of the donor and the recipient was uneventful, and both were discharged from the hospital on post-operative days 12 and 35, respectively. Tacrolimus was used as an immunosuppressant up to two years after surgery. The follow-up of the recipient two years after the liver transplantation showed good liver function without any bile duct strictures (Figure 4). Abdominal CT of the donor at six months after surgery (Figure 1C) and that of the recipient at two years after surgery (Figure 1D) showed good regeneration of the liver without any recurrence of hemangioma.

DISCUSSION
Liver transplantation is the most effective treatment for end-stage liver disease[14]. The reported 1-year and 5-year survival rates are more than 90% and 70%, respectively[15]. However, organ scarcity is still the greatest limitation for patients in need of liver transplantation. Therefore, marginal liver allograft in liver transplantation, particularly in cases of benign tumors, has become an accepted alternative[16]. Use of liver allograft with hemangioma for liver transplantation has been previously reported[5-10]. In some cases, hemangiomas were not resected due to the risk of small-for-size syndrome, and follow-up of such cases showed that the volume of hepatic hemangioma decreased and the normal parenchymal volume increased with time, without the appearance of new hemangiomas. However, long-term follow-up of such cases has not been carried out. However, a small volume of liver allograft after hemangioma excision is sufficient for pediatric liver transplant and it can effectively avoid the possibility of lethal changes[11]. Thus, we propose that for pediatric patients, large hemangiomas in the liver allograft should be resected prior to transplantation.

Two surgical procedures for the resection of hemangiomas can be adopted, namely in vivo resection and backtable resection during LDLT. In previous reports, in vivo resection was performed and found to be feasible, as it avoided intra-operative bleeding, bile leakage, and limited cold ischemic time compared to backtable resection[11]. However, in vivo resection prolongs the operative time and increases the risk of bleeding in donors, which can be potentially harmful. Backtable resection of hemangioma has only been reported in deceased donor livers[10,17]. With the advancements in liver transplantation techniques, complications of backtable liver resection, such as intra-operative bleeding,
bile leakage, and prolonged cold ischemic time, can successfully be avoided[18]. Some of the important points for backtable resection include the use of an electric knife, electric bipolar, or ultrasonic knife during resection, and closure of all the orifices at the cut surface using hemolok clips and/or sutures. In the case presented here, we performed backtable resection, as in vivo resection of segment IV hemangioma was technically difficult and could have compromised donor safety.

Anatomical lobectomy is one of the most common operative approaches for the treatment of liver hemangioma[19]. After appropriate pre-operative evaluation, selected livers after hepatic lobectomy can be used for pediatric liver transplantation after the backtable resection of hemangioma and reconstruction of the liver allograft, as shown in the case presented here. This offers a novel strategy for enlarging the donor pool. Sanada et al[11] proposed a strategy to use liver allograft with hemangiomas in pediatric LDLT. If the estimated graft liver volume to standard liver volume (GV/SLV) ratio after the tumor resection is more than 40%, then the remnant liver after resection of the hemangioma can be used for transplantation. GRWR is also an important factor for pediatric LDLT, which should be more than 0.8%[20,21]. In the present case, the GV/SLV ratio was 76.84% and GRWR was 2.1%, which were safe and sufficient indicators for LDLT. In the follow-up period, the patient recovered well without any complications with good liver function at two years after the operation.

CONCLUSION

Liver allografts with hemangiomas can be used in LDLT. Ex vivo backtable resection of hemangioma during pediatric LDLT is a safe and feasible alternative to in vivo resection. Moreover, backtable resection can effectively shorten the operative time of the donor and reduce the risk of intra-operative bleeding during donor operation. Nevertheless, more cases are needed to confirm this method.

FOOTNOTES

Author contributions: Li SX and Tang HN contributed equally to this work; Li SX wrote the original draft of the manuscript; Tang HN performed the analyses and interpretation of the imaging findings; Lv GY was responsible for the methodology and data curation; Chen X was responsible for the revision and editing of the manuscript; all authors issued final approval for the version to be submitted.

Informed consent statement: Patients provided informed written consent.

Conflict-of-interest statement: The authors have no conflict of interest to disclose.

CARE Checklist (2016) statement: The authors have read the CARE Checklist (2016), and the manuscript was prepared and revised according to the CARE Checklist (2016).

Open-Access: This article is an open-access article that was selected by an in-house editor and fully peer-reviewed by external reviewers. It is distributed in accordance with the Creative Commons Attribution NonCommercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: http://creativecommons.org/Licenses/by-nc/4.0/

Country/Territory of origin: China
Li SX et al. LDLT using liver allograft

REFERENCES

20 Bell R, Pandanaboyana S, Upasani V, Prasad R. Impact of graft-to-recipient weight ratio on small-for-size syndrome
