EDITORIAL

5496 Is Dynesys dynamic stabilization system superior to posterior lumbar fusion in the treatment of lumbar degenerative diseases?
Peng BG, Gao CH

MINIREVIEWS

5501 COVID-19: A review of what radiologists need to know
Tang L, Wang Y, Zhang Y, Zhang XY, Zeng XC, Song B

5513 Holistic care model of time-sharing management for severe and critical COVID-19 patients

ORIGINAL ARTICLE

Case Control Study

5518 Bioequivalence of two esomeprazole magnesium enteric-coated formulations in healthy Chinese subjects
Liu ZZ, Ren Q, Zhou YN, Yang HM

5529 Osteoprotegerin, interleukin and hepatocyte growth factor for prediction of diabetes and hypertension in the third trimester of pregnancy
Huang SJ, Wang HW, Wu HF, Wei QY, Luo S, Xu L, Guan HQ

Retrospective Study

5535 High serum lactate dehydrogenase and dyspnea: Positive predictors of adverse outcome in critical COVID-19 patients in Yichang

5547 Risk factors analysis of prognosis of adult acute severe myocarditis
Zhang Q, Zhao R

5555 Sonographic features of umbilical vein recanalization for a Rex shunt on cavernous transformation of portal vein in children

Clinical Trials Study

5564 Gemcitabine plus concurrent irreversible electroporation vs gemcitabine alone for locally advanced pancreatic cancer
Ma YY, Leng Y, Xing YL, Li HM, Chen JB, Niu LZ
Contents

Observational Study

5576
No significant association between dipeptidyl peptidase-4 inhibitors and adverse outcomes of COVID-19

META-ANALYSIS

5589
Interobserver agreement for contrast-enhanced ultrasound of liver imaging reporting and data system: A systematic review and meta-analysis
Li J, Chen M, Wang ZJ, Li SG, Jiang M, Shi L, Cao CL, Sang T, Cui XW, Dietrich CF

CASE REPORT

5603
CLAG-M chemotherapy followed by umbilical cord blood stem cell transplantation for primary refractory acute myeloid leukaemia in a child: A case report
Huang J, Yang XY, Rong LC, Xue Y, Zhu J, Fang YJ

5611
Multiple schwannomas with pseudoglandular element synchronously occurring under the tongue: A case report
Chen YL, He DQ, Yang HX, Dou Y

5618
Primary myelofibrosis with concurrent CALR and MPL mutations: A case report
Zhou FP, Wang CC, Du HP, Cao SB, Zhang J

5625
Endometrial stromal sarcoma extending to the pulmonary artery: A rare case report
Fan JK, Tang GC, Yang H

5632
Malignant acanthosis nigricans with Leser–Trélat sign and tripe palms: A case report

5639
Gastric plexiform fibromyxoma: A case report
Pei JY, Tan B, Liu P, Cao GH, Wang ZS, Qu LL

5645
Rectoseminal vesicle fistula after radical surgery for rectal cancer: Four case reports and a literature review
Xia ZX, Cong JC, Zhang H

5657
Azacitidine decreases reactive oxygen species production in peripheral white blood cells: A case report
Hasunuma H, Shimizu N, Yokota H, Tatsuno I

5663
Oral granuloma in a pediatric patient with chronic graft-versus-host disease: A case report
Uesugi A, Tsushima F, Kodama M, Kuroshima T, Sakurai J, Harada H

5670
Intrahepatic biliary cystadenoma: A case report
Xu RM, Li XR, Liu LH, Zheng WQ, Zhou H, Wang XC

5678
Gene diagnosis of infantile neurofibromatosis type I: A case report
Li MZ, Yuan L, Zhuo ZQ
<table>
<thead>
<tr>
<th>Page</th>
<th>Title and Authors</th>
</tr>
</thead>
</table>
| 5684 | Localized amyloidosis affecting the lacrimal sac managed by endoscopic surgery: A case report

| 5690 | Endoscopic resection of benign esophageal schwannoma: Three case reports and review of literature

Li B, Wang X, Zou WL, Yu SX, Chen Y, Xu HW |
| 5701 | Bouveret syndrome masquerading as a gastric mass-unmasked with endoscopic luminal laser lithotripsy: A case report

Parvataneni S, Khara HS, Diehl DL |
| 5707 | Nonhypertensive male with multiple paragangliomas of the heart and neck: A case report

Wang Q, Huang ZY, Ge JB, Shu XH |
| 5715 | Completed atrioventricular block induced by atrial septal defect occluder unfolding: A case report

He C, Zhou Y, Tang SS, Luo LH, Feng K |
| 5722 | Clinical characteristics of adult-type annular pancreas: A case report

