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Abstract
Wharton’s jelly mesenchymal stem cells (WJ-MSCs) are gaining significant 
attention in regenerative medicine for their potential to treat degenerative 
diseases and mitigate radiation injuries. WJ-MSCs are more naïve and have a 
better safety profile, making them suitable for both autologous and allogeneic 
transplantations. This review highlights the regenerative potential of WJ-MSCs 
and their clinical applications in mitigating various types of radiation injuries. In 
this review, we will also describe why WJ-MSCs will become one of the most 
probable stem cells for future regenerative medicine along with a balanced view 
on their strengths and weaknesses. Finally, the most updated literature related to 
both preclinical and clinical usage of WJ-MSCs for their potential application in 
the regeneration of tissues and organs will also be compiled.

Key Words: Stem cells; Wharton’s jelly mesenchymal stem cells; Radiotherapy; 
Xerostomia; Lung fibrosis
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Core Tip: Stem cells, particularly Wharton’s jelly mesenchymal stem cells (WJ-MSCs), 
are pivotal in cell-based therapy due to their robust tissue repair abilities. While 
radiotherapy is a common cancer treatment, it often causes collateral damage to healthy 
tissues, reducing its efficacy. WJ-MSCs, resembling embryonic stem cells, exhibit 
superior differentiation and safety, making them ideal for both autologous and 
allogeneic transplants. This review emphasizes WJ-MSCs’ regenerative potential and 
clinical utility in alleviating radiation-induced injuries resulting from radiotherapy 
across various cancer types.
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INTRODUCTION
Cancer cells are very aggressive in nature and hold their place in the top five most common causes of death worldwide
[1]. Some of the common strategies being used in cancer treatment include radiotherapy (RT), chemotherapy, surgery, 
and their combinations. However, nowadays, RT is one of the main treatment modalities for treating cancer patients, 
either alone or in combination with chemotherapy and surgery[2]. RT is used as a definitive treatment or employed either 
to reduce tumor size before surgery or after surgery to eradicate small masses of tumor cells that remain after surgery, 
depending on the type of cancer[3,4]. There are diverse types of radiation therapies, such as external beam RT, brachy-
therapy, systemic radioisotope therapy, stereotactic body RT, stereotactic radiosurgery, proton, heavy particles RT, as 
well as fractionation regimens (e.g., hypofractionation, hyperfractionation, and accelerated fractionation)[5]. RT is one of 
the preferred treatment options for patients with solid tumors. While RT invariably exposes healthy cells to radiation 
along with the cancer cells and leads to different types of radiation injuries, several advancements, such as intensity-
modulated RT (IMRT) or image-guided RT, have significantly reduced the normal tissue damage associated with conven-
tional RT. However, healthy tissues lying in the path of radiation still get exposed. Therefore, there is still a need for a 
treatment modality that can regenerate the tissue damage caused by radiation exposure during treatment.

Currently, researchers have identified several strategies to address normal tissue damage caused by RT, including the 
development of radiation protectors and mitigators. Radioprotective agents, such as amifostine, protect normal tissues by 
scavenging free radicals and enhancing DNA repair, although further exploration is needed to fully understand their 
mechanisms and minimize side effects[6]. Fractionation, which involves dividing the total radiation dose into smaller 
sessions, allows normal cells time to repair, yet optimal schedules and individualized responses are areas for deeper 
study[7]. Advanced radiation techniques like IMRT and image-guided RT provide precise targeting to spare healthy 
tissues, though their long-term impacts and best practices require further investigation. Proton therapy, which precisely 
deposits radiation at the tumor site, minimizes collateral damage, but its cost-effectiveness and comparative efficacy need 
more comprehensive evaluation[8]. Present interventions for radiation-induced normal tissue damage include physical 
modalities, such as modified collimators and fractionation schedules, and pharmacological agents like essential fatty 
acids, vasoactive drugs, and antioxidants[9]. However, these procedures need more standardization. Notably, stem cell 
therapy, especially with mesenchymal stem cells (MSCs) has emerged as a highly promising approach for promoting 
tissue repair and regeneration post-radiation exposure[10]. Radiation-driven injuries cause significant damage at the 
cellular and molecular levels, leading to severe inflammation, tissue destruction, and impaired healing processes[11]. The 
body’s response to such injuries involves the release of cytokines and chemokines, which play crucial roles in signaling 
and attracting stem cells to the damaged sites[12]. These molecular mechanisms create an environment conducive to stem 
cell therapies, as the recruited stem cells can differentiate into various cell types, promote tissue regeneration, and 
favorably modulate inflammatory responses. This makes stem cell therapy particularly suitable for treating radiation-
induced damage, offering potential for effective repair and recovery of affected tissues[10]. The potential of MSCs to 
enhance healing while minimizing adverse effects marks a significant advancement in RT support, though further 
research is needed to optimize cell types, dosages, and delivery methods[10].

In the last two decades, the use of stem cells in the field of regenerative medicine has significantly increased because of 
their tremendous regenerative potential. Stem cells became integral to modern regenerative medicine in the 1950s, 
notably with the first successful bone marrow transplantation in 1956. This breakthrough hinted at future treatment 
possibilities, encouraging the refinement of clinical techniques[13]. While today stem cells are at the forefront of 
regenerative medicine with their unlimited division potential and ability to trans-differentiate, they hold promise as a 
leading source for repairing tissues and organs[14]. Several clinical trials are currently underway in the field of stem cell 
therapeutics[15]. Until now, stem cells have been isolated from various sources ranging from blastocysts to adult tissues. 
We can now induce the dedifferentiation of adult cells into pluripotent stem cells by expressing the pluripotency 
transcription factors Sox2, Oct3/4, cMyc, and Klf4[16]. Stem cells are categorized into embryonic stem cells (ESCs) and 
adult stem cells (ASCs) including fetal stem cells according to their respective origins[17]. Induced pluripotent stem cells 
(iPSCs) represent a class of pluripotent stem cells that can be generated from adult somatic cells through a process of 
“reprogramming”, accomplished by the transduction of pluripotency genes[16]. The isolation of ESCs poses many ethical 
issues compared to ASCs. At the same time, ESCs/iPSCs have limitations due to associated risks of immune rejection, 
teratoma formation, and tumorigenesis[18]. Different sources of stem cells have inherent advantages and disadvantages 
in terms of their derivation, potency, and biological efficacy[16-21] (Table 1). ASCs also referred to as somatic or tissue 
stem cells, are uncommon cell populations residing in the body throughout a significant portion of postnatal life. These 
cells play a crucial role in generating a limited range of mature cell types specific to the tissue they inhabit. These are 
again majorly classified into hematopoietic stem cells (HSCs) and MSCs on the basis of origin (Figure 1). HSCs isolated 
from the bone marrow have limited plasticity and can only differentiate into blood and blood-related lineages. On the 
other hand, MSCs are adaptable stromal cells with multipotent characteristics, possessing the ability to differentiate into 
various cell types such as adipocytes, myocytes, osteocytes, and chondrocytes[22]. The isolation of bone marrow MSCs 
(BM-MSCs) in the 1960s-1970s opened up new possibilities for their application[18] and has become one of the most 
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Table 1 Different types of stem cells and their characteristics

Characteristics Embryonic stem cells Induced pluripotent stem cells Adult stem cells Ref.
Origin Inner cell mass of blastocyst Somatic cells Postnatal adult tissue [16]

Potency Pluripotent Pluripotent Multipotent [17]

Self-renewal Yes Yes Limited [17]

Teratoma 
formation

Yes Yes No [18]

Tumorigenesis Yes Yes No [18]

Immune response Immuno-privileged MHC-I and II 
present in low level

Not immuno-privileged MHC-I and II 
present in normal level

MSCs are immuno-privileged and 
immunosuppressive in nature

[18,19,20,
21,22]

Ethical issue Serious ethical issue No ethical issue No ethical issue [21]

MHC: Major histocompatibility class; MSC: Mesenchymal stem cell.

