MINIREVIEWS

2696 Standardization of critical care management of non-critically ill patients with COVID-19

2703 Mediastinal lymphadenopathy in COVID-19: A review of literature
Taweesedt PT, Surani S

2711 Polycystic ovary syndrome: Pathways and mechanisms for possible increased susceptibility to COVID-19
Ilias I, Goulas S, Zabuliene L

ORIGINAL ARTICLE

Clinical and Translational Research

2721 Circulating tumor cells with epithelial-mesenchymal transition markers as potential biomarkers for the diagnosis of lung cancer
Jiang SS, Mao CG, Feng YG, Jiang B, Tao SL, Tan QY, Deng B

Retrospective Study

2731 Management and implementation strategies of pre-screening triage in children during coronavirus disease 2019 pandemic in Guangzhou, China

2739 Clinicopathological features of superficial CD34-positive fibroblastic tumor
Ding L, Xu WJ, Tao XY, Zhang L, Cai ZG

2751 Application of a rapid exchange extension catheter technique in type B2/C nonocclusive coronary intervention via a transradial approach
Wang HC, Lu W, Gao ZH, Xie YN, Hao J, Liu JM

SYSTEMATIC REVIEWS

2763 Paradoxical relationship between proton pump inhibitors and COVID-19: A systematic review and meta-analysis
Zippi M, Fiorino S, Budriesi R, Micucci M, Corazza I, Pica R, de Biase D, Gallo CG, Hong W

META-ANALYSIS

2778 Predictive risk factors for recollapse of cemented vertebrae after percutaneous vertebroplasty: A meta-analysis
CASE REPORT

2791 Malignant pheochromocytoma with cerebral and skull metastasis: A case report and literature review
Chen JC, Zhuang DZ, Luo C, Chen WQ

2801 Unresectable esophageal cancer treated with multiple chemotherapies in combination with chemoradiotherapy: A case report

2811 Role of positron emission tomography in primary carcinoma ex pleomorphic adenoma of the bronchus: A case report
Yang CH, Liu NT, Huang TW

2816 Positive reverse transcription-polymerase chain reaction assay results in patients recovered from COVID-19: Report of two cases
Huang KX, He C, Yang YL, Huang D, Jiang ZX, Li RG, Liu H

2823 Laryngeal myxoma: A case report

2830 Prostate stromal tumor with prostatic cysts after transurethral resection of the prostate: A case report

2838 Intramuscular hematoma in rhabdomyolysis patients treated with low-molecular-weight heparin: Report of two cases
Yuan SY, Xie KF, Yang J

2845 Partial response to Chinese patent medicine Kangliu pill for adult glioblastoma: A case report and review of the literature

2854 Behcet’s disease manifesting as esophageal variceal bleeding: A case report
Xie WX, Jiang HT, Shi GQ, Yang LN, Wang H

2862 Successful endoscopic surgery for emphysematous pyelonephritis in a non-diabetic patient with autosomal dominant polycystic kidney disease: A case report
Jiang Y, Lo R, Lu ZQ, Cheng XB, Xiong L, Luo BF

2868 Robotically assisted removal of pelvic splenosis fifty-six years after splenectomy: A case report
Tognarelli A, Faggioni L, Erba AP, Faviana P, Durante J, Manassero F, Selli C

2874 Pulmonary alveolar proteinosis complicated with nocardiosis: A case report and review of the literature
Wu XK, Lin Q

2884 Detection of EGFR-SEPT14 fusion in cell-free DNA of a patient with advanced gastric cancer: A case report
Kim B, Kim Y, Park I, Cho JY, Lee KA
Contents

<table>
<thead>
<tr>
<th>Page</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>2899</td>
<td>Torsades de pointes episode in a woman with high-grade fever and inflammatory activation: A case report</td>
<td>Qiu H, Li HW, Zhang SH, Zhou XG, Li WP</td>
</tr>
<tr>
<td>2916</td>
<td>Allogeneic hematopoietic stem cell transplantation in a 3-year-old boy with congenital pyruvate kinase deficiency: A case report</td>
<td>Ma ZY, Yang X</td>
</tr>
<tr>
<td>2930</td>
<td>Sclerosing polycystic adenosis of the submandibular gland: Two case reports</td>
<td>Wu L, Wang Y, Hu CY, Huang CM</td>
</tr>
<tr>
<td>2937</td>
<td>Budd-Chiari syndrome associated with liver cirrhosis: A case report</td>
<td>Ye QB, Huang QF, Luo YC, Wen YL, Chen ZK, Wei AL</td>
</tr>
</tbody>
</table>
ABOUT COVER
Editorial Board Member of World Journal of Clinical Cases, Jing Liu, MD, PhD, Chief Doctor, Professor, Department of Neonatology and NICU, Beijing Chaoyang District Maternal and Child Healthcare Hospital, Beijing 100021, China. liujingbj@live.cn

AIMS AND SCOPE
The primary aim of World Journal of Clinical Cases (WJCC, World J Clin Cases) is to provide scholars and readers from various fields of clinical medicine with a platform to publish high-quality clinical research articles and communicate their research findings online.