Yi D, Ding XB, Dong SS, Shao C, Zhao LJ |
| 5729 | Port-site metastasis of unsuspected gallbladder carcinoma with ossification after laparoscopic cholecystectomy: A case report

| 5737 | Gonadal dysgenesis in Turner syndrome with Y-chromosome mosaicism: Two case reports

Leng XF, Lei K, Li Y, Tian F, Yao Q, ZhengQM, Chen ZH |
| 5744 | Gastric mixed adenoma-neuroendocrine tumor: A case report

Kohno S, Aoki H, Kato M, Ogawa M, Yoshida K |
| 5751 | Sebaceous lymphadenocarcinoma of the parotid gland: A case report

Hao FY, Wang YL, Li SM, Xue LF |
| 5758 | Misdiagnosis of ligamentoid fibromatosis of the small mesenteric: A case report

| 5765 | Intraoperative care of elderly patients with COVID-19 undergoing double lung transplantation: Two case reports

Wu Q, Wang Y, Chen HQ, Pan H |
| 5773 | Amelioration of cognitive impairment following growth hormone replacement therapy: A case report and review of literature

Liu JT, Su PH |
| 5781 | Early colon cancer with enteropathy-associated T-cell lymphoma involving the whole gastrointestinal tract: A case report

Zhang MY, Min CC, Fu WW, Liu H, Yin XY, Zhang CP, Tian ZB, Li XY |
Contents

World Journal of Clinical Cases

Semimonthly Volume 8 Number 22 November 26, 2020

<table>
<thead>
<tr>
<th>Page</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>5790</td>
<td>Bleeding of two lumbar arteries caused by one puncture following percutaneous nephrolithotomy: A case report</td>
<td>Liu Q, Yang C, Lin K, Yang D</td>
</tr>
<tr>
<td>5795</td>
<td>Hemorrhagic fever with renal syndrome complicated with aortic dissection: A case report</td>
<td>Qiu FQ, Li CC, Zhou JY</td>
</tr>
<tr>
<td>5802</td>
<td>Robot-assisted laparoscopic pyeloureterostomy for ureteropelvic junction rupture sustained in a traffic accident: A case report</td>
<td>Kim SH, Kim WB, Kim JH, Lee SW</td>
</tr>
<tr>
<td>5809</td>
<td>Large leiomyoma of lower esophagus diagnosed by endoscopic ultrasonography–fine needle aspiration: A case report</td>
<td>Rao M, Meng QQ, Gao PJ</td>
</tr>
<tr>
<td>5816</td>
<td>Endoscopic reduction of colocolonic intussusception due to metastatic malignant melanoma: A case report</td>
<td>Kasuga K, Sakamoto T, Takamaru H, Sekiguchi M, Yamada M, Yamazaki N, Hashimoto T, Uraoka T, Saito Y</td>
</tr>
</tbody>
</table>

LETTER TO THE EDITOR

<table>
<thead>
<tr>
<th>Page</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
</table>
ABOUT COVER
Peer-reviewer of World Journal of Clinical Cases, Dr. Galiatsatos Aristidis is an Associate Professor, Department of Biomedical Sciences, Division of Dental Technology, University of West Attica. After graduating from the Faculty of Dentistry of University of Thessaloniki in 1988, he completed his PhD in the Dental Prosthodontics Department of Athens University in 1996. From 1988 to 2005, he continued his professional training in the University of Athens as a Research Fellow in Prosthodontics. During the 1998-1999 academic year, he was hired as a paid research scientist in the same subject area. In 2009, he rose to Assistant and then Associate Professor in the University of West Attica. From September 2019, he has served as Director of the Division of Dental Technology. (L-Editor: Filipodia)

AIMS AND SCOPE
The primary aim of World Journal of Clinical Cases (WJCC, World J Clin Cases) is to provide scholars and readers from various fields of clinical medicine with a platform to publish high-quality clinical research articles and communicate their research findings online.

WJCC mainly publishes articles reporting research results and findings obtained in the field of clinical medicine and covering a wide range of topics, including case control studies, retrospective cohort studies, retrospective studies, clinical trials studies, observational studies, prospective studies, randomized controlled trials, randomized clinical trials, systematic reviews, meta-analysis, and case reports.

