

EDITORIAL
6515 Importance of BRCA mutation for the current treatment of pancreatic cancer beyond maintenance
Martínez-Galán J, Rodriguez I, Caba O

FRONTIER
6522 Acetyl-CoA carboxylase inhibitors in non-alcoholic steatohepatitis: Is there a benefit?
Neokosmidis G, Cholongitas E, Tziomalos K

REVIEW
6527 Therapeutic resistance in pancreatic ductal adenocarcinoma: Current challenges and future opportunities
Jain A, Bhardwaj V
6551 Evaluation of botanicals as potential COVID-19 symptoms terminator
Caliskan UK, Karakus MM

MINIREVIEWS
6572 Current and emerging therapeutic strategies in pancreatic cancer: Challenges and opportunities
Manrai M, Tilak T, Dawra S, Srivastava S, Singh A
6590 Cathepsin L, transmembrane peptidase/serine subfamily member 2/4, and other host proteases in COVID-19 pathogenesis – with impact on gastrointestinal tract
Berdowska I, Matusiewicz M
6601 Endoscopic anti-reflux therapy for gastroesophageal reflux disease
Rodríguez de Santiago E, Albéniz E, Estremera-Arevalo F, Teruel Sanchez-Vegazo C, Lorenzo-Zuñiga V

ORIGINAL ARTICLE
Basic Study
6615 Cold exposure and capsaicin promote 1,2-dimethylhyrazine-induced colon carcinogenesis in rats correlates with extracellular matrix remodeling
Qin JC, Yu WT, Li HX, Liang YQ, Nong FF, Wen B
6631 Detection and analysis of common pathogenic germline mutations in Peutz-Jeghers syndrome
Gu GL, Zhang Z, Zhang YH, Yu PF, Dong ZW, Yang HR, Yuan Y
Contents

Clinical and Translational Research

6647 Validation of the Italian translation of the perceived stigma scale and resilience assessment in inflammatory bowel disease patients
Cococcia S, Lenti MV, Mengoli C, Klersy C, Borrelli de Andreis F, Secco M, Ghorayeb J, Delponti M, Corazza GR, Di Sabatino A

Retrospective Cohort Study

6659 Prognostic factors of minimally invasive surgery for gastric cancer: Does robotic gastrectomy bring oncological benefit?
Nakauchi M, Suda K, Shibasaki S, Nakamura K, Kadoya S, Kikuchi K, Inaba K, Uyama I

Observational Study

6673 Diagnostic usefulness of selected proteases and acute phase factors in patients with colorectal adenocarcinoma
Sebzda T, Gnus J, Dziadkowiec B, Latka M, Gburek J

6689 Impact of a colorectal cancer screening program implantation on delays and prognosis of non-screening detected colorectal cancer
Cubiella J, Lorenzo M, Baiocchi F, Tejido C, Conde A, Sande-Mejide M, Castro M

Prospective Study

6701 Standard liver weight model in adult deceased donors with fatty liver: A prospective cohort study

SYSTEMATIC REVIEWS

6715 Microbiota shaping — the effects of probiotics, prebiotics, and fecal microbiota transplant on cognitive functions: A systematic review
Baldi S, Mundula T, Nannini G, Amedei A

LETTER TO THE EDITOR

6733 Impact of COVID-19 pandemic on the neuropsychiatric status of Wilson’s disease
Lanza G, Godani M, Ferri R, Raggi A
ABOUT COVER
Editorial Board Member of World Journal of Gastroenterology, José B Cotter, MD, PhD, Chief Doctor, Professor, Department of Gastroenterology, Hospital da Senhora da Oliveira, Rua dos Cutileiros, Creixomil, Guimarães 4835-044, Portugal. jcotter@hospitaldeguimaraes.min-saude.pt

AIMS AND SCOPE
The primary aim of World Journal of Gastroenterology (WJG, World J Gastroenterol) is to provide scholars and readers from various fields of gastroenterology and hepatology with a platform to publish high-quality basic and clinical research articles and communicate their research findings online. WJG mainly publishes articles reporting research results and findings obtained in the field of gastroenterology and hepatology and covering a wide range of topics including gastroenterology, hepatology, gastrointestinal endoscopy, gastrointestinal surgery, gastrointestinal oncology, and pediatric gastroenterology.

INDEXING/ABSTRACTING
The WJG is now indexed in Current Contents®/Clinical Medicine, Science Citation Index Expanded (also known as SciiSearch®), Journal Citation Reports®, Index Medicus, MEDLINE, PubMed, PubMed Central, and Scopus. The 2021 edition of Journal Citation Report® cites the 2020 impact factor (IF) for WJG as 5.742; Journal Citation Indicator: 0.79; IF without journal self cites: 5.590; 5-year IF: 5.044; Ranking: 28 among 92 journals in gastroenterology and hepatology; and Quartile category: Q2. The WJG’s CiteScore for 2020 is 6.9 and Scopus CiteScore rank 2020: Gastroenterology is 19/136.

RESPONSIBLE EDITORS FOR THIS ISSUE
Production Editor: Yan-Xia Xing; Production Department Director: Xiang Li; Editorial Office Director: Ze-Mao Gong.

NAME OF JOURNAL
World Journal of Gastroenterology

ISSN
ISSN 1007-9327 (print) ISSN 2219-2840 (online)

LAUNCH DATE
October 1, 1995

FREQUENCY
Weekly

EDITORS-IN-CHIEF
Andrzej S Tarnawski, Subrata Ghosh

EDITORIAL BOARD MEMBERS
http://www.wjgnet.com/1007-9327/editorialboard.htm

PUBLICATION DATE
October 21, 2021

COPYRIGHT
© 2021 Baishideng Publishing Group Inc

INSTRUCTIONS TO AUTHORS
https://www.wjgnet.com/bpg/gerinfo/204

GUIDELINES FOR ETHICS DOCUMENTS
https://www.wjgnet.com/bpg/GerInfo/287

GUIDELINES FOR NON-NATIVE SPEAKERS OF ENGLISH
https://www.wjgnet.com/bpg/gerinfo/240

PUBLICATION ETHICS
https://www.wjgnet.com/bpg/GerInfo/288

PUBLICATION MISCONDUCT
https://www.wjgnet.com/bpg/gerinfo/208

ARTICLE PROCESSING CHARGE
https://www.wjgnet.com/bpg/gerinfo/242

STEPS FOR SUBMITTING MANUSCRIPTS
https://www.wjgnet.com/bpg/gerinfo/239

ONLINE SUBMISSION
https://www.f6publishing.com
Evaluation of botanicals as potential COVID-19 symptoms terminator

Ufuk Koca Caliskan, Methiye Mancak Karakus

ORCID number: Ufuk Koca Caliskan 0000-0002-5216-7508; Methiye Mancak Karakus 0000-0002-0085-7552.

Author contributions: Caliskan UK and Karakus MM equally contributed to collect data and to write the paper; both authors read and approved the final manuscript.

Conflict-of-interest statement: Authors declare that they have no conflicts of interest for this article.