Figure 1 Illustration of diverse stem cell types with varying differentiation capacities. Adult stem cells, typically multipotent, differ based on their 
organ source, e.g., Hematopoietic stem cells in bone marrow and mesenchymal stem cells in various tissues, including Wharton’s jelly from the umbilical cord. In 
contrast, unipotent cells specialize in specific tissues like muscles, nerves, and more (created with BioRender.com).

studied MSCs since[19,23]. Subsequently, alternative sources of MSCs were explored, such as adipose tissue, dental 
pulps, and extra-embryonic tissues like the placenta, umbilical cord, and amnion. Table 2 shows a comparison of the three 
most commonly used MSCs. MSCs isolated from extra-embryonic tissues are more naïve and share features with ESCs 
compared to other MSCs. They have immuno-privileged characteristics, possess broader multipotent plasticity, and 
proliferate faster compared to adult MSCs[20,24]. The isolation of stem cells from the umbilical cord opens up several 
opportunities in the field of regenerative medicine. In this review, we mainly focus on MSCs isolated from Wharton’s 
jelly (WJ) of umbilical cord, which have tremendous therapeutic potential due to their inherent repair and regenerative 
abilities. Our emphasis will be on the possible applications of umbilical cord MSCs (UC-MSCs) in mitigating radiation 
injuries. We will first discuss their origin and unique features and then explore their possible applications in the 
treatment of different types of radiation injuries and their underlying mechanisms. Finally, we will discuss the challenges 
and future perspectives of MSCs found in the umbilical cord.

WJ-MSC IN REGENERATIVE MEDICINE
Origin of WJ-MSCs
For decades, WJ-MSCs have seemed to be of particular interest because they can be harvested after delivery without any 
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Table 2 Characteristic feature of major mesenchymal stem cells

Characteristics BM-MSCs AD-MSCs UC-MSCs Ref.

Harvesting procedure Invasive Invasive Non-invasive [18]

Potency to differentiate Low Low High [18,20]

Proliferative potential Low Low High [18,20,21]

Immune modulatory properties Good Good Good [18]

Allogenic cell rejection No No No [18,22]

Ethical issue No No No [23]

Risk of tumorigenicity No No No [18]

BM-MSC: Bone marrow mesenchymal stem cell; AD-MSC: Adipose-derived mesenchymal stem cell; UC-MSC: Umbilical cord mesenchymal stem cell.

ethical issues. They have the capacity to expand at a faster rate than adult MSCs, in which expansion declines with aging, 
and they start showing immunological issues. Anatomically, the umbilical cord contains a specific mucous proteoglycan-
rich matrix known as WJ. Within this matrix, there are two umbilical arteries and one umbilical vein, and the whole 
structure is covered by amniotic epithelium (Figure 2). The umbilical cord connects the developing baby with the placenta 
in the womb and supplies oxygen and nutrient-rich blood to sustain its growth. WJ, confined in the umbilical cord, 
prevents umbilical vessels from twisting, compression, or torsion during fetal movement, safeguarding proper blood 
supply to the fetus[25]. This unique anatomic architecture of the umbilical cord allows communication between the 
mother and the fetus through the fetoplacental membrane, hormone and cytokine interaction[26]. During fetal 
development, hematopoiesis takes place in the yolk sac and later in the aorta-gonad-mesonephros region, and these 
processes are linked to the presence of stem cells in the cord. There are two possible theories on the presence of stem cells 
in the umbilical cord: (1) Migration of fetal HSCs and MSCs toward the placenta, and during a second round of migration 
from the placenta to the liver and bone marrow, some cells get trapped and reside in the WJ of the umbilical cord[27]; or 
(2) These MSCs originate from mesenchyme already present in the umbilical cord matrix. Thus, these MSCs trapped in 
the WJ remain there for the duration of the gestational period[27]. Different researchers have named these MSCs with 
different names such as UC-MSCs, umbilical cord stem cells, WJ stem cells, or WJ-MSCs. Among all these names, WJ-
MSCs is the most common. WJ-MSCs can be isolated from three regions: The perivascular zone, the intervascular zone, 
and the sub-amnion[28]. Studies show significant differences in the number and nature of stem cells among these three 
regions[29,30].

Unique features of the WJ-MSCs
WJ-MSCs are a kind of multipotent stem cells that have several common features of ESCs. Their potency lies between 
pluripotent and multipotent stem cells (Figure 3). They significantly express ESC stemness markers Oct-4, Sox-2, and 
Nanog[31]. WJ-MSCs comply with all the measures of the International Society for Cellular Therapy for MSCs[32,33]. 
These criteria are as follows: Adherence to treated plastic for cell culture (polystyrene), morphologically spindle-shaped
[34], high expression of MSCs markers such as CD29, CD44, CD73, CD90, CD105, and no expression of hematopoietic and 
endothelial markers such as HLA-DR, CD11b, CD14, CD31, CD34, and CD45, and in vitro tri-lineage differentiation 
potential (such as osteocytes, chondrocytes, and adipocytes)[35,36].

The amount of MSCs that can be obtained from bone marrow is very limited. Only 0.001% to 0.01% of mononuclear 
cells have been reported[23], while 1 g of adipose tissue yields approximately 5 × 103 stem cells, which is 500-fold greater 
than in the bone marrow[37]. The isolation efficiency from WJ is high and ranges from (1-5) × 104 cells/cm of umbilical 
cord[38]. WJ-MSCs have several advantages, such as cost-effectiveness, unlimited availability of tissue sources, easy 
collection, convenient transportation, no donor site morbidity, and highly proliferative potential without losing potency 
and functions, which make them superior to other sources of MSCs[39].

