Contents

OPINION REVIEW
3377 Novel computerized psychometric tests as primary screening tools for the diagnosis of minimal hepatic encephalopathy
Luo M, Mu R, Liu JF, Bai FH

REVIEW
3390 Management of cancer patients during COVID-19 pandemic at developing countries
González-Montero J, Valenzuela G, Akumada M, Barajas O, Villanueva L

MINIREVIEWS
3405 Liver in the limelight in the corona (COVID-19) time
Chela HK, Pasha SB, Basar O, Daglılar E, Tahan V
3411 Steroid-responsive pancreatitis
Pelaez-Luna M, Soriano-Rios A, Lira-Treviño AC, Uscanga-Domínguez L

ORIGINAL ARTICLE
Clinical and Translational Research
3431 Application of molybdenum target X-ray photography in imaging analysis of caudal intervertebral disc degeneration in rats
Su QH, Zhang Y, Shen B, Li YC, Tan J
3440 Accuracy study of a binocular-stereo-vision-based navigation robot for minimally invasive interventional procedures

Retrospective Study
3450 Value of virtual bronchoscopic navigation and transbronchial ultrasound-guided sheath-guided exploration in diagnosis of peripheral lung cancer
Liu Y, Wang F, Zhang QC, Tong ZH
3458 Significance of serum fibroblast growth factor-23 and miR-208b in pathogenesis of atrial fibrillation and their relationship with prognosis
Chen JM, Zhong YT, Tu C, Lan J
3465 Home quarantine compliance is low in children with fever during COVID-19 epidemic
Lou Q, Su DQ, Wang SQ, Gao E, Li LQ, Zhuo ZQ
Combination of endoscopic submucosal dissection and laparoscopic sentinel lymph node dissection in early mucinous gastric cancer: Role of lymph node metastasis
Li H, Zhao LL, Zhang XC, Liu DX, Wang GY, Huo ZB, Chen SB

Factors affecting failed trial of labor and countermeasures: A retrospective analysis
Wang JG, Sun JL, Shen J

Value of miR-1271 and glypican-3 in evaluating the prognosis of patients with hepatocellular carcinoma after transcatheter arterial chemoembolization

Follow-up study on symptom distress in esophageal cancer patients undergoing repeated dilation
Liu L, Liu QW, Wu XD, Liu SY, Cao HJ, Hong YT, Qin HY

Long-term medical treatment of patients with severe burns at exposed sites

Laparoscopic management of a giant mucinous benign ovarian mass weighing 10150 grams: A case report
Sanna E, Mateddu C, Melis L, Nemolato S, Macciò A

Concurrent hepatocellular carcinoma metastasis to stomach, colon, and brain: A case report
Kim R, Song J, Kim SB

Disseminated osteomyelitis after urinary tract infection in immunocompetent adult: A case report
Kim YJ, Lee JH

Pelvic lipomatosis and renal transplantation: A case report
Zhao J, Fu YX, Feng G, Mo CB

Intestinal obstruction in pregnancy with reverse rotation of the midgut: A case report
Zhao XY, Wang X, Li CQ, Zhang Q, He AQ, Liu G

Clinical laboratory investigation of a patient with an extremely high D-dimer level: A case report
Sun HX, Ge H, Xu ZQ, Sheng HM

Recovery from a biliary stricture of a common bile duct ligature injury: A case report
Fan Z, Pan JY, Zhang YW

Spontaneous pneumomediastinum in an elderly COVID-19 patient: A case report
Kong N, Gao C, Xu MS, Xie YL, Zhou CY

Acute generalized exanthematous pustulosis with airway mucosa involvement: A case report
Li LL, Lu YQ, Li T
<table>
<thead>
<tr>
<th>Page</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>3583</td>
<td>Multifocal neuroendocrine cell hyperplasia accompanied by tumorlet formation and pulmonary sclerosing pneumocytoma: A case report</td>
<td>Han XY, Wang YY, Wei HQ, Yang GZ, Wang J, Jia YZ, Ao WQ</td>
</tr>
<tr>
<td>3591</td>
<td>Giant benign phyllodes breast tumour with pulmonary nodule mimicking malignancy: A case report</td>
<td>Zhang T, Feng L, Lian J, Ren WL</td>
</tr>
<tr>
<td>3601</td>
<td>Spontaneous multivessel coronary artery spasm diagnosed with intravascular ultrasound imaging: A case report</td>
<td>Wu HY, Cao YW, Chang FJ, Liang L</td>
</tr>
<tr>
<td>3616</td>
<td>First branchial cleft cyst accompanied by external auditory canal atresia and middle ear malformation: A case report</td>
<td>Zhang CL, Li CL, Chen HQ, Sun Q, Liu ZH</td>
</tr>
</tbody>
</table>
ABOUT COVER