Open-Access: This article is an open-access article that was selected by an in-house editor and fully peer-reviewed by external reviewers. It is distributed in accordance with the Creative Commons Attribution NonCommercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: http://creativecommons.org/Licenses/by-nc/4.0/

Manuscript source: Invited manuscript

Specialty type: Gastroenterology and hepatology

Country/Territory of origin: Turkey

Peer-review report’s scientific quality classification

Abstract

Information about the coronavirus disease 2019 (COVID-19) pandemic is still evolving since its appearance in December 2019 and has affected the whole world. Particularly, a search for an effective and safe treatment for COVID-19 continues. Botanical mixtures contain secondary metabolites (such as flavonoids, phenolics, alkaloids, essential oils etc.) with many therapeutic effects. In this study, the use of herbal treatments against COVID-19 was evaluated. Medical synthetic drugs focus mainly on respiratory symptoms, however herbal therapy with plant extracts may be useful to relieve overall symptoms of COVID-19 due to the variety of bioactive ingredients. Since COVID-19 is a virus that affects the respiratory tract, the antiviral effects of botanicals/plants against respiratory viruses have been examined through clinical studies. Data about COVID-19 patients revealed that the virus not only affects the respiratory system but different organs including the gastrointestinal (GI) system. As GI symptoms seriously affect quality of life, herbal options that might eliminate these problems were also evaluated. Finally, computer modeling studies of plants and their active compounds on COVID-19 were included. In summary, herbal therapies were identified as potential options for both antiviral effects and control of COVID-19 symptoms. Further data will be needed to enlighten all aspects of COVID-19 pathogenesis, before determining the effects of plants on severe acute respiratory syndrome coronavirus 2.

Key Words: COVID-19; Herbal therapies; Plant; SARS-CoV-2; Antiviral; Symptom

©The Author(s) 2021. Published by Baishideng Publishing Group Inc. All rights reserved.

Core Tip: To stop the coronavirus disease 2019 (COVID-19) pandemic, extensive search is ongoing to develop effective and safe drugs against severe acute respiratory syndrome coronavirus 2. COVID-19 in a major way affects the respiratory system, but many patients also have gastrointestinal (GI) symptoms. Plants have beneficial effects
Caliskan UK et al. Botanicals as potential COVID-19 symptoms terminator

INTRODUCTION

New coronavirus disease 2019 (COVID-19), which emerged in Wuhan in December 2019, spread rapidly and affected the whole world. The emergence, epidemiology, origin and evolution of COVID-19 has been extensively studied by Sun et al.[1]. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been shown to carry out viral replication in the human host mainly through three main proteins and enzymes: 3-chymotrypsin-like protease (3CLpro), angiotensin-converting enzyme-2 (ACE2) and spike protein (TMPRSS2)[2,3]. ACE2 receptors are found in the body not only in the lungs but also in tissues such as the endothelium, heart, kidney and intestine[2]. This distribution makes many organs a target of COVID-19. The significance of ACE2, which is found in intestinal tissues, especially for amino acid uptake from foods, has been emphasized and it has been suggested that the intestine may be an important entry site for SARS-CoV-2[2-4]. Azithromycin, chloroquine, lopinavir, remdesivir, ritonavir are options used in treatment and whose effects are evaluated[5]. Effective and safe drugs and vaccines are sought all over the world to prevent novel coronavirus. Minerals, herbs, herbal products, probiotics and vitamins are the main natural resources, whose effectiveness and also the usability of herbal medicines in COVID-19 were investigated and benefit, risk assessments were evaluated[6-8]. Truly, since the beginning of the COVID-19, herbal medicines have been used in China. A study has shown that 90% of the 214 patients were treated with the traditional herbal medicine, moreover, it is reported that some of them prevented COVID-19 infection in healthy individuals and enhanced the health state of patients with mild or severe symptoms[9,10]. Health scientists from the Zhongnan Hospital of Wuhan University included the use of traditional medicines in the guidelines for the treatment and prevention of COVID-19. The experts recommended using medicinal plants for the prevention of COVID-19, additionally, the use of different herbal mixtures were recommended according to the disease-stage[11].

Herbs and herbal products provide generous sources of primary and mostly secondary metabolites, which are valuable compounds (phenolics, flavonoids, tannins, alkaloids, essential oils, etc.) for prophylactic and chronic therapeutic purposes. Some of these metabolites in herbs and herbal mixtures have high chemical variety than the synthetics in stopping viral proliferations, and having antiviral activities[12]. Thus, botanicals can both show antiviral effects and relieve the symptoms of COVID-19 thanks to the different substance groups, which demonstrate different biological effects that will not be possible to achieve with a single synthetic drug. Based on this understanding, in this review, we offer all the potential interventions for COVID-19 infection according to previous and recently found antiviral effects of herbs. Considering the major transmission routes of COVID-19, where mostly ACE2 receptors found and the symptoms, the plants have been handled especially with their effects on the mostly respiratory and also gastrointestinal (GI) systems. Although ACE2, is typically expressed in epithelial cells of the airways, various GI symptoms in COVID-19 might be explained by the high expression of ACE2 in the digestive tract. Additionally, liver tests abnormalities, active viral replication in GI tract and patients’ manifestations with GI symptoms (abdominal pain, diarrhea, nausea, vomiting) and possible fecal-oral transmission reveal the GI involvement in COVID-19[13].

Recent findings demonstrated that early blocking of COVID-19 with ACE2 inhibitors was one of the mechanisms used by novel drugs[14], on the other hand diabetes mellitus and hypertension enhanced the risk of COVID-19 infection, in spite of using ACE2 inhibitors[15-17]. Furthermore, unpredicted ACE2 upregulation by on various systems with their varied array of metabolites. In our study, the potential effects of herbal treatments against COVID-19 were examined. Their antiviral effects, their effects on the respiratory system, GI system, and other COVID-19 symptoms were investigated.
ACE2 inhibitors, ibuprofen and angiotensin II type-I receptor blockers lead to need of identifying/using alternative ACE2 blockers[18]. Consequently, botanicals or natural products might be alternatively and selectively might block the ACE2 receptors without inhibiting the enzyme activity in order to treat and/or prevent COVID-19 spread in humans without increasing ACE2 expression in patients and therefore increased risk for COVID-19[19].

Clinical human studies showing the effect of plants on respiratory infections are presented as a table. Based on the pharmacological properties of plants, their practicality on COVID-19 symptoms have been evaluated. In the last part of the article, plants that inhibit ACE receptors, the research studies and their active compounds on COVID-19 also included and it is aimed to examine the plants from a broad perspective.

ANTIVIRAL EFFECTS OF HERBAL THERAPIES

Most of the respiratory diseases (approximately 80%) are caused by viral agents[20]. Viral respiratory diseases are responsible for high mortality and morbidity, especially in disadvantaged and sensitive elderlies and immunocompromised individuals[21, 22]. The main respiratory viruses are adenovirus, coronavirus, influenza virus, respiratory syncytial virus and rhinovirus[20]. Plants with antiviral effects and studies showing the effects of these on respiratory viruses are given in Table 1. Human clinical studies showing the effects of plants on respiratory tract infections are presented in Table 2.

EFFECTS OF HERBAL TREATMENT ON COVID-19 SYMPTOMS

Cough and fever are common symptoms in patients with COVID-19, including fatigue, shortness of breath, headache, muscle pain, sore throat, sputum, hemoptysis, diarrhea, dyspnea, rhinorrhea, chest pain, nausea, and vomiting[23]. COVID-19 symptoms in children are similar to those in adults and are relatively mild[24]. Although, the current synthetic drugs focus on mainly respiratory symptoms, herbal therapy can be used to relieve overall symptoms of COVID-19 with their bioactive ingredients[25]. The meta-analysis study, which included randomized controlled trial studies, found significant effects of the combination of western medicine and herbal therapies. Combined treatment has been effective in cough, fever, dry and sore throat, fatigue and overall GI symptoms. The combined therapy significantly improved the disappearance rate of cough and sputum production[26]. In another meta-analysis, it was found that the addition of Chinese herbal medicine for standard care improved the symptoms and signs of COVID-19 as well as decreased levels of C-reactive protein[27]. The effects of plants that can alleviate the symptoms of COVID-19 are summarized in Table 3. In addition, plants regarded as ACE inhibitors are shown in Table 4.