Immuno-privileged eminence of WJ-MSCs
WJ-MSCs are multipotent, immunosuppressive, non-tumorigenic, and highly suitable for allogeneic and xenogeneic 
transplantation compared to other sources of MSCs[18,28,31,40]. WJ-MSCs are also capable of immune suppression and 
immune avoidance, similar to other types of MSCs. They are non-immunogenic because they express low levels of major 
histocompatibility class (MHC) I (HLA-ABC) and do not express MHC-II (HLA-DR) and co-stimulatory antigens (CD80, 
CD86) associated with the stimulation of both T and B cell reactions[40-43]. The low levels of expression of MHC class I 
protect WJ-MSCs from natural killer cell-mediated lysis[41]. Although BM-MSCs and WJ-MSCs are both MSCs, HLA-DR 
is considerably induced in BM-MSCs with interferon (IFN)-γ treatment, whereas this induction is very negligible in WJ-
MSCs[42,44-46]. In addition, WJ-MSCs produce large amounts of tolerogenic factors such as interleukin (IL)-10, higher 
levels of transforming growth factor (TGF)-β, and express HLA-G, which is not true for BM-MSCs[40,42-44]. They also 
express high levels of leukocyte antigen G6 (HLA-G6), which is produced by trophoblasts and protects the embryo from 
immune-based destruction[43]. WJ-MSCs release secretory soluble mediators such as IL-6, IL-8, TGF-β, indoleamine-2,3-
dioxygenase (IDO), vascular endothelial growth factor (VEGF), cyclooxygenase-2, prostaglandin E2 (PGE2), hepatocyte 
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Figure 2 Wharton’s jelly mesenchymal stem cells. Wharton’s jelly contains a large number of multipotent stem cells. The cord’s cross-sectional view reveals 
five distinct regions rich in mesenchymal stromal cells: (1) Umbilical cord blood; (2) Wharton’s jelly mesenchymal stem cells (MSCs) from umbilical vein 
subendothelium; (3) Perivascular zone; (4) Intravascular space; and (5) The subamnion region thrives. Zones 3 to 5 belong to Wharton’s jelly. These potent cells, 
once extracted, can be tailored for various uses, cryopreserved for future needs, or utilized in autogenic, allogenic, or xenogeneic transplants (created with 
BioRender.com).

Figure 3 Properties of Wharton’s jelly mesenchymal stem cells. Wharton’s jelly mesenchymal stem cells possess trilineage differentiation potential, 
making them multipotent. They are immune-suppressive, immunoprivileged, and non-tumorigenic, ideal for allogeneic and xenogeneic transplantation due to their 
favorable properties (created with BioRender.com). IL: Interleukin; MHC: Major histocompatibility class; TGF: Transforming growth factor.

growth factor (HGF), galectin-1, and HLA-G5, which are effective factors for immunosuppression[47-49]. The secretion of 
inhibitory cytokines such as IL-10, IL-6, IL-8, TGF-β2, and HGF inhibits T helper type 17 (Th17) cells and stimulates 
regulatory T (Tregs) cells. It inhibits the proliferation of activated T cells by secreting IDO and PGE2 and upregulates the 
expression of programmed death ligand 1[50-52]. WJ-MSCs can suppress allogenic-stimulated immune cells to a greater 
extent than either BM-MSCs or adipose-derived MSCs (AD-MSCs)[25]. WJ-MSCs infusion more effectively decreased the 
incidence and severity of graft-vs-host disease (GvHD) compared to human decidua mesenchymal stromal cells, hBM-
MSCs, and human adipose-derived stem cells, which was mediated by the enrichment of myeloid-derived suppressor 
cells in GvHD target tissues[53]. hUC-MSC- extracellular vesicles are reported to prevent life-threatening acute GvHD by 
modulating immune responses[54]. In addition to immunomodulation, they have applications in regenerative medicine 
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and tissue engineering.

Regenerative potential of WJ-MSCs
Because of their primitive nature, immuno-privileged status, and inexhaustible source of stem cells, WJ-MSCs have 
greater potential in clinics for regenerative medicine. WJ-MSCs produce abundant amounts of tissue growth-promoting 
factors such as VEGF, granulocyte-colony stimulating factor (G-CSF), platelet-derived growth factor, TGF-β, IL-6, IL-8, 
and insulin-like growth factor-1 (IGF1)[35,39,45]. These unique features of WJ-MSCs make them an excellent alternative 
source of MSCs for allogeneic transplantation to repair and regenerate different organs and tissues, including skin, heart, 
fat, cartilage, bone, pancreas, neural and vascular/endothelial constituents[31,46,55-57], as well as xenogeneic transplan-
tations to improve organ function in vivo[56,58] in regenerative medicine (Figure 4). Functional regeneration of lung[59], 
kidney[60], and liver[61] tissues using human WJ-MSCs has been shown to be associated with reduced fibrosis and 
improved growth of functional parenchyma and normal stroma. WJ-MSCs may also promote skin regeneration by diffe-
rentiating into different types of epithelial cells found in the sweat glands[62]. Nilforoushzadeh et al[63] have shown that 
subcutaneous infusion of WJ-MSCs in diabetic wounds has improved the density of new epidermis, dermis, and skin 
elasticity in the healed region of the wound, effectively accelerating healing. The presence of human fibroblast growth 
factor, hHGF, hG-CSF, hIL-1Rα, hVEGF, and hIL-6 in the secretome may elucidate the regenerative potential of the xeno-
free cell-based and cell-free approaches, which have translational value for advanced wound care. The results reveal the 
therapeutic potential of both the cell-based and cell-free approaches for wound healing[64].

In diseases like Parkinson’s disease, motor activities, the number of dopaminergic neurons, and levels of dopamine and 
tyrosine hydroxylase activities are reduced. WJ-MSCs have shown beneficial effects in improving the dopaminergic cells 
in Parkinson’s disease. Jalali et al[65] have shown that infusion of WJ-MSCs along with L-dopa/carbidopa improved their 
levels. Chronic treatment with WJ-MSCs, alone and in combination with L-Dopa, improved nociception and cognitive 
deficit in Parkinson’s disease rats, which may be the result of increasing IGF-1 and protecting the viability of 
dopaminergic neurons[66,67]. WJ-MSCs were readily differentiated into WJ Schwann cell-like cells, which effectively 
promoted the regeneration of peripheral nerves. Transplantation of WJ Schwann cell-like cells with acellular nerve grafts 
might be useful for assisting peripheral nerve regeneration[68].

Preclinical studies were conducted in a trinitrobenzene sulfonic acid-induced colitis animal model for hUC-MSCs, and 
it was observed that systemic infusion of hUC-MSCs could home to the inflamed colon and effectively ameliorate colitis
[69]. In addition to the known suppressive effects on Th1-type immune responses, hUC-MSC-mediated modulation of IL-
23/IL-17 regulated inflammatory reactions also plays an important role in the amelioration of colitis[69]. In another 
study, Chao et al[70] have shown that hUC-MSCs protected against experimental colitis by boosting the numbers of CD5 
+ B cells and IL-10-producing CD5 + Bregs and correcting Treg/Th17/Th1 imbalances. In a randomized controlled 
clinical trial, after UC-MSC infusion, steroid dosage significantly decreased, and the Crohn’s disease (CD) patients’ 
conditions also improved significantly. This indicates that UC-MSCs can attenuate immune malfunction in patients with 
CD. UC-MSCs therapy can significantly and safely improve the disease condition in patients with CD receiving a stable 
steroid dose[71]. A clinical trial for the use of WJ-MSCs in inflammatory bowel disease was started but it resulted in not 
being available (https://clinicaltrials.gov/ct2/show/NCT03299413).