WJCC mainly publishes articles reporting research results and findings obtained in the field of clinical medicine and covering a wide range of topics, including case control studies, retrospective cohort studies, retrospective studies, clinical trials studies, observational studies, prospective studies, randomized controlled trials, randomized clinical trials, systematic reviews, meta-analysis, and case reports.

INDEXING/ABSTRACTING
The WJCC is now indexed in Science Citation Index Expanded (also known as SciSearch®), Journal Citation Reports/Science Edition, Scopus, PubMed, and PubMed Central. The 2020 Edition of Journal Citation Reports® cites the 2019 impact factor (IF) for WJCC as 1.013; IF without journal self cites: 0.991; Ranking: 120 among 165 journals in medicine, general and internal; and Quartile category: Q3. The WJCC's CiteScore for 2019 is 0.3 and Scopus CiteScore rank 2019: General Medicine is 394/529.

RESPONSIBLE EDITORS FOR THIS ISSUE
Production Editor: Ji-Hong Liu; Production Department Director: Xiang Li; Editorial Office Director: Jin-Lei Wang.

NAME OF JOURNAL
World Journal of Clinical Cases

ISSN
ISSN 2307-8960 (online)

LAUNCH DATE
April 16, 2013

FREQUENCY
Thrice Monthly

EDITORS-IN-CHIEF
Dennis A Bloomfield, Sandro Vento, Bao-Gan Peng

EDITORIAL BOARD MEMBERS
https://www.wjgnet.com/2307-8960/editorialboard.htm

PUBLICATION DATE
April 26, 2021

COPYRIGHT
© 2021 Baishideng Publishing Group Inc

INSTRUCTIONS TO AUTHORS
https://www.wjgnet.com/bpg/gerinfo/204

GUIDELINES FOR ETHICS DOCUMENTS
https://www.wjgnet.com/bpg/gerinfo/287

GUIDELINES FOR NON-NATIVE SPEAKERS OF ENGLISH
https://www.wjgnet.com/bpg/gerinfo/240

PUBLICATION ETHICS
https://www.wjgnet.com/bpg/gerinfo/288

PUBLICATION MISCONDUCT
https://www.wjgnet.com/bpg/gerinfo/208

ARTICLE PROCESSING CHARGE
https://www.wjgnet.com/bpg/gerinfo/242

STEPS FOR SUBMITTING MANUSCRIPTS
https://www.wjgnet.com/bpg/gerinfo/239

ONLINE SUBMISSION
https://www.f6publishing.com
Detection of EGFR-SEPT14 fusion in cell-free DNA of a patient with advanced gastric cancer: A case report

Boyeon Kim, Yoonjung Kim, Inho Park, Jae Yong Cho, Kyung-A Lee

Abstract

BACKGROUND
Gastric cancer is the fifth most diagnosed cancer worldwide and the third most common cause of cancer-related death. In recent decades, increasing application of next-generation sequencing has enabled detection of molecular aberrations, including fusions. In cases where tissue is difficult to obtain, cell-free DNA (cfDNA) is used for detecting mutations to identify the molecular profile of cancer. Here, we report a rare case of EGFR-SEPT14 fusion detected from cfDNA analysis in a patient with gastric cancer.

CASE SUMMARY
A 49-year-old female diagnosed with advanced gastric cancer in July 2019 received capecitabine and then combination chemotherapy of ramucirumab and paclitaxel, but ascites was detected. The therapy was switched to nivolumab, but disease progression was observed on a positron emission tomography/computed tomography scan in May 2020. Therapy was discontinued, and cfDNA next-generation sequencing was immediately evaluated. All genomic variants, including fusions, were analyzed from cfDNA. The following somatic alterations were detected from the patient’s cfDNA: an APC frameshift mutation (NM_000038.5:c.6579del, p.V2194fs) with variant allele frequency of 0.5%, an EGFR amplification with a copy number of 17.3, and an EGFR-SEPT14 fusion with variant allele frequency of 45.3%. The site of the fusion was exon 24 of EGFR fused to exon 10 of SEPT14. The fusion was in-frame and considered to be proto-
open-access article that was selected by an in-house editor and fully peer-reviewed by external reviewers. It is distributed in accordance with the Creative Commons Attribution NonCommercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: https://creativecommons.org/License/s/by-nc/4.0/

Core Tip: In recent decades, increasing application of next-generation sequencing has enabled detection of molecular aberrations, including fusions. In cases where tissue is not easily obtainable, cell-free DNA is used for detecting mutations to determine the molecular profile of cancer. Successful identification of oncogenic gene fusions can aid in diagnosis and molecular treatment of patients. Here, we report a rare case of EGFR-SEPT14 fusion detected from cfDNA analysis in a patient with gastric cancer.