INDEXING/ABSTRACTING
The WJCC is now indexed in Science Citation Index Expanded (also known as SciSearch®), Journal Citation Reports/Science Edition, PubMed, and PubMed Central. The 2020 Edition of Journal Citation Reports® cites the 2019 impact factor (IF) for WJCC as 1.013; IF without journal self cites: 0.991; Ranking: 120 among 165 journals in medicine, general and internal; and Quartile category: Q3.
Azacitidine decreases reactive oxygen species production in peripheral white blood cells: A case report

Hidekazu Hasunuma, Naomi Shimizu, Hiromitsu Yokota, Ichiro Tatsuno

BACKGROUND
In myelodysplastic syndrome (MDS), oxidative stress is closely related to iron overload and DNA damage. A recent study suggested the possibility that increased oxidative stress causes not only iron overload but also disease progression of MDS with DNA damage. We present a case of MDS with decreased reactive oxygen species (ROS) production in peripheral white blood cells (WBCs) and decreased diacron-reactive oxygen metabolites (d-ROMs) in serum after azacitidine therapy.

CASE SUMMARY
A 74-year-old man presented to the hematological department with the chief complaint of anemia. His vital signs were within normal limits at admission with a heart rate of 80 bpm and blood pressure of 135/60 mmHg. Laboratory tests indicated pancytopenia, a WBC count of 2190 cells/µL, a hemoglobin level of 6.2 g/dL and a platelet count of 7.4 × 10^4/µL. The patient was diagnosed with MDS with fibrosis after a bone marrow examination. This case showed decreased ROS production in WBCs, d-ROMs in serum and Wilms’ tumor 1 after azacitidine therapy, after which his hematopoiesis recovered.

CONCLUSION
Azacitidine therapy can improve hematopoiesis and decrease ROS and d-ROM production.
upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: http://creativecommons.org/License/s/by-nc/4.0/

Manuscript source: Unsolicited manuscript
Specialty type: Oncology
Country/Territory of origin: Japan

Peer-review report’s scientific quality classification
Grade A (Excellent): A
Grade B (Very good): 0
Grade C (Good): 0
Grade D (Fair): 0
Grade E (Poor): 0

Received: June 3, 2020
Peer-review started: June 3, 2020
First decision: September 13, 2020
Revised: September 22, 2020
Accepted: October 13, 2020
Article in press: November 13, 2020
Published online: November 26, 2020

P-Reviewer: Bourgoin SG
S-Editor: Zhang H
L-Editor: A
P-Editor: Zhang YL

Key Words: Myelodysplastic syndrome; Reactive oxygen species; Dia cron-reactive oxygen metabolites; Ferritin; Azacitidine; Case report

©The Author(s) 2020. Published by Baishideng Publishing Group Inc. All rights reserved.

Core Tip: Accumulation of reactive oxygen species (ROS) contributes to the development and progression of cancer. We reported a case of myelodysplastic syndrome that showed decreased ROS production by white blood cells, decreased dia cron-reactive oxygen metabolites (d-ROMs) in serum and decreased Wilms’ tumor 1 after azacitidine therapy, which can improve hematopoiesis by decreasing ROS and d-ROMs production.

Citation: Hasunuma H, Shimizu N, Yokota H, Tatsuno I. Azacitidine decreases reactive oxygen species production in peripheral white blood cells: A case report. World J Clin Cases 2020; 8(22): 5657-5662
URL: https://www.wjgnet.com/2307-8960/full/v8/i22/5657.htm
DOI: https://dx.doi.org/10.12998/wjcc.v8.i22.5657

INTRODUCTION

DNA damage caused by oxidative stress plays an important role in the initiation and carcinogenic process of mutation. A recent study suggested that oxidative stress leads to increased mutation frequency in a murine model of myelodysplastic syndrome (MDS)\(^2\) and that additional mutations lead to MDS progression. Patients with MDS often require blood transfusion and consequently develop iron overload, which causes oxidative stress. Antioxidant therapy and iron chelation are therefore considered suitable for managing patients with MDS\(^3\),\(^4\). A correlation has also been reported between serum ferritin levels and serum reactive oxygen species (ROS) levels in patients with MDS patients\(^5\). MDS is a heterogeneous group of clonal hematopoietic stem cell disorders that transform into acute myeloid leukemia. DNA hypermethylation is one of the most important pathogenic mechanisms of MDS\(^1\). Azacitidine is the first DNA hypomethylating agent that has demonstrated superiority over conventional therapy in treating MDS in patients unable to undergo allogeneic stem cell transplantation. A relationship between oxidative stress and hypermethylation has also been reported; oxidative stress is likely to be involved in MDS disease extension\(^6\). We report on a patient with MDS and fibrosis, who presented with decreased ROS in the peripheral white blood cells (WBCs), decreased diacron-reactive oxygen metabolites (d-ROMs) in serum and decreased Wilms’ tumor 1 (WT1). The patient was withdrawn from transfusion dependence after azacitidine therapy. The Ethics Committee of Toho University approved this study, and we obtained the patient’s informed consent.

CASE PRESENTATION

Chief complaints
A 74-year-old man presented with dyspnea on exertion that started two months earlier.