WJ-MSC-derived extracellular vesicles have the potential to reduce cytokine storm reactions in patients with both 
chronic inflammatory diseases and viral infections[72]. Cytokine storm is recognized as one of the factors contributing to 
organ failure and mortality in patients with coronavirus disease 2019 (COVID-19). Therefore, a study was conducted on 
five patients with severe COVID-19 who were treated with WJ-MSCs (150 × 106 cells per injection). It was found that the 
levels of IL-10 and stromal cell-derived factor-1 increased after cell therapy, while the levels of VEGF, TGF-β, IFN-γ, IL-6, 
and tumor necrosis factor (TNF)-α decreased[73].

WJ-MSCs exhibit significant regenerative potential, making them a promising option for various therapeutic applica-
tions. However, it is essential to consider their weaknesses to provide a balanced view. One major issue is the hetero-
geneity of WJ-MSCs, with considerable variability between donors and even between different batches from the same 
donor[74]. This variability complicates the standardization of cell-based therapies, making it difficult to optimize cell 
staging, dosages, and delivery methods, which can lead to inconsistencies in effectiveness and efficiency[75]. 
Additionally, long-term safety concerns such as potential tumorigenicity and unwanted immune responses require 
thorough evaluation[76]. The lack of standardized protocols for the isolation, expansion, and application of WJ-MSCs 
further complicates regulatory approval and clinical implementation. Addressing these challenges through continued 
research and technological advancements is crucial for unlocking the full therapeutic potential of WJ-MSCs.

Safety and doses of WJ-MSCs
Despite their potential therapeutic benefits, MSCs are hindered by concerns over their potential to promote cancer. 
Studies have shown that MSCs can support the stem cell phenotype of acute myeloid leukemia and protect acute promye-
locytic leukemia cells from apoptosis[76]. Additionally, MSCs have been implicated in promoting cancer progression by 
inducing epithelial to mesenchymal transition, enhancing cancer cell migration, and increasing tumor growth and 
metastasis[76]. The specific mechanisms behind these cancer-promoting characteristics of MSCs remain unclear, 
highlighting significant obstacles to their adoption in cancer therapies. As for WJ-MSCs, they are an ideal candidate for 
regenerative medicine, not only because they have huge regenerative potential but also because they have been reported 
to be non-tumorigenic and even anti-tumorigenic, suggesting their safety for cancer therapy as well[77,78]. They have low 
immunogenicity and are not rejected by the host immune system[79,80]. The dosage or count of WJ-MSCs for infusion 
varies from 0.2 × 106/kg to 8.7 × 106/kg in various disease conditions. The cell counts to be administered are mostly 
calculated relative to body weight, although some clinical studies have also applied arbitrary counts[80]. Regarding WJ-
MSC transplantation for diabetes mellitus, a dose of 1 × 106/kg has been reported several times.

https://clinicaltrials.gov/ct2/show/NCT03299413
https://clinicaltrials.gov/ct2/show/NCT03299413
https://clinicaltrials.gov/ct2/show/NCT03299413
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Figure 4 Illustration of multifaceted role of Wharton’s jelly mesenchymal stem cells in mitigating radiation-induced injuries through direct 
and indirect immunoregulation. These cells expertly modulate key immune players: B-cells, macrophages, dendritic cells, and natural killer cells, maintaining 
controlled inflammation. Wharton’s jelly mesenchymal stem cells (WJ-MSCs) engage in immune regulation via T-cell interactions, displaying HLA class I molecules 
while lacking costimulatory molecules, thus minimizing rejection risks. In inflamed environments, CD40 and HLA class II molecules may be expressed. WJ-MSCs’ 
secretome is a potent source of regenerative factors. It contains prostaglandin E2 (PGE2), hepatocyte growth factor (HGF), endothelial growth factor (EGF), vascular 
endothelial growth factor (VEGF), interleukin (IL)-6, IL-10, transforming growth factor (TGF)-β1, TGF-γ, GCSF, soluble HLA-G5, and soluble galectins (1, 3, and 9). 
Additionally, WJ-MSCs express indoleamine-2,3-dioxygenase (IDO), driving tryptophan depletion in the medium and generating tryptophan metabolites (kynurenine, 
3-hydroxykynurenine, and kynurenic acid). This intricate web of immunomodulation and soluble factors highlights WJ-MSCs’ therapeutic potential in radiation injury 
recovery (created with BioRender.com). IFN: Interferon; ARS: Acute radiation syndromes; RIBI: Radiation-induced brain injury; RICI: Radiation-induced cutaneous 
injury; RIII: Radiation-induced intestinal injury; RILI: Radiation-induced lung injury; RISI: Radiation-induced salivary gland injury.