THE EFFECTS OF HERBS AND THEIR ACTIVE COMPOUNDS ON COVID-19

In recent years, artificial intelligence has often been used to discover natural products as medicine[28,29]. After the outbreak of COVID-19, computer models were used to investigate the effect of many plants and their components on SARS-CoV-2. Khaerunnisa et al[30], determined the COVID-19 Main Protease (Mpro) inhibitor effects of medicinal plant components in a molecular docking study. They suggested apigenin-7-glucoside, curcumin, catechin, demethoxycurcumin, epicatechin-gallate, luteolin-7-glucoside, and oleuropein, as potential inhibitors of COVID-19 Mpro. In a similar molecular docking study using sixty-seven molecules of natural origin, crocin, digitoxigenin and b-eudesmol were proposed as inhibitors against coronavirus[31]. Another study was carried out using one hundred seventy-one essential oil components. The study determined the best docking ligands for the SARS-CoV target proteins were (E)--farnesene, (E,E)--farnesene and (E,E)-farnesol, thereby suggesting essential oil components may act synergistically with other antiviral agents, or they may provide some relief of COVID-19 symptoms[32]. Computer modeling studies and clinical studies against SARS-CoV-2 in some prominent plants/products and their
<table>
<thead>
<tr>
<th>Plant name</th>
<th>Preparation</th>
<th>Susceptible viruses</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Allium sativum (Garlic)</td>
<td>Aqueous extracts</td>
<td>Influenza A (H9N2)</td>
<td>Rasool et al.[59], 2017</td>
</tr>
<tr>
<td></td>
<td>Extract</td>
<td>Infected bronchitis virus</td>
<td>Mohajer Shojaei et al.[54], 2016</td>
</tr>
<tr>
<td></td>
<td>Ethanolic extract</td>
<td>Influenza A (H1N1)</td>
<td>Chavan et al.[55], 2016</td>
</tr>
<tr>
<td></td>
<td>Garlic oil</td>
<td>Influenza A (H1N1)</td>
<td>Choi[56], 2018</td>
</tr>
<tr>
<td></td>
<td>Fresh extract</td>
<td>Influenza A (H1N1)</td>
<td>Mehrbod et al.[57], 2013</td>
</tr>
<tr>
<td></td>
<td>Aqueous extract</td>
<td>Adenovirus (ADV3 and ADV4)</td>
<td>Chen et al.[58], 2011</td>
</tr>
<tr>
<td>Aloe vera (Aloe)</td>
<td>Aloe anthraquinones and several derivatives (3-O-</td>
<td>Influenza A</td>
<td>Borges-Argáez et al.[59], 2019</td>
</tr>
<tr>
<td></td>
<td>tetraacetoglupiranosil)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Aloe-emodin</td>
<td>Influenza A</td>
<td>Li et al.[60], 2014</td>
</tr>
<tr>
<td>Astragalus mongholicus</td>
<td>Astragalus polysaccharides</td>
<td>Avian infectious bronchitis virus</td>
<td>Zhang et al.[61], 2018</td>
</tr>
<tr>
<td>(Astragalus)</td>
<td>Astragalus polysaccharide</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Camellia sinensis (Green</td>
<td>Catechins - EGCG</td>
<td>Adenovirus</td>
<td>Weber et al.[62], 2003</td>
</tr>
<tr>
<td>tea)</td>
<td>Catechin</td>
<td>Influenza A</td>
<td>Kuzuhara et al.[64], 2009</td>
</tr>
<tr>
<td>Curcuma longa (Turmeric)</td>
<td>Catechins</td>
<td>Influenza A (H5N1)</td>
<td>Liu et al.[65], 2012</td>
</tr>
<tr>
<td></td>
<td>Polyphenols</td>
<td>Influenza A; Influenza B</td>
<td>Yang et al.[66], 2014</td>
</tr>
<tr>
<td>Curcuma longa (Turmeric)</td>
<td>Curcumin</td>
<td>Influenza A virus</td>
<td>Chen et al.[67], 2013</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Dai et al.[68], 2018</td>
</tr>
<tr>
<td>Echinacea purpurea</td>
<td>E. purpurea fresh herb and root tinctures</td>
<td>Influenza</td>
<td>Vimalanathan et al.[71], 2013</td>
</tr>
<tr>
<td>(Purple coneflower)</td>
<td>Standardized E. purpurea extract</td>
<td>Influenza A (H5N1, H7N7, H1N1)</td>
<td>Pleschka et al.[72], 2009</td>
</tr>
<tr>
<td></td>
<td>Standardized E. purpurea extract</td>
<td>Rhinoviruses, RSV</td>
<td>Hudson et al.[73], 2011</td>
</tr>
<tr>
<td>Eucalyptus globulus</td>
<td>Essential oil- vapor phase</td>
<td>Influenza</td>
<td>Vimalanathan et al.[74], 2014</td>
</tr>
<tr>
<td>(Eucalyptus)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ginkgo biloba (Ginkgo)</td>
<td>Leaf extract</td>
<td>Influenza A (H1N1, H3N2)</td>
<td>Haruyama et al.[75], 2013</td>
</tr>
<tr>
<td>Glycyrrhiza sp. (Licorice)</td>
<td>Water extract of licorice (Glycyrrhiza uralensis)</td>
<td>RSV</td>
<td>Feng Yeh et al.[76], 2013</td>
</tr>
<tr>
<td></td>
<td>Glycyrrhizin acid derivatives</td>
<td>SARS-CoV</td>
<td>Hoever et al.[77], 2005</td>
</tr>
<tr>
<td></td>
<td>Extract of Glycyrrhiza inflata</td>
<td>Influenza A (H1N1)</td>
<td>Dao et al.[78], 2011</td>
</tr>
<tr>
<td></td>
<td>Glycyrrhizin</td>
<td>Influenza A</td>
<td>Wolkerstorfer et al.[79], 2009</td>
</tr>
<tr>
<td></td>
<td>Glycyrrhizin</td>
<td>Influenza A (H5N1)</td>
<td>Michaelis et al.[80], 2010</td>
</tr>
<tr>
<td>Lepidium meyenii (Maca)</td>
<td>Extracted with methanol</td>
<td>Influenza A; Influenza B</td>
<td>Del Valle Mendoza et al. [81], 2014</td>
</tr>
<tr>
<td>Melaleuca alternifolia</td>
<td>Tea tree oil</td>
<td>Influenza A (H1N1)</td>
<td>Garozzo et al.[82], 2011</td>
</tr>
<tr>
<td>(Tea tree)</td>
<td>Aerosol and vapor of tea tree oil</td>
<td>Influenza A (H1N9)</td>
<td>Usachev et al.[83], 2013</td>
</tr>
<tr>
<td></td>
<td>Tea tree oil</td>
<td>Influenza A (H11N9)</td>
<td>Pyankov et al.[84], 2012</td>
</tr>
<tr>
<td>Melissa officinalis</td>
<td>Essential oil</td>
<td>Influenza A (H9N2)</td>
<td>Pourghanbari et al.[85], 2016</td>
</tr>
<tr>
<td>(Lemon balm)</td>
<td>Extract</td>
<td>Avian infectious bronchitis</td>
<td>Lelelius et al.[86], 2019</td>
</tr>
<tr>
<td>Mentha piperita (Peppermint)</td>
<td>Ethanol extract</td>
<td>RSV</td>
<td>Li et al.[57], 2017</td>
</tr>
<tr>
<td></td>
<td>Extract</td>
<td>Avian infectious bronchitis</td>
<td>Lelelius et al.[86], 2019</td>
</tr>
<tr>
<td>Plant Name</td>
<td>Part Used</td>
<td>Constituents/Extract</td>
<td>Activity (Reference)</td>
</tr>
<tr>
<td>--------------------------------</td>
<td>--</td>
<td>--------------------------------------</td>
<td>----------------------</td>
</tr>
<tr>
<td>Nigella sativa (Black cumin)</td>
<td>Ethanol extracts of</td>
<td>Influenza A (H5N1)</td>
<td>Dorra et al. [88], 2019</td>
</tr>
<tr>
<td></td>
<td>Ethanol extracts of</td>
<td>Influenza A (H9N2)</td>
<td>Umar et al. [89], 2016</td>
</tr>
<tr>
<td></td>
<td>Extract</td>
<td>Influenza A</td>
<td>Ulasli et al. [90], 2014</td>
</tr>
<tr>
<td>Panax ginseng (Ginseng)</td>
<td>Root of plant Panax ginseng</td>
<td>RSV</td>
<td>Lee et al. [91], 2014</td>
</tr>
<tr>
<td></td>
<td>Panax Korean red ginseng extract</td>
<td>RSV</td>
<td>Lee et al. [92], 2014</td>
</tr>
<tr>
<td></td>
<td>Red ginseng extract and polysaccharide and saponin fractions</td>
<td>Influenza A (H1N1)</td>
<td>Yin et al. [93], 2013</td>
</tr>
<tr>
<td></td>
<td>Korean red ginseng extract</td>
<td>Influenza A (H1N1, H3N2)</td>
<td>Yoo et al. [94], 2012</td>
</tr>
<tr>
<td>Pelargonium sidoides (Pelargonium)</td>
<td>Pelargonium sidoides radix extract EPs® 7630</td>
<td>Rhinovirus</td>
<td>Roth et al. [95], 2019</td>
</tr>
<tr>
<td></td>
<td>EPs® 7630</td>
<td>Respiratory viruses</td>
<td>Michaelis et al. [96], 2011</td>
</tr>
<tr>
<td></td>
<td>EPs® 7630</td>
<td>Influenza A (H1N1, H3N2)</td>
<td>Theisen et al. [97], 2012</td>
</tr>
<tr>
<td>Sambucus nigra (Black elder)</td>
<td>Extract</td>
<td>Infectious bronchitis virus</td>
<td>Chen et al. [98], 2014</td>
</tr>
<tr>
<td></td>
<td>Standardized elderberry liquid extract</td>
<td>Influenza A; Influenza B</td>
<td>Krawitz et al. [99], 2011</td>
</tr>
<tr>
<td></td>
<td>Concentrated juice of elderberry</td>
<td>Influenza A</td>
<td>Kinoshita et al. [100], 2012</td>
</tr>
<tr>
<td></td>
<td>Elderberry flavonoids</td>
<td>Influenza A (H1N1)</td>
<td>Roschek et al. [101], 2009</td>
</tr>
<tr>
<td>Scutellaria baicalensis (Chinese skullcap)</td>
<td>Chemical constituents</td>
<td>Influenza A (H1N1)</td>
<td>Ji et al. [102], 2015</td>
</tr>
<tr>
<td></td>
<td>Baicalin</td>
<td>SARS-CoV</td>
<td>Chen et al. [103], 2004</td>
</tr>
<tr>
<td>Torreya nucifera (Japanese nutmeg yew)</td>
<td>Ethanol extract</td>
<td>SARS-CoV</td>
<td>Ryu et al. [104], 2010</td>
</tr>
<tr>
<td>Thymus vulgaris (Thyme)</td>
<td>Essential oil- liquid phase</td>
<td>Influenza</td>
<td>Vimalanathan et al. [74], 2014</td>
</tr>
<tr>
<td></td>
<td>Extract</td>
<td>Avian infectious bronchitis</td>
<td>Lele et al. [86], 2019</td>
</tr>
<tr>
<td>Withania somnifera (Ashwagandha)</td>
<td>Withaferin A</td>
<td>Influenza A (H1N1)</td>
<td>Cai et al. [105], 2015</td>
</tr>
<tr>
<td>Zingiber officinalis (Ginger)</td>
<td>Aqueous extracts</td>
<td>Influenza A (H9N2)</td>
<td>Rasool et al. [93], 2017</td>
</tr>
<tr>
<td></td>
<td>Ethanol extracts</td>
<td>Influenza A- (H5N1)</td>
<td>Dorra et al. [88], 2019</td>
</tr>
<tr>
<td></td>
<td>Fresh ginger</td>
<td>RSV</td>
<td>Chang et al. [106], 2013</td>
</tr>
</tbody>
</table>