Editorial board member of World Journal of Clinical Cases, Dr. Kvolik is a Professor in the School of Medicine, Osijek University, Croatia. She obtained her MD degree, with specialization in the field of anesthesiology, resuscitation and intensive care from the Zagreb Medical School, Croatia. Afterwards, she undertook postgraduate training in Clinical Pharmacology at the same institution, defending both a Master’s thesis and PhD thesis. In 2006, she joined the Osijek University Medical Faculty as a lecturer and was promoted to Professor in 2009. In 2012, she was elected Head of the Department of Anesthesiology, Resuscitation, Intensive Care and Pain Therapy, a position she occupies to this day. She is also the current Head of the Intensive Care Unit at the Osijek University Hospital, Croatia. (L-Editor: Filipodia)

AIMS AND SCOPE

The primary aim of World Journal of Clinical Cases (WJCC, World J Clin Cases) is to provide scholars and readers from various fields of clinical medicine with a platform to publish high-quality clinical research articles and communicate their research findings online.

WJCC mainly publishes articles reporting research results and findings obtained in the field of clinical medicine and covering a wide range of topics, including case control studies, retrospective cohort studies, retrospective studies, clinical trials studies, observational studies, prospective studies, randomized controlled trials, randomized clinical trials, systematic reviews, meta-analysis, and case reports.

INDEXING/ABSTRACTING

The WJCC is now indexed in Science Citation Index Expanded (also known as SciSearch®), Journal Citation Reports/Science Edition, PubMed, and PubMed Central. The 2020 Edition of Journal Citation Reports® cites the 2019 impact factor (IF) for WJCC as 1.013; IF without journal self cites: 0.991; Ranking: 120 among 165 journals in medicine, general and internal; and Quartile category: Q3.

RESPONSIBLE EDITORS FOR THIS ISSUE

Production Editor: Ji-Hong Liu; Production Department Director: Xiang Li; Editorial Office Director: Jin-Lei Wang.
Delayed perforation after endoscopic resection of a colonic laterally spreading tumor: A case report and literature review

Ge-Yu-Jia Zhou, Jin-Long Hu, Sheng Wang, Nan Ge, Xiang Liu, Guo-Xin Wang, Si-Yu Sun, Jin-Tao Guo

Abstract

BACKGROUND

Endoscopic mucosal resection (EMR) and endoscopic submucosal dissection (ESD) have been widely used for the treatment of early gastrointestinal cancer. Endoscopic piecemeal mucosal resection (EPMR) is derived from the combination of EMR and ESD. Delayed perforation with peritonitis after colonic EPMR is a rare but severe complication, sometimes requiring surgery. There are some associated risk factors, including patient- (location, diameter, and presence of fibrosis) and procedure-related factors. Early recognition and timely treatment are crucial for its management.

CASE SUMMARY

We report a case in which delayed perforation with peritonitis was treated using endoscopic closure. A 54-year-old man was diagnosed with a 30-mm-diameter laterally spreading tumor in the colonic hepatic curvature. Fifteen hours after endoscopic resection, peritonitis caused by delayed perforation occurred and gradually aggravated. Conservative treatment was ineffective and no obvious perforation was observed. After timely endoscopic closure, the patient was discharged on postoperative day 4.

CONCLUSION

In occasion of localized peritonitis aggravating without macroscopic perforation, endoscopic closure is an effective treatment for delayed perforation with stable vital signs in the early stage.

Key words: Endoscopic mucosal resection; Endoscopic submucosal dissection; Endoscopic piecemeal mucosal resection; Delayed perforation; Endoscopic closure; Case report

©The Author(s) 2020. Published by Baishideng Publishing Group Inc. All rights reserved.
We report a case in which delayed perforation occurred 15 h after colonic endoscopic resection of a laterally spreading tumor in the colonic hepatic curvature. Peritonitis aggravated progressively without macroscopic perforation and conservative treatment had no effect. Micro-perforation was successfully closed under endoscopy with clips to avoid worse complications and surgical intervention.

URL: https://www.wjgnet.com/2307-8960/full/v8/i16/3608.htm
DOI: https://dx.doi.org/10.12998/wjcc.v8.i16.3608

INTRODUCTION
Endoscopic mucosal resection (EMR) is a common treatment for gastrointestinal mucosal lesions worldwide. Developed on the basis of EMR, endoscopic submucosal dissection (ESD) makes en bloc resection possible and endoscopic piecemeal mucosal resection (EPMR) is suitable for large tumors. Endoscopic therapy requires complicated technology and is associated with a high risk of complications[1]. Perforation is one of the most severe complications; there is both intraoperative perforation and delayed perforation. The latter is often associated with severe systemic symptoms or signs once found; therefore, it requires immediate diagnosis and management[2].