URL: https://www.wjgnet.com/2307-8960/full/v9/i12/2884.htm
DOI: https://dx.doi.org/10.12998/wjcc.v9.i12.2884

INTRODUCTION

Gastric cancer is the fifth most diagnosed cancer worldwide with a particularly high incidence in East Asia and the third most common cause of cancer-related death[1]. Curative surgery is the primary treatment of choice, but systemic chemotherapies are used for patients with metastatic or unresectable advanced or recurrent gastric cancer. Because systemic chemotherapies are nonspecific and can cause serious adverse effects, development of molecular targeted drugs has been attempted to improve outcomes in patients with gastric cancer.

In recent decades, increasing application of next-generation sequencing (NGS) has enabled detection of molecular aberrations such as copy number gains or losses, somatic mutations, and gene fusions. For cases where tissue is not easily obtainable, cell-free DNA (cfDNA) is used for detecting mutations to determine the molecular profile of cancer[2]. Successful identification of oncogenic gene fusions can aid in diagnosis and molecular treatment of patients[3]. Here, we report a rare case of EGFR-SEPT14 fusion detected from cfDNA analysis in a patient with gastric cancer.

CASE PRESENTATION

Chief complaints
A 49-year-old female patient had been treated for advanced gastric cancer (AGC) with chemotherapy. After therapy, she expressed whole body pain, especially on the left side of the pelvis.

History of present illness
This patient had been diagnosed with AGC in July 2019. The pathological diagnosis indicated signet ring cell carcinoma. While receiving her first round of chemotherapy with capecitabine, the patient developed acute pyelonephritis and hydronephrosis in both kidneys, leading to a suspicion of periureteral metastases. Therefore, the patient started a new regimen of combination chemotherapy with ramucirumab and
paclitaxel. However, ascites was observed after two cycles of chemotherapy. The treatment was switched to nivolumab. After five cycles, an abdominopelvic computed tomography scan was performed in April 2020 that showed improvement in peritoneal carcinomatosis compared to an image from February 2020. She received seven cycles of nivolumab, but progressive disease was observed by the positron emission tomography/computed tomography scan, and other therapeutic options were needed to be discussed.

History of past illness
The patient did not have any other medical history beyond AGC.

Personal and family history
The patient reported a family history of gastric cancer in her grandfather.

Physical examination
Physical examination revealed pain on the left side of the pelvis.

Laboratory examinations
Blood analysis revealed mild leukocytosis (14 × 10⁹/L) with low hemoglobin (10.3 g/dL). Platelet count was in the normal range. Serum C-reactive protein was increased at 181 mg/L (normal range, 0.1-6.0 mg/L).

Imaging examinations
A positron emission tomography/computed tomography scan obtained in May 2020 revealed bone, multiple nodal, and right lateral abdominal wall soft tissue metastases after the patient had received seven cycles of nivolumab. The therapy was discontinued, and cfDNA NGS was performed immediately.

Further genetic diagnostic work-up
For genetic testing, the patient provided informed written consent for specimen collection and genetic analysis. This study was approved with a waiver of informed consent by the Institutional Review Board of Gangnam Severance Hospital, Seoul, Korea (IRB No. 3-2020-0268).

- cfDNA was extracted using the MagMAX Cell-Free Total Nucleic Acid Kit (Thermo Fisher Scientific, Waltham, MA, United States). A DNA library was constructed with the AlphaLiquid®100 kit (IMBDx Inc., Seoul, Korea), which was designed to include intronic regions of target genes. Hybrid-capture-selected libraries were sequenced to a mean coverage of 14237x (cfDNA) and 735x (DNA) on an Illumina NextSeq-550 (Illumina, San Diego, CA, United States). GeneFuse was used to detect fusions[4], and a Genome Reference Consortium Human Build 38 was used for variant interpretation. All genomic variants, including fusions, were analyzed from cfDNA. Because of the patient’s family history, the presence of germline mutation was tested in parallel for the following genes: APC, ATM, BRCA1, BRCA2, CDH1, CDK4, CDKN2A, and MLH1. No germline mutations were detected from the genomic DNA. Somatic alterations detected from the cfDNA were an APC frameshift mutation (NM_000038.5:c.6579del, p.V2194fs) with variant allele frequency of 0.5%, an EGFR amplification with a copy number of 17.3, and an EGFR-SEPT14 fusion with variant allele frequency of 45.3% (Figure 1A). Because the EGFR and SEPT14 genes are closely located on chromosome 7, we tested 50 normal healthy controls with the same panel and confirmed that the fusion detected in the patient was a true positive. We also confirmed EGFR-SEPT14 fusion by complementary DNA sequencing, which was processed using the patient’s cell-free RNA extracted by MagMAX Cell-Free Total Nucleic Acid Kit. The site of fusion was exon 24 of EGFR fused to exon 10 of SEPT14 (Figure 1B). The fusion was in-frame and considered to be proto-oncogenic.