Influenza A strains: H1N1, H3N2, H5N1, H6N1, H7N7, H9N2, H11N9; RSV: Respiratory syncytial virus; H1N1: Influenza A; SARS-CoV: Severe acute respiratory syndrome coronavirus.

metabolites are given below.

Curcuma longa

Utomo and Meiyanto [33] revealed the potential of several compounds of *Curcuma longa* against SARS-CoV-2 by binding to three protein receptors (RBD-S, PD-ACE2, SARS-CoV-2 protease). They showed that *Curcuma* sp. compounds can bind to target receptors, thus, have potential inhibitory effects on SARS-CoV-2 infectivity. Rajagopal *et al.* [34] showed in their *in silico* docking study that *Curcuma longa* components could be effective against COVID-19 by inhibiting the SARS-CoV-2 Mpro enzyme. Moreover, cyclocurcumin and curcumin possess significant binding at the active site of SARS-CoV-2 Mpro when compared to hydroxychloroquine and nelfinavir. When compared to remdesivir, cyclocurcumin is significantly more active [Glide score: Cyclocurcumin (−6.77); remdesivir (−6.38); curcumin (−6.13); nelfinavir (−5.93); hydroxychloroquine (−5.47)]. In a similar study, diacetylcurcumin was more effective on COVID-19 than nelfinavir [35]. Another study suggested the use of curcumin with hydroxychloroquine to destabilize the SARS-CoV2 receptor proteins [36]. Gonzalez-Paz *et al.* [37] showed that curcumin strongly binds to 3CL-protease of COVID-19 Curcumin caused enzyme folding and structural changes in viral protease. Moreover, curcumin bound more strongly to the enzyme than chloroquine.

Eucalyptus globulus

Sharma [38] suggested that eucalyptus essential oil active compounds are potential inhibitors of COVID-19 Mpro. They conducted a molecular docking study to evaluate
Table 2 Human clinical studies showing the effect of plants on respiratory infections