History of present illness
The patient presented anemia and a hemoglobin level of 6.4 g/dL during an ophthalmology consultation for cataract treatment. The patient presented dyspnea on exertion, a symptom that had aggravated over the past two months. The patient visited the hematological department.

History of past illness
The patient had a past medical history of cataract and ossification of a posterior longitudinal ligament.
Personal and family history
The patient had been a smoker for 50 years.

Physical examination
Vital signs were within normal limits at presentation, with a heart rate of 80 bpm, blood pressure of 135/60 mmHg, and a temperature of 36.1 °C. His height and weight were 171 cm and 75 kg, respectively.

Laboratory examinations
Laboratory tests indicated a WBC count of 2190 cells/µL, a hemoglobin level of 6.2 g/dL, a platelet count of 7.4 × 10⁴/µL, a lactate dehydrogenase level of 283 IU/L, and a ferritin level of 620.41 ng/mL. The WT1 mRNA was 4800/µg RNA of peripheral WBCs, and the serum d-ROM level was 435 Carratelli units. The bone marrow aspiration was dry tap, and the bone marrow biopsy showed MDS with fibrosis.

FINAL DIAGNOSIS
The patient was diagnosed with MDS with fibrosis.

TREATMENT
The patient was administered 75 mg/m² of azacitidine for 7 d once a month, underwent iron chelation therapy and took deferoxamine during the azacitidine therapy.

OUTCOME AND FOLLOW-UP
To date, the patient has undergone 11 cycles of azacitidine therapy. After the fourth cycle, he was released from transfusion. Figure 1 shows the changes in hematopoiesis during the azacitidine therapy. The patient presented with decreased ROS production in the peripheral WBCs, decreased d-ROMs in serum and decreased WT1 after azacitidine therapy. Figure 2 shows the decrease in ROS production in the WBCs after the ninth cycle of azacitidine therapy. The black line shows ROS production in a healthy control, while the colored line shows the patient’s production.

DISCUSSION
Gonçalves et al.[5] reported the relationship between ROS and other mitochondrial dysfunction markers in patients with MDS. The levels of ROS stained with DCFH₂-DA showed increases in each fraction of WBCs in patients with MDS, as was the case in our experiment. Moreover, patients with MDS and high ROS showed lower overall survival. The authors also analyzed the variants in genes involved in oxidative stress in patients with MDS and acute myeloid leukemia and showed that a number of superoxide dismutase 2 and glutathione peroxidase 1 genotypes increased the susceptibility for developing MDS with increased ROS production[6].

We have previously reported that the other oxidative stress markers (serum d-ROMs) transiently decreased after each azacitidine therapy. Furthermore, these oxidative stress markers strongly correlated with WT1 levels[7]. This case also suggests the mechanisms by which azacitidine prevents MDS disease progression by inhibiting oxidative stress.

Kornicka et al.[8] reported that azacitidine showed reduced ROS accumulation in vitro. In the present case, we also evaluated ROS production in WBCs, in addition to serum d-ROM, ferritin and WT1 production during azacitidine therapy. Our patient was released from blood transfusion with a decrease in WT1, serum d-ROMs and ROS production in the WBCs after azacitidine therapy (Figure 1 and 2). As shown in Figure 1, there was no relationship with ferritin and oxidative stress markers. We therefore speculate that oxidative stress is related to the MDS state without iron overload. We also analyzed other patients with MDS undergoing azacitidine therapy. The patients in the responder group showed decreased ROS production in WBCs;
Hasunuma H et al. ROS production decreased with recovery of normal hematopoiesis

However, the nonresponder group showed increased ROS and WT1 production (unpublished data). We therefore consider that ROS production the most suitable factor for evaluating MDS progression.

CONCLUSION

This is the first report indicating that azacitidine decreases ROS production in WBCs and decreases serum d-ROM levels in a patient with MDS. ROS, d-ROM and WT1 levels showed the same behavior during azacitidine therapy, and these parameters appear to have no relationship with ferritin levels. We speculate the novel mechanisms regarding the suppression of oxidative stress by the DNA hypomethylating agent azacitidine. Further study is therefore needed to clarify this point.
Hasunuma H et al. ROS production decreased with recovery of normal hematopoiesis

Figure 2 Flow cytometry analyses of reactive oxygen species in blood cells. Each white blood cell was gated and its fluorescence distribution histogram and mean fluorescence intensity (MFI) are shown. MFI shows this patient value when the healthy control is 1. ROS: Reactive oxygen species; Seg: Segment; Ly: Lymphocyte; Mono: Monocyte.

REFERENCES

Hasunuma H et al. ROS production decreased with recovery of normal hematopoiesis

2015; **49**: 1081-1094 [PMID: 25968944 DOI: 10.3109/10715762.2015.1035268]