Here, we report a case in which delayed perforation occurred after colonic endoscopic resection of a laterally spreading tumor (LST) in the hepatic flexure of the colon and peritonitis aggravated progressively. This case is being reported because delayed perforation was identified in a timely fashion and endoscopic closure was performed without macroscopic perforation to avoid worse complications and surgical intervention. We discuss the clinical course of this rare case about micro-perforation and also review the relevant literature.

CASE PRESENTATION

Chief complaints
A 54-year-old man complained of aggravating abdominal pain 15 h after endoscopic resection of a colonic LST.

History of present illness
The patient was referred to our hospital for endoscopic resection of an LST measuring 30 mm that was diagnosed as an adenoma on pathology in the medial side of the colonic hepatic curvature. The patient was placed on a low-fiber diet on the day prior to endoscopic surgery. Adequate bowel preparation (BBPS: 3 points) was achieved using a split regimen of 4 L of polyethylene glycol solution and simethicone. During the procedure, our experienced team performed ESD for this lesion at first. When damage to the muscular layer caused by poor scope operability was observed, we changed into EPMR to quickly finish the operation. Prophylactic closure with clips was performed at the damage site. The tumor was removed without residue, and the wound was treated quite well without obvious perforation or hemorrhage. There was no abdominal pain after resection, and the patient was in a good condition. Routine antibiotics and intravenous nutrition were used in consideration of the large mucosal defect. Fifteen hours after endoscopic resection, the patient passed gas and then suddenly experienced severe abdominal pain that aggravated progressively over time without any alleviation.

History of past illness
The patient had a history of diabetes for 10 years without a regular oral hypoglycemic treatment. He had no history of other chronic diseases like cardiovascular disease and hypertension, and no history of trauma, surgery, or blood transfusion. He had no history of food and drug allergy.
Personal and family history
The patient occasionally drank alcohol and denied a history of smoking. He had no family history of intestinal tumors.

Physical examination
Physical examination showed intolerable compression pain and rebound pain localized in the right abdomen, suggesting the presence of peritonitis.

Laboratory examinations
Emergency blood analysis showed that neutrophil proportion increased slightly (79.9%) with normal white blood cell count, hemoglobin, and red blood cell count.

Imaging examinations
Emergency computed tomography (CT) revealed a small amount of pneumoperitoneum and substantial exudate (Figure 1).

FINAL DIAGNOSIS
The final diagnosis was a perforation after endoscopic resection.

TREATMENT
The attempt of placing gastrointestinal decompression did not relieve the symptoms. Emergent colonoscopy with carbon dioxide insufflation was performed. No obvious perforation was observed. We believed that there was a micro-perforation, and the wound was closed using clips (Figure 2). It only took 2 h from the beginning of abdominal pain to achieve successful endoscopic closure. The patient was asked to maintain a semi-recumbent position and was treated with fasting and broad-spectrum antibiotics.

OUTCOME AND FOLLOW-UP
During the night after endoscopic closure, the patient experienced a fever of 38.3°C, but the pain was slightly relieved. Three days after endoscopic closure, the patient’s abdominal pain totally subsided, and after tolerating oral diet, he was discharged on the 4th day after endoscopic closure (Figure 3).

No recurrence occurred in the follow-up. The patient was content with our timely treatment, and informed consent was obtained.

DISCUSSION
In the present case, delayed perforation occurred 15 h after colonic endoscopic resection of LST in the hepatic flexure of colon. Peritonitis aggravated progressively without obvious perforation and conservative treatment had no effect. Micro-perforation was successfully closed under endoscopy with clips, which had not been reflected in the previous cases ever.

EMR is effective for lesions < 20 mm, and ESD is recommended for lesions > 20 mm with limited submucosal invasion. Nevertheless, there remain no definitive guidelines for treatment of lesions > 20 mm with no invasion or invasion limited in the mucosal layer. We were planning to perform ESD according to anticipatory judgment; however, poor scope operability causing damage to the muscular layer caused us to change to EPMR. Fortunately, no perforation or obvious hemorrhage occurred throughout the procedure, suggesting that our strategy was reasonable.