RADIATION INJURIES AND REGENERATIVE POTENTIAL OF WJ-MSCs
The molecular mechanisms underlying radiation injuries and their repair are complex, involving DNA damage, oxidative 
stress, and inflammatory responses (Figure 5). Better understanding of these mechanisms is crucial for leveraging the 
therapeutic potential of WJ-MSCs. These cells help mitigate radiation injury through paracrine signaling, immunomodu-
lation, differentiation, and direct cell-to-cell interactions[81]. Ionizing radiation causes DNA damage, including single-
strand and double-strand breaks, potentially leading to mutations and cell death[11]. WJ-MSCs exhibit strong DNA 
repair capabilities and secrete growth factors like HGF and IGF-1[82]. However, their ability to enhance DNA repair in 
neighboring cells requires further investigation. Radiation also generates reactive oxygen species (ROS), causing oxidative 
damage and impairing mitochondrial function. WJ-MSCs release antioxidant enzymes such as superoxide dismutase and 
catalase, which neutralize ROS[83]. Studies have shown that WJ-MSCs’ protective effects against oxidative stress involve 
paracrine signaling and extracellular vesicle release[83]. They express crucial ROS-managing enzymes[84] and can 
transfer healthy mitochondria to damaged cells via tunneling nanotubes, restoring mitochondrial function[85]. 
Additionally, radiation induces pro-inflammatory cytokines, leading to sustained inflammation and tissue damage[86]. 
WJ-MSCs migrate to injury sites using chemokine receptors and adhesion molecules, secreting radioprotective and tissue-
regenerative factors to modulate the immune response[12]. They regulate immunity through cell-cell contact with T cells 
and produce soluble factors (PGE2, HGF, IL-6, IL-10, TGFβ1) that reduce T-cell proliferation, induce T-cell apoptosis, and 
promote regulatory T cells, thereby mitigating radiation-induced inflammation and promoting tissue regeneration[83]. 
During RT for cancer, damage to normal tissues near the tumor can occur, leading to the development of xerostomia in 
head and neck cancer, lung fibrosis in lung cancer, or enteritis/colitis in colon and pelvic cancer. These limitations 
compromise the therapeutic outcome of RT. Emerging studies using stem cells suggest that the infusion of WJ-MSCs 
could be beneficial in managing several of these RT complications (Figure 6). WJ-MSCs have shown significant potential 
in mitigating acute and late radiation side effects due to their anti-inflammatory, antioxidant, and regenerative properties. 
These cells can be administered early after RT or to treat established late effects by inhibiting fibrosis, enhancing vascular 
regeneration, and reducing chronic inflammation[87]. The potential of WJ-MSCs in managing radiation enteropathy, a 
common side effect of abdominal and pelvic RT, is also being explored[88].
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Figure 5 Molecular mechanism of tissue repair and regeneration by Wharton’s jelly mesenchymal stem cells. Radiation-induced reactive 
oxygen species (ROS) causes cellular damage. In response to Wharton’s jelly, mesenchymal stem cells (WJ-MSCs) release antioxidant enzymes [superoxide 
dismutase (SOD), catalase] and transfer healthy mitochondria to damaged cells. Radiation triggers the release of pro-inflammatory cytokines [e.g., tumor necrosis 
factor-α, interleukin (IL)-1β, interferon (IFN)-γ], causing inflammation and tissue damage. WJ-MSCs migrate to injury sites, guided by chemokine receptors and 
adhesion molecules. WJ-MSCs interact with T cells through cell-cell contact and soluble factors, inhibiting T-cell proliferation, inducing T-cell apoptosis, and 
promoting the formation of regulatory T cells. They also secrete factors like prostaglandin E2 (PGE2), hepatocyte growth factor (HGF), IL-6, IL-10, transforming 
growth factor (TGF) β1, soluble human leukocyte antigen (HLA)-G5, and soluble galectins (1, 3, 9), which help modulate the immune response. Additionally, WJ-
MSCs prevent dendritic cell maturation, altering natural killer and B cell functions to reduce inflammation and support tissue repair. Breg: B regulatory cell; CD: 
Cluster of differentiation; D reg: Dendritic regulatory cell; ICAM: Intercellular adhesion molecule; PD1: Programmed death 1; PDL1: Programmed death-ligand 1; 
RBC: Red blood cell; TCR: T cell receptor; Th cell: T helper cell; Tregs: T regulatory cells; VCAM: Vascular cell adhesion molecule; VEGF: Vascular endothelial 
growth factor.

Acute radiation syndromes
Acute radiation syndromes (ARS), also known as triple syndrome (comprising hematopoietic, gastrointestinal, and 
central nervous syndromes), can develop after whole-body radiation exposure, either knowingly (such as in RT, reactor 
maintenance, or clean-up) or unknowingly (due to radiation accidents). Zhang et al[89] have demonstrated the beneficial 
role of umbilical cord blood stem cell transplantation in the recovery of hematopoietic syndrome in experimental mice. 
Kovalenko et al[90] have shown that the administration of 2 × 108 human umbilical cord blood mononucleated cells 
within 24-52 hours following irradiation, along with the antibiotic levaquin, significantly enhances the probability of 
survival compared to irradiated and untreated animals. Very recently, Bandekar et al[35] showed that therapeutic 
infusion of WJ-MSCs after lethal exposure to radiation (8.5 Gy) reduces the symptoms of ARS. WJ-MSCs have the 
capability to preferentially home into radiosensitive tissues like the spleen, bone marrow, and small intestine of irradiated 
mice, and secrete various soluble mediators while minimizing radiation toxicity[35]. However, the infusion of WJ-MSCs 
in normal mice results in their random distribution[91]. The transplanted xenogeneic WJ-MSCs produce human cytokines 
and enhance the production of mouse cytokines in irradiated mice. Among these, WJ-MSC-derived human IL-6 and G-
CSF were found to play a causal role in radioprotection[35,92].

Radiation-induced cutaneous injury
Radiation-induced cutaneous injury, also known as radiation dermatitis, manifests due to repeated exposure to radiation 
on the skin during RT. The skin is the first organ to come into contact with external RT, making it the most common type 
of radiation injury. It limits the duration and dose of radiation that can be delivered to the patient. Sun et al[93] showed 
that the orthotropic application of WJ-MSCs-derived conditioned media significantly increases the wound-healing rate by 
effectively promoting tissue repair and regeneration in radiation-damaged skin in rats, signifying the role of WJ-MSCs in 
acute radiation skin injury. The regenerative mechanism mediated by WJ-MSC-conditioned medium (CM) involves tissue 
regeneration due to the presence of secreted soluble factors that reduce inflammation, enhance alpha-smooth muscle actin 
expression, and promote angiogenesis, thereby increasing the total number of vessels in the healed wound skin[94]. 
Additionally, the CM from WJ-MSCs also accelerates scar-free wound healing. These findings point towards an urgent 
need for optimization and benchmarking of the method of isolation and preservation of conditioned media from WJ-
MSCs for possible use as a therapeutic agent for the treatment of radiation-induced dermatitis[93].
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Figure 6 Diagrammatic illustration showing regenerative potential of Wharton’s jelly mesenchymal stem cells in various radiation 
injuries. Created with BioRender.com. WJ-MSCs: Wharton’s jelly mesenchymal stem cells; UC-MSC: Umbilical cord mesenchymal stem cell; CM: Conditioned 
media; HS: Hematopoietic syndrome; GI-S: Gastrointestinal syndrome.

Radiation-induced salivary gland injury
During RT for head and neck cancer, the salivary glands are inevitably exposed to radiation, resulting in severe damage 
and the development of radiation-induced salivary gland injury (RISI). After undergoing RT for head and neck cancer, 
most patients experience xerostomia, dysphagia, dental caries, and other issues that negatively impact their social and 
professional lives. This is due to the irreversible loss of acinar cells, sterilization of primitive glandular stem cells, and 
decreased saliva secretion (known as hyposalivation) caused by radiation exposure, respectively[95]. In the early stages of 
exposure, there are no morphological changes, but saliva secretion diminishes, possibly due to cell membrane damage 
caused by radiation-induced ROS or alterations in signaling pathways and ion channels such as Aqp5[96]. However, in 
the later stages, significant morphological changes occur, including atrophy and loss of acinar cells, duct dilation, and 
infiltration of chronic inflammatory cells[97]. Until now, neither the prophylactic use of amifostine (to prevent radiation-
induced xerostomia)[98] nor symptomatic treatment strategies (such as pilocarpine, which stimulates saliva secretion) 
have provided satisfactory relief from symptoms. However, IMRT has been shown to be effective in reducing the dose 
delivered to the parotid glands, thus potentially reducing the risk of parotid gland injury[99]. Because radiation-induced 
xerostomia results from the loss of stem cells, the infusion of stem cells may aid in the regeneration of salivary glands. 
There have been reports on the use of adult tissue stem cells, such as HSCs, MSCs, and salivary stem/progenitor cells, for 
rescuing radiation-induced xerostomia.