<table>
<thead>
<tr>
<th>Plant</th>
<th>Disease state</th>
<th>Participant</th>
<th>Dosage</th>
<th>Study design</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aged garlic extract[107]</td>
<td>Cold and flu illness</td>
<td>120 subjects, 2 groups (21-50 yr)</td>
<td>4 capsules/d (2.56 g); 90 d</td>
<td>Double-blind, randomized, placebo-controlled parallel intervention</td>
<td>Increase in γδ-T cell and NK cell. Reduction in cold and flu severity; decrease in symptom days</td>
</tr>
<tr>
<td>E. purpurea and E. angustifolia root[108]</td>
<td>New-onset common cold</td>
<td>719 patients, 4 parallel groups (12-80 yr)</td>
<td>First 24 h: Equivalent of 10.2 g of root. Next 4 d: 51 g</td>
<td>Randomized, controlled trial</td>
<td>Disease duration and severity are not statistically significantly changed</td>
</tr>
<tr>
<td>Echinacea purpurea alcohol extract</td>
<td>Common cold</td>
<td>755 healthy subjects, 2 groups (≥ 18 yr)</td>
<td>Illness prevention: 3 × 0.9 mL. Acute stages of colds: 5 × 0.9 mL</td>
<td>Randomized, double-blind, placebo-controlled trial</td>
<td>Reduction of the total number of cold episodes, cumulated episode days, and pain-killer medicated episodes. Inhibited virally confirmed colds and especially prevented enveloped virus infections. Maximal effects on recurrent infections. Prophylactic intake of E. purpurea over a period of 4 mo to provide a positive risk/benefit ratio</td>
</tr>
<tr>
<td>Echinacea root extract[110]</td>
<td>Respiratory symptoms</td>
<td>175 adults, 2 groups (18-65 yr)</td>
<td>Tablets: 112.5 mg E. purpurea 6:1 extract (equivalent to 675 mg dry root) and 150 mg E. angustifolia 4:1 extract (equivalent to 600 mg dry root) 3 × 1 tablet, if required: 3 × 2 tablets</td>
<td>Randomized, double blind, placebo-controlled trial</td>
<td>Lower respiratory symptom scores. Preventive effect against the development of respiratory symptoms during travel, including long-haul flights</td>
</tr>
<tr>
<td>Green tea catechins and theanine[111]</td>
<td>Influenza</td>
<td>200 healthcare workers, 2 groups</td>
<td>Capsules: Green tea catechins (378 mg/d) and theanine (210 mg/d). 5 m</td>
<td>Randomized, double-blind, placebo-controlled trial</td>
<td>Lower incidence of influenza infection in the catechin/theanine group</td>
</tr>
<tr>
<td>Ivy leaf extract[112]</td>
<td>Acute or chronic bronchial inflammatory disease</td>
<td>9657 patients (5181 children)</td>
<td>Ivy leaves extract [drug-to-extract ratio: 5:7.5:1; extraction solvent: ethanol 30% (w/w)], 0-5 yr: 3 × 2.5 mL; 6-12 yr: 3 × 5 mL; 12 yr and adults: 3 × 5-7.5 mL; 7 d</td>
<td>Prospective, open, multicenter post marketing study</td>
<td>Healing or improvement in 95% of symptoms. Effective and well tolerated</td>
</tr>
<tr>
<td>Ivy extract (Hedelix®)[113]</td>
<td>Acute respiratory catarrh and/or chronic recidivating inflammatory bronchial disease</td>
<td>268 children, 2 groups (syrup and drops groups) (0-12 yr)</td>
<td>0-1 yr: 1 × 2.5 mL syrup or 3 × 5 drops, 1-4 yr: 3 × 2.5 mL syrup or 3 × 16 drops, 4-10 yr: 4 × 2.5 mL syrup or 3 × 21 drops, 10-12 yr: 3 × 5 mL syrup or 3 × 31 drops. 14 d</td>
<td>Independent open, non-interventional studies</td>
<td>Effective and safe treatment of cough. Reduction in symptoms (especially rhinitis, cough and viscous mucus)</td>
</tr>
<tr>
<td>IVY leaves dry extract (Prospan®)[114]</td>
<td>Bronchial asthma</td>
<td>30 children (suffering from partial or uncontrolled mild persistent allergic asthma despite long-term treatment with 400 μg budesonide equivalent), 2 groups (6-11 yr)</td>
<td>2 × 5 mL (corresponding to 70 mg extract) 28-30 d</td>
<td>Randomized, double-blind, placebo-controlled, cross-over study</td>
<td>Improvement of MEF75-25, MEF25 and VC</td>
</tr>
<tr>
<td>Korean red ginseng extract[115]</td>
<td>Influenza-like illness</td>
<td>100 healthy adults, 2 groups (30-70 yr)</td>
<td>9 capsules/d. 3 m</td>
<td>Placebo-controlled trial</td>
<td>Reduced the incidence of influenza-like illness</td>
</tr>
<tr>
<td>Modified ginseng extracts (GS-3K8 and GINST)[116]</td>
<td>Acute respiratory illness</td>
<td>45 healthy applicants, 3 groups (39-65 yr)</td>
<td>Capsules: 500 mg; 6 capsules/d; 8 wk</td>
<td>Randomized, double-blind, placebo-controlled pilot study</td>
<td>Reduction in acute respiratory illness development and symptom duration</td>
</tr>
<tr>
<td>Panax quinquefolius extract CVT-E002[117]</td>
<td>Acute respiratory illness and Chronic Lymphocytic Leukemia</td>
<td>293 patients, 2 groups (≥ 18 yr)</td>
<td>2 × 200 mg extract. 3 m</td>
<td>Randomized, double-blind, placebo-controlled study</td>
<td>Reduction intense acute respiratory illness and moderately-severe sore throat. Increased antibody responses.</td>
</tr>
<tr>
<td>Plant</td>
<td>Description</td>
<td>Protocol</td>
<td>Participants</td>
<td>Dose</td>
<td>Outcome</td>
</tr>
<tr>
<td>-------</td>
<td>-------------</td>
<td>----------</td>
<td>--------------</td>
<td>------</td>
<td>---------</td>
</tr>
<tr>
<td>Panax ginseng</td>
<td>Chronic obstructive pulmonary disease</td>
<td>Clinical trial protocol and pilot study</td>
<td>14 participants, 2 groups (57-73 yr)</td>
<td>SD: 2 × 200 mg 4 wk</td>
<td>One participant in P. ginseng group reported events of sore throat, cough and fever</td>
</tr>
<tr>
<td>Panax ginseng root extract</td>
<td>Chronic obstructive pulmonary disease</td>
<td>Randomized, multi-center, double-blind, placebo controlled</td>
<td>168 participants, 2 groups</td>
<td>SD: 2 × 100 mg capsules. 24 wk</td>
<td>Reduction in symptoms</td>
</tr>
<tr>
<td>Pelargonium sidoides extract EPs® 7630</td>
<td>Chronic obstructive pulmonary disease</td>
<td>Randomized, double-blind, placebo-controlled, parallel group trial</td>
<td>199 adults, 2 groups (18 yr and older)</td>
<td>SD: 30 drops. 24 wk</td>
<td>Improvement in HRQoL (health-related quality-of-life) and PRO (Patient-reported outcomes)</td>
</tr>
<tr>
<td>Pelargonium sidoides extract EPs® 7630</td>
<td>Acute bronchitis</td>
<td>Randomized, double-blind, placebo controlled, prospective, monocentric pilot study</td>
<td>220 patients (1-18 yr)</td>
<td>SD: 1-6 yr: 3 × 10 drops; 6-12 yr: 3 × 20 drops; 12-18 yr: 3 × 30 drops; 7 d</td>
<td>Reduction in the total score of bronchitis-specific symptoms (especially cough and rales at auscultation)</td>
</tr>
<tr>
<td>Pelargonium sidoides extract EPs® 7630</td>
<td>Upper respiratory tract infections</td>
<td>Increased appetite. Reduction of nasal congestion</td>
<td>28 children with a diagnosed transient hypogammaglobulinemia of infancy (1-5 yr)</td>
<td>SD: 3 × 10 drops; 7 d</td>
<td></td>
</tr>
<tr>
<td>Pelargonium sidoides extract EPs® 7630</td>
<td>Upper respiratory tract- asthma attacks</td>
<td>Reduction the severity of symptoms (especially cough and nasal congestion). Shortening of the duration of upper respiratory viral infections. Reduction asthma attack frequency</td>
<td>61 children (1-14 yr)</td>
<td>SD: 1-5 yr: 3 × 10 drops; 6-12 yr: 3 × 20 drops; 12 yr and above: 3 × 30 drops; 5 d</td>
<td></td>
</tr>
<tr>
<td>Pelargonium sidoides preparation EPs® 7630</td>
<td>Acute non-streptococcal tonsillopharyngitis</td>
<td>Decrease in tonsillitis severity score compared to placebo in the EPs® 7630 group after 4 d of treatment</td>
<td>126 children, 2 groups (6-10 yr)</td>
<td>SD: 3 × 20 drops. 6 d</td>
<td></td>
</tr>
<tr>
<td>Pelargonium sidoides extract EPs® 7630</td>
<td>Common cold</td>
<td>After 10 d, clinical treatment in 90.4% of the active drug group. Reduction the severity of symptoms and short the duration of the disease. Higher full recovery rates or greater recovery for HD treatment on day 5</td>
<td>207 adults (18-55 yr)</td>
<td>SD: 3 × 30 drops; HD: 3 × 60 drops; 10 d</td>
<td></td>
</tr>
<tr>
<td>Sambucus nigra extract</td>
<td>Influenza</td>
<td>Significant improvement in most symptoms within 24 h (fever, headache, muscle aches and nasal congestion). Significant improvement in all investigated symptoms within 48 h (cough and mucus discharge)</td>
<td>64 patients (16-60 yr)</td>
<td>SD: Lozenges: 175 mg extract; 4 lozenges/d; 2 d</td>
<td></td>
</tr>
<tr>
<td>Sambucus nigra extract</td>
<td>Respiratory health</td>
<td>Reduction of cold duration and severity in air travelers. Low symptom score</td>
<td>312 adults, 2 groups</td>
<td>Capsules: 300 mg. Before travel: 2 capsules/d. During travel and after arrival: 3 capsules/d. 14 d</td>
<td></td>
</tr>
</tbody>
</table>