FINAL DIAGNOSIS
The final diagnosis of the present case was EGFR-SEPT14 fusion in AGC.
Kim B et al. EGFR-SEPT14 fusion in advanced gastric cancer

TREATMENT

The patient refused further treatment.

OUTCOME AND FOLLOW-UP

The patient could have tried EGFR targeted therapy such as erlotinib, which has been used in other types of carcinomas with EGFR-SEPT14 fusion\(^5\), but she refused further treatment and passed away about 1 month after discontinuation of nivolumab.

DISCUSSION

EGFR1 (EGFR; ErbB1; HER1) is one of four transmembrane growth factor receptor...
proteins that constitute the EGFR family of receptor tyrosine kinases\(^1\). Activation of EGFR leads to cell proliferation, differentiation, motility, and metastasis\(^2\). SEPT14 is a member of a highly conserved septin family of guanosine 5'-triphosphate-binding cytoskeletal proteins with multiple cellular functions, such as membrane transport, apoptosis, cell polarity, cell cycle regulation, cytokinesis, and oncogenesis\(^3\). Among all septins, SEPT14 shows the highest mutation frequency in skin cancer followed by SEPT9 exhibiting high mutation frequency in stomach cancer\(^4\).

The EGFR-SEPT14 fusion was first reported in glioblastoma in which the site of fusion was the tyrosine kinase domain of EGFR and the coiled-coil domain of SEPT14. The EGFR-SEPT14 fusion is the most frequent functional gene fusion in human glioblastoma\(^5\). The EGFR-SEPT14 fusion was also identified in tissue from salivary gland secretory carcinoma using fluorescence in situ hybridization. That previous case indicated that a tumor harboring this fusion would be sensitive to EGFR inhibitors\(^6\). Recently, the EGFR-SEPT14 fusion was reported in colorectal adenocarcinoma by using a comprehensive NGS assay on tumor samples\(^7\).

In the present study, the tissue biopsy of the patient was difficult. Therefore, we used a comprehensive NGS assay with a sample of cfDNA from the patient. We identified an EGFR-SEPT14 fusion in AGC. To our knowledge, this is the first case of EGFR-SEPT14 fusion identified in a cfDNA sample from an AGC patient. The patient went through unusually rapid disease progression, and this progression might have been caused by the fusion mutation. Unfortunately, because the patient refused to continue therapy, we could not determine whether the EGFR-SEPT14 fusion responded to EGFR targeted therapies, such as tyrosine kinase inhibitors. However, the use of such therapies might have been effective in AGC with an EGFR-SEPT14 fusion because there was a report of a patient with colorectal cancer with an EGFR-SEPT14 fusion treated with erlotinib therapy. The fusion site reported in that study is the same as that in the present study, and the patient was administered erlotinib therapy to which the EGFR-SEPT14 fusion is known to be sensitive\(^8\). However, soon after treatment, an EGFR variant III was detected and can result in resistance to erlotinib\(^9\). To confirm the treatment effect and disease progression in AGC, further studies are needed.

Nevertheless, detection of genomic fusion by the well-established cfDNA NGS assay confirmed that cfDNA can serve as an alternate source for detecting gene aberrations, including fusions. Furthermore, EGFR-SEPT14 fusion has been reported in various types of cancer. Therefore, expanded applications of cfDNA assays should be considered regardless of cancer type. We also suggest that genomic variants including fusions can be therapeutic targets in AGC, which may open a new horizon in treatment.

CONCLUSION

To the best of our knowledge, this is the first case of an EGFR-SEPT14 fusion identified in a cfDNA sample from a patient with AGC. Detection of genomic fusion by the well-established cfDNA NGS assay confirmed that cfDNA can serve as an alternate source for detecting gene aberrations, including fusions. Successful identification of genomic variants, including fusions, from cfDNA can aid in diagnosis and molecular treatment of patients with AGC.

REFERENCES