Although there is currently no report on the effect of WJ-MSCs on RISI, other sources of stem cells have shown 
beneficial effects, and the same is expected for WJ-MSCs. Schwarz et al[100] demonstrated that intra-glandular infusion of 
BM-MSCs was retained in inflamed glands, while intravenous infusion reached both normal and damaged 
submandibular glands. Xiong et al[101] showed that transplantation of AD-MSCs was beneficial in alleviating xerostomia, 
possibly by aiding in the regeneration of salivary glands after intra-glandular transplantation. They observed that the 
transplanted AD-MSCs survived and differentiated into salivary epithelial cells.

Radiation-induced lung injury
RT is one of the key treatment modalities for thoracic cancers such as lymphoma, lung, breast, and esophageal cancer. 
Radiation-induced lung injury (RILI) develops post-RT due to severe cell damage after repeated radiation exposure. 
Manifestations of RILI include early-stage radiation pneumonitis (1-6 months after RT) and late-stage pulmonary fibrosis 
(1-2 years after RT). Although high-dose steroids can effectively treat acute radiation pneumonitis, there is currently no 
approved causative treatment for late-onset pulmonary radiation damage such as pulmonary fibrosis[87]. Radiation 
exposure results in an increase in reactive oxygen and nitrogen levels in epithelial and endothelial cells, causing damage. 
These damaged cells start producing pro-inflammatory cytokines, which alter vasodilation and vascular permeability and 
recruit cells of the immune system, resulting in chronic inflammation. These damages lead to the loss of epithelial and 
endothelial cells, causing blood-air dysfunction and increased vascular permeability. In the late stage, they ultimately 
develop fibrosis. The development of fibrosis causes damage to tissue architecture, which interferes with gaseous 
exchange, resulting in dyspnea, accumulation of fluid in the interstitial space, and ultimately respiratory failure and 
death. Despite significant advancements in the safety of RT, on average, 10%-30% of patients develop symptoms of RILI 
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after thoracic RT[102]. RILI not only affects the quality of life of the patients but also increases the chances of death. Until 
now, apart from amifostine, we do not have any other treatment regimens for it. In the last few decades, cell-based 
therapy employing MSCs has played a significant role in reducing lung fibrosis by promoting the repair of damaged 
tissue as well as secreting anti-inflammatory mediators and anti-fibrotic factors. They are also known to suppress T-cell 
activity and reduce B-cell activation and proliferation. Under inflammatory conditions, MSCs secrete IDO, PGE2, and IL-
10, which have a regulatory function.

Hao et al[103] showed that intratracheal transplantation of UC-MSCs in a canine model reduced oxidative stress, 
inflammatory reactions, and TGF-β-Smad2/3 pathways, thereby reducing RILI. Zhang et al[104] reported that CXCR4-
overexpressing WJ-MSCs preferentially home to damaged lung tissues and show improved therapeutic potential for the 
treatment of RILI. The protection offered by WJ-MSCs was associated with a reduction of radiation-induced increase in 
stromal cell-derived factor-1, TGF-β1, alpha-smooth muscle actin, and collagen I levels, as well as a protection from 
radiation-induced decrease in the expression of E-cadherin, leading to the moderation of RILI.

Radiation-induced heart injury
During thoracic exposure to radiation, heart injury is also associated with lung injury. Radiation causes fibrosis in all 
components of the heart and significantly increases the risk of coronary artery disease, cardiomyopathy, valvulopathy, 
arrhythmias, and pericardial disease[105]. Heart injury comprises myocardial, coronary artery, pericardial, valvular, and 
conduction system diseases, which have been observed in breast cancer and Hodgkin’s lymphoma patients[106-108]. 
Chen et al[109] assessed the therapeutic effect of human UC-MSCs-CM on radiation-induced myocardial fibrosis. They 
found that irradiated human cardiac fibroblasts cultured with UC-MSCs-CM showed greater viability. Inhibited nuclear 
factor-kappa B activity decreased the expression of several pro-fibrotic cytokines, including TGF-β1, IL-6, and IL-8, 
followed by mitigated collagen deposition and fibrosis. Meanwhile, changes in oxidation markers (malondialdehyde) and 
antioxidant enzyme levels reflected reduced oxidative stress[109]. However, specific nutritional factors released by MSCs 
that are involved in myocardial protection from ionizing radiation were not clarified[109].

Radiation-induced intestinal injury
During RT for abdominal and pelvic cancers, exposure of radiation to the intestine is unavoidable. This radiation 
exposure causes serious damage to intestinal villi, leading to mucosal erosion, intestinal vascular permeabilization, 
chronic inflammation, and eventually developing into radiation enteritis/proctitis/colitis, intestinal ischemia, mucositis, 
ulcers, necrosis, or even perforation. The development of these conditions after RT worsens the quality of life of these 
patients. Depending on the total dose of RT, size of the radiation field, course time, and division method, radiation 
enteritis can be divided into acute phase and chronic phase[20,23]. Acute radiation enteritis occurs within 1-2 weeks and 
is characterized by main manifestations such as nausea, emesis, stomachache, acute diarrhea, and tenesmus. On the other 
hand, chronic radiation enteritis generally occurs after several months or years and is characterized mucous bloody stool, 
intestinal stenosis, anal pendant expansion, and even intestinal obstruction. Bandekar et al[35] have shown that infusion 
of WJ-MSCs helps in the recovery of Lgr5 + stem cells in mice.

Radiation-induced brain injury
This is one of the most common types of injury that takes place during RT for head and neck cancer. It involves damage 
to the cerebral-vascular system, inflammatory response, and oxidative stress in the brain, which causes progressive 
cognitive dysfunction. Radiation exposure to the brain depletes the neuronal stem/precursor cell pools primarily residing 
in the neurogenic region of the hippocampus, leading to cognitive deficits. Therefore, transplantation of stem cells may be 
a promising option for restoring cognitive function in the brain. Very recently, Wang et al[110] have shown that infusion 
of UC-MSCs to 15 Gy whole body irradiated mice inhibits brain injury and imparts a neuroprotective effect. It inhibits 
neuro-inflammation by decreasing the levels of the inflammatory cytokines (TNF-α and IL-6) and increasing the level of 
IL-10, significantly improving the learning and memory of the mice. These studies demonstrated profound beneficial 
effects of either ESCs or neuronal stem cells (derived from iPSCs) in ameliorating the adverse effects of radiation on the 
brain in a preclinical rat model[111,112].

CLINICAL TRIALS OF WJ-MSCs IN REGENERATIVE MEDICINE
The first clinical trial to test the feasibility and efficacy of WJ-MSC therapy was registered in 2008. By May 2024, the 
public clinical trials database, https://www.clinicaltrials.gov/, had shown 48 clinical trials using WJ-MSCs for a wide 
range of therapeutic applications (Table 3, keywords used: “Wharton’s jelly mesenchymal stem cells” or “umbilical cord 
mesenchymal stem cells”). Most of these trials are safety studies (phase I) and proof of concept (phase II), with very few 
in phase III (comparison of a new treatment to the standard treatment).