SD: Standard dose; HD: High dose.

the effect of eucalyptol (1.8 cineol), which is a component of eucalyptus essential oil, on Mpro. They showed that eucalyptol/Mpro complexes produce hydrophobic interactions, strong ionic interactions, hydrogen bond interactions, and eucalyptol may be a potential inhibitor of COVID-19 Mpro. Similarly, M pro/3CL pro/eucalyptol complexes have been shown to form hydrophobic interactions[39]. In another study, Sharma and Kaur[40] suggested jensenone, the component of eucalyptus essential oil, as a potential COVID-19 Mpro inhibitor. In a molecular docking study of 12 active ingredients of eucalyptus essential oil, all of these ingredients were found to bind effectively to the COVID-19 S-protein. Especially the toruatone component was effectively bound and the Spike (S) protein/Toruatone complexes formed hydrogen and hydrophobic interactions[41]. Muhammad et al[42], in a study of the molecular
Table 3 Plants that can have an impact on coronavirus disease 2019 symptoms

<table>
<thead>
<tr>
<th>Plant name</th>
<th>Effects</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Allium sativum (Garlic)</td>
<td>Analgesic</td>
<td>Dehghani et al.[128], 2018</td>
</tr>
<tr>
<td></td>
<td>Anti-inflammatory</td>
<td>Arreola et al.[129], 2015</td>
</tr>
<tr>
<td></td>
<td>Anti-platelet</td>
<td>Hiyasat et al.[130], 2009</td>
</tr>
<tr>
<td></td>
<td>Heart protection</td>
<td>Sultana et al.[131], 2016</td>
</tr>
<tr>
<td></td>
<td>Hepatic protection</td>
<td>Aprioku et al.[132], 2017</td>
</tr>
<tr>
<td></td>
<td>Improving GI function</td>
<td>Chen et al.[133], 2018</td>
</tr>
<tr>
<td></td>
<td>Renal protection</td>
<td>Seckiner et al.[134], 2014</td>
</tr>
<tr>
<td>Curcuma longa (Turmeric)</td>
<td>Analgesic</td>
<td>Henrotin et al.[135], 2020</td>
</tr>
<tr>
<td></td>
<td>Antiemetic</td>
<td>Liu et al.[137], 2018</td>
</tr>
<tr>
<td></td>
<td>Anti-fatigue</td>
<td>Huang et al.[138], 2015</td>
</tr>
<tr>
<td></td>
<td>Anti-inflammatory</td>
<td>Shimizu et al.[139], 2019</td>
</tr>
<tr>
<td></td>
<td>Antifibrotic</td>
<td>Gouda et al.[140], 2019</td>
</tr>
<tr>
<td></td>
<td>Antipyretic</td>
<td>Haider et al.[141], 2013</td>
</tr>
<tr>
<td></td>
<td>Bronchodilator</td>
<td>Ram et al.[142], 2003</td>
</tr>
<tr>
<td></td>
<td>GI protection</td>
<td>Haider et al.[141], 2013</td>
</tr>
<tr>
<td></td>
<td>Hepatic protection</td>
<td>Dulbecco and Savarino[143], 2013</td>
</tr>
<tr>
<td>Glycyrrhiza glabra (Licorice)</td>
<td>Antitussives</td>
<td>Nosalova et al.[144], 2013</td>
</tr>
<tr>
<td></td>
<td>Anti-inflammatory</td>
<td>Kuo et al.[145], 2018</td>
</tr>
<tr>
<td></td>
<td>Respiratory system protection</td>
<td>Shii et al.[147], 2011</td>
</tr>
<tr>
<td>Nigella sativa (Black cumin)</td>
<td>Analgesic</td>
<td>Rushmi et al.[148], 2017</td>
</tr>
<tr>
<td></td>
<td>Anticoagulant</td>
<td>Muralidharan-Chari et al.[149], 2016</td>
</tr>
<tr>
<td></td>
<td>Antihistaminic</td>
<td>Ansari et al.[150], 2010</td>
</tr>
<tr>
<td></td>
<td>Anti-inflammatory</td>
<td>Alsamarai et al.[151], 2014</td>
</tr>
<tr>
<td></td>
<td>Anti-inflammatory</td>
<td>Majdalaweih and Fayyad[152], 2015</td>
</tr>
<tr>
<td></td>
<td>Bronchodilation</td>
<td>Mahdavi et al.[153], 2016</td>
</tr>
<tr>
<td></td>
<td>GI protection</td>
<td>Boskabady et al.[154], 2010</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Salem et al.[155], 2017</td>
</tr>
<tr>
<td>Panax ginseng (Ginseng)</td>
<td>Adaptogenic</td>
<td>Ratan et al.[156], 2021</td>
</tr>
<tr>
<td>Pelargonium sidoides (Pelargonium)</td>
<td>Antitussives</td>
<td>Bao et al.[157], 2015</td>
</tr>
<tr>
<td></td>
<td>Secretolytic activity</td>
<td>Bao et al.[157], 2015</td>
</tr>
<tr>
<td>Scutellaria baicalensis (Chinese skullcap)</td>
<td>Antiemetic</td>
<td>Aung et al.[158], 2005</td>
</tr>
<tr>
<td></td>
<td>Anti-inflammatory</td>
<td>Hong et al.[159], 2013</td>
</tr>
<tr>
<td></td>
<td>GI protection</td>
<td>Meherdade et al.[160], 2007</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cui et al.[161], 2021</td>
</tr>
<tr>
<td></td>
<td>Hepatic protection</td>
<td>Thanh et al.[162], 2015</td>
</tr>
<tr>
<td></td>
<td>Neuroprotective</td>
<td>Dai et al.[163], 2013</td>
</tr>
<tr>
<td></td>
<td>Regulation of histamine release-Anti allergic</td>
<td>Bui et al.[164], 2017</td>
</tr>
<tr>
<td>Thymus vulgaris (Thyme)</td>
<td>Analgesic</td>
<td>Laub[165], 2018</td>
</tr>
</tbody>
</table>
insertion of eucalyptus active ingredients into Mpro, showed that the α-gurjune of eucalyptus, aromadene and allo-aromadene components have strong binding energy.