FUTURE APPLICATIONS AND PERSPECTIVE
The pre-clinical observations of WJ-MSCs for mitigating radiation injuries show its significant potential in managing the 
side effects of RT. The future application of WJ-MSCs in treating radiation injuries is promising, with several novel 
techniques emerging. Enhanced delivery technologies like nanotechnology, hydrogels, and microencapsulation are key 

https://www.clinicaltrials.gov/
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Table 3 List of clinical trials using Wharton’s jelly mesenchymal stem cells for it therapeutic applications

No. Study title Clinical trial code 
numbers Conditions Status/conclusions

Cardiovascular diseases: Heart 
failure, coronary artery disease

1 Randomized study of coronary revascular-
ization surgery with injection of WJ-MSCs 
and placement of an epicardial extracellular 
matrix

NCT04011059

Mesenchymal stem cell 
transplantation, regenerative 
medicine

Not yet recruiting

Myocardial infarction: Acute, anterior 
wall

Cardiac remodeling, ventricular

STEMI, regenerative medicine

2 MSCs for prevention of MI-induced HF NCT05043610

Heart failure

Recruiting

Chronic heart failure3 The application of the umbilical cord 
mesenchymal stem cells in the complex 
treatment of non-ischemic heart failure

NCT04325594

Non-ischemic cardiomyopathy, 
dilated cardiomyopathy

Completed. Result not 
available

Degenerative disc disease

Intervertebral disc disease

4 Treatment of degenerative disc disease with 
allogenic mesenchymal stem cells (MSV)

NCT01860417

Low back pain

Completed. Result available. 
But not concluded yet

5 Treatment of knee osteoarthritis with 
allogenic mesenchymal stem cells

NCT01586312 Arthritis of knee Completed. Result available. 
But not concluded yet

Spinal cord injuries

Tendinopathy

Rotator cuff tears

6 Ultrasound-guided treatments for shoulder 
pain in wheelchair users with spinal cord 
injury

NCT04136743

Shoulder pain

Recruiting

Tibial meniscus injuries7 Ultrasound-guided injections for meniscal 
injuries in active-duty military

NCT04274543

Knee injuries and disorders

Recruiting

8 3D tissue engineered bone equivalent for 
treatment of traumatic bone defects

NCT03103295 Bone defects Unknown status

9 Safety and feasibility study of the CELLSPAN 
esophageal implant (CEI) in patients 
requiring short segment esophageal 
replacement

NCT05877300 Esophageal diseases Not yet recruiting

10 Micro-fragmented adipose tissue and 
complex Crohns’ anal fistulas

NCT03555773 Crohn disease, perianal fistula Completed. Result not 
available

Shoulder pain

Shoulder impingement syndrome

Rotator cuff impingement syndrome, 
rotator cuff tendinitis, rotator cuff 
syndrome of shoulder and allied 
disorders

11 Micro-fragmented adipose Tissue 
(LipogemsÂ®) injection for chronic shoulder 
pain in persons with spinal cord injury

NCT03167138

Spinal cord injuries

Unknown status

12 Encapsulated mesenchymal stem cells for 
dental pulp regeneration

NCT03102879 Periapical periodontitis Completed. Result available. 
But no conclusion

13 Allogeneic cord blood cells for adults with 
severe acute contusion spinal cord injury

NCT04331405 Spinal cord contusion Completed. Result not 
available

14 Wharton’s jelly-derived mesenchymal stem 
cells in osteoarthritis

NCT03866330 Osteoarthritis: Hip, knee, 
glenohumeral

Unknown status

15 Cardiovascular clinical project to evaluate the 
regenerative capacity of cardiocell in patients 
with acute myocardial infarction (AMI)

NCT03404063 Myocardial infarction Completed. Result not 
available

Randomized clinical trial to evaluate the Completed. Result not 16 NCT03418233 Heart failure
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regenerative capacity of cardiocell in patients 
with chronic ischaemic heart failure (CIHF)

available

17 Cardiovascular clinical project to evaluate the 
regenerative capacity of cardiocell in patients 
with no-option critical limb ischemia (N-O 
CLI)

NCT03423732 Critical limb ischemia Unknown status

18 Transplantation of allogeneic MSC in patients 
with pulp necrosis and chronic apical period-
ontitis

NCT04545307 Pulp Necroses|Apical Periodontitis Completed. Result not 
available

19 Efficacy of intradiscal injection of autologous 
bm-MSC in subjects with chronic LBP due to 
multilevel lumbar IDD

NCT05066334 Intervertebral Disc 
Degeneration|Chronic Low-back pain

Recruiting

20 Allogeneic ADSCs and platelet-poor plasma 
fibrin hydrogel to treat the patients with burn 
wounds (ADSCs-BWs)

NCT03113747 Second- or third-degree burns Unknown status

21 Allogeneic mesenchymal stromal cells in 
elderly patients with hip fracture

NCT02630836 Femoral neck fracture Withdrawn

22 Umbilical cord blood-derived mesenchymal 
stem cells in regeneration of sweat glands 
and body repair

NCT02304562 Sweat gland diseases Unknown status

23 Residual dental pulp tissue and cord blood 
stem cells

NCT04040127 Irreversible pulpitis Withdrawn

24 Treatment of osteoarthritic knee with high 
tibial osteotomy and implantation of 
allogenic human umbilical cord blood-
derived stem cells

NCT04234412 Osteoarthritis, knee Unknown status

25 Umbilical cord blood collection and 
processing for hypoplastic left heart 
syndrome patients

NCT01856049 Hypoplastic left heart syndrome Recruiting

26 Stem cell educator therapy in type 1 diabetes NCT03390231 Type 1 diabetes Unknown status

27 Use of Wharton Jelly in diabetic nephropathy NCT03288571 Diabetic nephropathies Not yet recruiting

28 Efficacy of Wharton jelly in erectile 
dysfunction

NCT03751735 Erectile dysfunction associated with 
type 2 diabetes mellitus

Completed. Result not 
available

29 Safety of Wharton Jelly in erectile dysfunction NCT02945449 Erectile dysfunction associated with 
type 2 diabetes mellitus

Completed. Result not 
available

30 Treatment of COVID-19 patients using 
Wharton’s jelly-mesenchymal stem cells

NCT04313322 Use of stem cells for COVID-19 
treatment

Recruiting

31 Use of mesenchymal stem cells in inflam-
matory bowel disease

NCT03299413 Inflammatory bowel diseases Active, not recruiting

32 Intrathecal administration of expanded 
Wharton’s jelly mesenchymal stem cells in 
chronic traumatic spinal cord injury

NCT03003364 Spinal cord injury, chronic Completed. Result not 
available

33 Evaluation of umbilical cord-derived 
Wharton’s jelly stem cells for the treatment of 
acute graft versus host disease

NCT03158896 Acute graft versus host disease Active, not recruiting

34 Use of Wharton Jelly-derived mesenchymal 
stem cells for knee osteoarthrosis

NCT02963727 Knee osteoarthrosis Recruiting

Retinitis pigmentosa35 Management of retinitis pigmentosa by 
Wharton’s jelly-derived mesenchymal stem 
cells

SHGM56733164

Inherited retinal dystrophy

Completed. Result not 
available

36 Safety and efficacy of intravenous Wharton’s 
jelly-derived mesenchymal stem cells in acute 
respiratory distress syndrome due to COVID-
19

NCT04625738 Acute respiratory distress syndrome Not yet recruiting

37 Wharton’s jelly-derived mesenchymal stem 
cells in osteoarthritis

NCT03866330 Osteoarthritis: Hip, knee, 
glenohumeral

Recruiting

38 Intracoronary human Wharton’s jelly-derived 
mesenchymal stem cells (WJ-MSCs) transfer 
in patients with acute myocardial infarction 
(AMI)

NCT01291329 ST-elevation myocardial infarction Completed. Result not 
available
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39 Therapeutic potential of stem cell conditioned 
medium on chronic ulcer wounds

NCT04134676 Chronic ulcer Not yet recruiting

Knee osteoarthritis

Knee pain chronic

Joint disease

40 Effect of implanting allogenic cytokines 
derived from human amniotic membrane 
(HAM) and mesenchymal stem cells derived 
from human umbilical cord Wharton’s jelly 
(HUMCWJ) on pain and functioning of knee 
osteoarthritis

NCT03337243

Musculoskeletal disease

Completed. Result not 
available

41 Intracoronary or intravenous infusion human 
Wharton’s jelly-derived mesenchymal stem 
cells in patients with ischemic cardiomy-
opathy

NCT02368587 Ischemic cardiomyopathy Not yet recruiting

42 Therapeutic treatment of amyotrophic lateral 
sclerosis

NCT02881476 Amyotrophic lateral sclerosis Unknown

43 Pericardial matrix with mesenchymal stem 
cells for the treatment of patients with 
infarcted myocardial tissue

NCT03798353 Myocardial infarction Recruiting

44 A research study looking at specific tissue of 
the umbilical cord

NCT01166776 Varices of umbilical cord Completed. Result not 
available

COVID-19, SARS-CoV-245 Efficacy and safety evaluation of 
mesenchymal stem cells for the treatment of 
patients with respiratory distress due to 
COVID-19

NCT04390139

Adult respiratory distress syndrome

Recruiting

46 Treatment of spinal cord injuries with 
(AutoBM-MSCs) versus (WJ-MSCs)

NCT04288934 Spinal cord injuries Recruiting

SARS-CoV-247 Cell therapy using umbilical cord-derived 
mesenchymal stromal cells in SARS-CoV-2-
related ARDS

NCT04333368

Severe acute respiratory distress 
syndrome

Recruiting

48 Role of stem cells in improving implantation 
rates in ICSI patients

NCT01649752 Assess the efficacy of differentiated 
and undifferentiated stem cell therapy 
in improving endometrial receptivity

Unknown

49 Wharton’s jelly-derived mesenchymal 
stromal cell repeated treatment of adult 
patients diagnosed with type I diabetes

NCT03973827 Type 1 diabetes Recruiting

WJ-MSCs: Wharton’s jelly mesenchymal stem cells; MSC: Mesenchymal stem cell; MI: Myocardial infarction; HF: Heart failure; CEI: CELLSPAN 
esophageal implant; AMI: Acute myocardial infarction; CHF: Chronic heart failure; CLI: Critical limb ischemia; BM-MSC: Bone marrow mesenchymal stem 
cell; LBP: Low back pain; IDD: Intervertebral disc degeneration; ADSC: Adipose-derived stem cell; ADSC-BW: Adipose-derived stem cell-burn wound; 
COVID-19: Coronavirus disease 2019; HAM: Human amniotic membrane; HUMCWJ: Human umbilical cord Wharton’s jelly; SARS-CoV-2: Severe acute 
respiratory syndrome coronavirus 2; ICSI: Intracytoplasmic sperm injection.

areas of focus. Nanoparticles and nanocarriers can protect cells during transit and deliver them precisely to damaged 
sites, while hydrogels offer a supportive matrix for improved cell retention and function. Microencapsulation enhances 
the therapeutic effectiveness of WJ-MSCs by protecting them. Personalized medicine aims to tailor WJ-MSCs treatments 
based on a patient’s genetic profile and specific injury characteristics, potentially improving outcomes. Genetic manipu-
lation of WJ-MSCs to express higher levels of therapeutic factors such as VEGF can enhance their regenerative potential. 
Increasing their resistance to apoptosis can also improve their survival and efficacy in the hostile post-radiation 
environment. Further research into WJ-MSCs’ ability to repair DNA in damaged cells can reveal mechanisms to minimize 
radiation harm and enable genetic modifications for more effective regeneration. Combining WJ-MSC’s therapy with 
other treatments, such as antioxidants or anti-inflammatory agents, can amplify healing effects. Pharmaceutical agents 
that enhance MSCs homing and engraftment, like CXCR4 agonists and heparin, are also promising. Thus, future 
strategies to enhance the therapeutic potential of WJ-MSCs involve genetic modification, preconditioning of MSCs, 
rigorous screening, advancing research to fully understand their mechanisms of action, and standardized production and 
enhanced delivery techniques. Personalized treatment protocols, harmonizing regulatory guidelines, and developing 
innovative delivery systems are essential steps. Several challenges still need to be addressed before transferring WJ-MSCs 
from the bench to the bedside. These challenges include: Do WJ-MSCs remain immuno-privileged and maintain their 
hypo-immunogenicity and paracrine properties after differentiation? What will be their post-transplantation status? How 
much cell count/dose and post-RT time should be selected for desired benefits? Robust clinical trials with long-term 
follow-up are crucial to fully realize the therapeutic potential of WJ-MSCs in mitigating radiation injuries.
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CONCLUSION
In conclusion, there are different sources of MSCs, and each has its own merits and demerits in terms of derivation, 
ethical issues, and safety for applications. Various pieces of evidence show that WJ-MSCs do not impose any ethical 
concerns, risk of forming teratomas, or immunorejection, which exist with BM-MSCs, ESCs, or iPSCs. Thus, WJ-MSCs-
based therapy may offer an alternative to allogeneic bone marrow transplantation in accidental radiation exposure 
scenarios. Like other stem cells, WJ-MSCs also have limitations, such as different researchers following different isolation 
protocols. Therefore, clear guidelines, standardization and regulatory improvements are essential for widespread clinical 
adoption of WJ-MSCs. Owing to their unique properties, WJ-MSCs will be at the forefront of stem cell therapy for 
ameliorating radiation injuries developed after RT. We believe that in the future, more preclinical and clinical studies will 
be initiated to improve the quality of life for cancer patients who have undergone RT.
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