Glycyrrhiza glabra

Sinha et al[43] conducted molecular docking simulation studies of two antiviral drugs (lopinavir and ribavirin) and 20 compounds of *Glycyrrhiza glabra*. Two protein targets from COVID-19 have been identified: Non-structural protein-15 endoribonuclease and spike glycoprotein. Glycyrrhizic acid prevented the virus from entering the host cell, due to its bulky structure. Gliasperin A showed high affinity to Nsp15 endoribonuclease and inhibited its activity. The authors suggested that glycyrrhizic acid disrupts the connection of the virus with the ACE2 receptor at the input level, and Gliasperin A inhibits the replication process of the virus after it enters the host cell. Another study showed that glycyrrhizin can be highly bound to Mpro[44].

Scutellaria baicalensis

Thymus vulgaris

In a randomized clinical study conducted on patients suffering from COVID-19, it was found that *Thymus vulgaris* strengthens the immune system and can be used to reduce COVID symptoms. In the study, 83 COVID-19 patients were randomly divided into the control group and the group receiving thyme (TRG). TRG was given as thyme essential oil three times a day for seven days. A questionnaire asking about symptoms such as fever, cough, fatigue, and loss of appetite was completed before and at the end of treatment to determine the effect of thyme on symptoms. Thyme essential oil significantly reduced the severity of symptoms such as fever, cough, shortness of breath, dizziness, muscle pain, anorexia, weakness and lethargy and fatigue. Additionally, thyme increased lymphocyte count and calcium while decreasing blood urea nitrogen and neutrophil count[47]. Carvacrol, a component of thyme, has been
Table 4 Angiotensin-converting enzyme inhibitor plant

<table>
<thead>
<tr>
<th>Plants</th>
<th>The compound under study</th>
<th>Results</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ammoides verticillata essential oil</td>
<td>Isothymol</td>
<td>SARS-CoV-2/ACE2 inhibition</td>
<td>Abdelli et al[183], 2021</td>
</tr>
<tr>
<td>Allium sativum essential oil</td>
<td>Organosulfur compounds (99.4% of its essential oil)</td>
<td>SARS-CoV-2/ACE2 inhibition. Garlic essential oil can prevent protein maturation of the virus and the spread of infection</td>
<td>Thuy et al[184], 2020</td>
</tr>
<tr>
<td>Aptos graveolens</td>
<td>Apigenin</td>
<td>Kidneys of spontaneous hypertensive rats/Regulation in ACE2 expression</td>
<td>Sui et al[185], 2010</td>
</tr>
<tr>
<td>Camellia sinensis</td>
<td>Black tea; Dark tea; Green tea; Oolong tea; White tea</td>
<td>ACE inhibition: Green < oolong < white < black < dark teas</td>
<td>Dong et al[186], 2011</td>
</tr>
<tr>
<td>Eriste breviscapus</td>
<td>Geranium and lemon essential oils Citronellol and limonene</td>
<td>SARS-CoV-2/ACE2 inhibition</td>
<td>Senthil Kumar et al[188], 2020</td>
</tr>
<tr>
<td>Ginseng</td>
<td>Ginsenoside Rg6; Ginsenoside F1; Monoammonium glycyrrhizinate; Glycyrrhizic acid methyl ester</td>
<td>SARS-CoV-2/ACE2 kinase inhibition</td>
<td>Zi et al[189], 2020</td>
</tr>
<tr>
<td>Glycine max (soybean)</td>
<td>Nicotianamine</td>
<td>ACE2 inhibition</td>
<td>Takahashi et al[190], 2015</td>
</tr>
<tr>
<td>Glycyrrhiza glabra</td>
<td>Glycyrrhizic acid</td>
<td>SARS-CoV-2/Glycyrrhizic acid disrupts the connection of the virus with the ACE2 receptor at the entry level</td>
<td>Sinha et al[43], 2021</td>
</tr>
<tr>
<td>Hibiscus sabdariffa anthocyanins</td>
<td>Delphinidin- and cyanidin-3-O-sambubiosides</td>
<td>ACE inhibition</td>
<td>Ojeda et al[191], 2010</td>
</tr>
<tr>
<td>Linum usitatissimum (Flaxseed)</td>
<td>Secoisolariciresinol diglucoside</td>
<td>ACE inhibition</td>
<td>Prasad et al[192], 2013</td>
</tr>
<tr>
<td>Melaleuca cajuputi essential oil</td>
<td>Components (70.9% of the oil)</td>
<td>SARS-CoV-2/ACE2 and PD66LU7 proteins inhibition</td>
<td>My et al[193], 2020</td>
</tr>
<tr>
<td>Nicotiana benthamiana</td>
<td>Recombinant ACE2-Fc fusion protein produced from N. benthamiana</td>
<td>SARS-CoV-2/Strong binding to the RBD of SARS-CoV-2 and inhibition</td>
<td>Siriwattananon et al[194], 2020</td>
</tr>
<tr>
<td>Withania somnifera</td>
<td>Withanone</td>
<td>SARS-CoV-2/Docking to the connector interface of the ACE2-RBD complex</td>
<td>Balkrishna et al[51], 2020</td>
</tr>
</tbody>
</table>

ACE: Angiotensin-converting enzyme; RBD: Receptor binding domain; SARS-CoV-2: Severe acute respiratory syndrome coronavirus 2; ACE2: Angiotensin-converting enzyme-2.

shown to inhibit Mpro by *in silico* study. It can be a potential inhibitor of controlling viral replication[48].

Withania somnifera

W. somnifera components withanolides have potential antiviral properties on COVID-19[49]. Patel et al[50] demonstrated that *W. somnifera*'s Withanoxide VI components have positive interactions at the binding site of protein targets of SARS-CoV-2. Withanone reduced the electrostatic interaction between ACE2 and receptor binding domain[51]. Withaferin A, which is found in the *W. somnifera* plant, has been shown to interact with Mpro and Glucose regulated protein 78 (GRP78) receptor[52].

CONCLUSION

In this study, the concept of “being effective against COVID-19” for herbal treatments was discussed from the angles of antiviral effect and control of symptoms, specifically related to GI system.
Antiviral effects on COVID-19

Since COVID-19 is a virus that mainly affects the respiratory tract, the antiviral effects of medicinal plants against respiratory viruses have been examined firstly. The structure similarities of SARS-CoV-2 have been found with SARS-CoV and Middle East respiratory syndrome coronavirus. Therefore, it can be suggested that plants and their compounds affecting these viruses may also be potential treatment options for COVID-19. Here firstly, clinical studies supporting antiviral effects of 22 plant on respiratory viruses has been reviewed which determined that glycyrrhizic acid derivatives obtained from Glycyrrhiza sp, Nigella sativa, Scutellaria baicalensis and Torreya nucifera have anti-COVID-19 effects. Plants such as Allium sativum, Glycyrrhiza glabra, Melaleuca sp, Withania somnifera have been shown to bind to ACE2 receptors that are imperative for COVID-19 replication. Focusing on these plants might be a logical way to go for herbal treatment against COVID-19.

This review also showed the antiviral effects of essential oils obtained from plants have the potential to affect COVID-19. The treatment involves using inhaled steam supplemented by essential oils possessing natural antimicrobial properties, oropharyngeal sanitization, as well as they are remedies for symptomatic relief. Inhalation of antimicrobial essential oils may help attenuate the virus in the nasal cavity, nasopharynx, oropharynx, and laryngopharynx. Antiseptic mouthwashes and gargles can also help to sanitize the oral cavity and oropharynx, whereas antiseptic lozenges can help to sanitize the oro- and laryngopharynx as well. The steam will carry the tiny particles of the antimicrobial constituents from these essential oils into the respiratory tract and is likely to improve the efficacy of the steam treatment. The steam supplemented by antimicrobial volatile oils may help to provide a local antimicrobial effect within the airways.

There are computer model studies showing that some botanicals and active ingredients are effective in COVID-19. Allium sativum, Curcuma longa, Eucalyptus globulus, Glycyrrhiza glabra, Melaleuca sp, Thymus vulgaris, Withania somnifera is among these plants. These studies with commonly found plants will guide future studies to develop effective supplements or drugs for COVID-19.

Symptomatic treatment of COVID-19

Since the symptoms of COVID-19 seriously affect the quality of life, herbal options to eliminate them were also evaluated in this review. Previously, herbs such as garlic, echinacea and ginseng were found to reduce the symptoms of cold in healthy individuals. Plants with their pharmacological effects are natural options for eliminating the symptoms of COVID-19. Based on the effects described in Table 3, Allium sativum, Curcuma longa, Scutellaria baicalensis and Zingiber officinale are easily found as prominent plants to eliminate the GI symptoms of COVID-19. For example, ginger can eliminate the negative effects of COVID-19 on the GI system with its antiemetic and hepatic protective properties. A clinical study was conducted with thyme essential oil on COVID-19. Thyme essential oil was found to significantly reduce COVID-19 symptoms. This revealed an option that thyme and essential oil have potential effects for consideration in treatment of COVID-19. Studies on more essential oils of eucalyptus reveal more effects of eucalyptus on respiratory system symptoms. Eucalyptus globulus, Hedera helix, Pelargonium sidoides, Sambucus nigra, Thymus vulgaris can be recommended for relief of respiratory symptoms. ACE2 receptors are found in tissues other than the lung, such as the intestine. Based on this fact, we concluded that the use of herbs binding to ACE2 receptors can eliminate the side effects that may occur in variety of organs including GI tract. As shown in Table 4 these plants are Ammoids verticillate, Allium sativum, Apium graveolens, Camellia sinensis, Citrus aurantium, Erigeron breviscapus, Glycine max, Glycyrrhiza glabra, Hibiscus sabdariffa, Linum usitatissimum, Melaleuca sp., Nicotiana benthamiana, Withania somnifera.

Based on these studies, herbal treatments offer several potential treatments of COVID-19. Plants may be an option for the treatment of COVID-19 and its symptoms, as well as protection from COVID-19. Even though these data point to good outcomes there is always the possibility of interaction between drugs used and these herbs. For instance, herbs such as ginger with antithrombotic effects can be beneficial on COVID-19 symptoms, but one might be cautious about escalated risk of bleeding when it is used together with antithrombotic or anticoagulant drugs. Therefore, it is extremely important to avoid the indiscriminate use of plants.

For a plant to be used as a medicine, its effect must be supported by clinical studies. COVID-19 is just emerging, and more research are needed for its treatment. Yet, herbal therapies are potential options for both antiviral effects and the control of COVID-19 symptoms. Since plants with multiple pharmacological effects can affect many systems
(respiratory, GI, and nervous), herbs might be more effective against COVID-19 than synthetic drugs. But first, all aspects of SARS-CoV-2 need to be examined. Then, the effects of plants on this virus should be determined by further studies.

The strengths and weaknesses of this review

Unlike other studies, in this report, the effect of plants on COVID-19 was evaluated in several ways. Preclinical studies, clinical studies and silico studies are included in this review. Moreover, the efficacy on COVID-19 symptoms has been addressed by including different systems. On the other hand, the focus is on the respiratory and GI systems. The effects, not only of botanicals but also active metabolites of have been studied, including different systems. The strengths and weaknesses of this review

The biggest limitation of this study is the lack of sufficient studies on the efficacy of plants on this virus should be determined by further studies.

REFERENCES

Caliskan UK et al. Botanicals as potential COVID-19 symptoms terminator

Sharma AD. Eucalyptol (1, 8 cineole) from eucalyptus essential oil a potential inhibitor of COVID 19 coronavirus infection by molecular docking studies. 2020 Preprint. Available from: 2020030455

Muhammad IA, Muangchoo K, Muhammad A, Ajingi YUS, Muhammad IY, Umar ID, Muhammad AB. A computational study to identify potential inhibitors of SARS-CoV-2 main protease (Mpro) from Eucalyptus active compounds. Computation 2020; 8: 79 [DOI: 10.3390/computation8030079]

H1N1) neuraminidase inhibitors from
Dao TT
activity of glycyrrhizic acid derivatives against SARS-coronavirus.
Ethnopharmacol
2013;
10.1055/s-0033-1352301
Echinacea
Vimalanathan S
cells.
replication of respiratory syncytial virus and the epithelial responses to it in human nasal epithelial
Murata M, Tanaka S, Fuchimoto J, Fujii N, Tsutsumi H, Himi T, Sawada N. Curcumin prevents
Obata K
1346-1351 [DOI:
Curcumin inhibits influenza virus infection and haemagglutination activity.
Chen DY
on influenza A virus infection and influenzal pneumonia
Dai J
[PMID: 24877694 DOI: 10.1016/j.ejphar.2014.05.028]
Weber JM
Tigl
Dao TT, Nguyen PH, Lee HS, Kim E, Park J, Lim SI, Oh WK. Chalcones as novel influenza A (H1N1) neuraminidase inhibitors from Glycyrrhiza inflata. Bioorg Med Chem Lett 2011; 21: 294-
Caliskan UK et al. Botanicals as potential COVID-19 symptoms terminator

298 [PMID: 21123068 DOI: 10.1016/j.bmcvl.2010.11.016]

DOI: 10.1271/bbb.120112

107 Nausti MP, Rowe CE, Muller CE, Creasy RA, Stanilka JM, Percival SS. Supplemental garlic with aged garlic extract improves both NK and γδ-T cell function and reduces the severity of cold and flu symptoms: A randomized, double-blind, placebo-controlled nutrition intervention. *Clin Nutr* 2012; 31: 337-344 [PMID: 22280901 DOI: 10.1016/j.clnu.2011.11.019]

Caliskan UK et al. Botanicals as potential COVID-19 symptoms terminator

Shi Q, Hou Y, Yang Y, Bai G. Protective effects of glycyrrhizin against β-adrenergic receptor agonist-induced receptor internalization and cell apoptosis. Biol Pharm Bull 2011; 34: 609-617 [PMID: 21532146 DOI: 10.1248/bpb.34.609]

Bui TT, Piao CH, Song CH, Lee CH, Shin HS, Chai OH. Baicalein, wogonin, and Scutellaria baicalensis ethanol extract alleviate ovalbumin-induced allergic airway inflammation and mast cell-mediated anaphylactic shock by regulation of Th1/Th2 imbalance and histamine release. Anat Cell
Caliskan UK et al. Botanicals as potential COVID-19 symptoms terminator

Ku SK, Bae JS. Antiplatelet, anticoagulant, and profibrinolytic activities of withaferin A. Vascul Pharmacol 2014; 60: 120-126 [PMID: 24534482 DOI: 10.1016/j.vph.2014.01.009]

Thuy BTP, My TTA, Hai NTT, Hieu LT, Hoa TT, Thi Phuong Loan H, Triet NT, Anh TTV, Quy PT, Tat PV, Hue NV, Quang DT, Trung NT, Tung VT, HuyhnLK, Nhung NTA. Investigation into SARS-CoV-2 Resistance of Compounds in Garlic Essential Oil. ACS Omega 2020; 5: 8312-8320 [PMID: 32363255 DOI: 10.1021/acs.omega.0c00772]

Dong J, Xu X, Liang Y, Head R, Bennett L. Inhibition of angiotensin converting enzyme (ACE)