Perforation is considered one of the most serious complications of therapeutic colonoscopy. Because of intraperitoneal leakage of the intestinal fluid with digestive enzymes and fecal fluid with large amounts of bacteria, peritonitis caused by colorectal perforation is more serious than gastroesophageal perforation. The probability of perforation after ESD is higher than that after EMR, accounting for 1.4%-14.0%. Endoscopic perforation is classified as intraoperative and delayed.
perforation; the latter is even rarer, with reported rates of 0.3%-0.7%\(^7\) and is defined as perforation within 48 h after endoscopic surgery. All previously reported ten cases occurred within 48 h after ESD or EMR\(^8\)-\(^12\), accompanied by peritonitis of various degrees. Delayed perforation in our case took place in 15 h and caused progressively increasing peritonitis, which is even rarer because of the aggravating peritonitis and our earlier recognition compared with previous case reports.
Several studies have demonstrated that many factors contribute to the occurrence of delayed perforation. Kang et al.\(^\text{13}\) reported that LSTs were the most common type of lesions causing endoscopic perforation. The most common location was the right colon, including the cecum, ascending colon, and transverse colon, because colonoscopy might be technically complicated there. Of the reported ten cases, 70% occurred in the right colon. The other risk factors include large tumor diameter, presence of fibrosis, and procedure-related factors\(^\text{7-23}\). Our present case is partly consistent with these reports in terms of tumor diameter and tumor location.

The mechanism of immediate colonic perforation is believed to be associated with unintended deep dissection. Delayed perforation is thought to result from thermal injury, that is to say, immoderate thermocoagulation damages both the submucosal and muscular layers, leading to small perforations over time\(^\text{8-10}\). In our present case, neither an obvious perforation nor a small perforation was observed during the subsequent emergent endoscopy. Therefore, we believed that there was a micro-perforation where there was deep dissection or thermal injury of the muscular layer during the procedure.

Several studies have emphasized that prompt and accurate diagnosis is essential for appropriate management and favorable prognosis after delayed perforation\(^\text{11-19}\). Symptoms and signs should be recorded and evaluated carefully. Abdominal pain is one of the earliest and most common symptoms, accompanied by peritoneal irritation signs. Abdominal distention, fever, tachycardia, tachypnea, and subcutaneous emphysema also raise the index of suspicion for delayed perforation. To obtain a definitive diagnosis, plain abdominal radiography or abdominal computed tomography is recommended to detect subdiaphragmatic free air and fluid leak with high accuracy. Laboratory indicators such as complete blood counts are useful to estimate the degree of abdominal contamination. In our case, when perforation was suspected, a CT scan was performed emergently, which finally indicated pneumoperitoneum and exudation, thereby confirming our suspicion.

Currently, there are no guidelines on the management of delayed perforation after colonic endoscopic resection. Delayed perforation after therapeutic colonoscopy is a rare event; however, it is severe, and emergent surgery is the most common treatment for this situation, especially in the context of peritonitis\(^\text{20}\). With the development of endoscopic techniques\(^\text{11,16-20}\), timely endoscopic closure may be a good option, if delayed perforation occurs in the patient’s fasting period with local peritonitis. In the present case, although there was no obvious perforation, peritonitis increased over time and conservative treatment was ineffective. Micro-perforation was diagnosed and successfully closed using clips with carbon dioxide insufflation under colonoscopy. Fasting and intravenous broad-spectrum antibiotics were also administered to avoid the need for surgical rescue.

In the English literature, only five other reports (10 cases) of delayed perforation after EMR and ESD with non-surgical management have been reported\(^\text{20-22}\) (Table 1). The decision to conduct an endoscopic operation also depends on the perforation size, endoscopist’s experience, and instruments available\(^\text{21,23-25}\). During endoscopic closure, carbon dioxide insufflation is generally preferred to prevent barotrauma because this gas is absorbed more quickly than air\(^\text{26}\). Inoki et al.\(^\text{26}\) reported a case in which delayed perforation after EMR was closed with endoscopic clips. Currently, increasing numbers of endoscopic techniques and equipment have been used. Both through-the-scope-clip and over-the-scope-clip are widely used for endoscopic repair, the former for smaller perforations and the latter for larger ones. Xiao et al.\(^\text{21}\) demonstrated an endoscopic method called the overtube approach. Nagami et al.\(^\text{27}\) demonstrated that polyglycolic acid sheets and fibrin glue were effective for endoscopic closure of delayed perforation. Subsequent conservative treatment after closure is indispensable, including fasting, intravenous antibiotics, gastrointestinal decompression, and nutrition support\(^\text{28}\). Kawashima et al.\(^\text{29}\) described completely conservative treatment, including transnasal decompression, as a method to manage delayed perforation. Nevertheless, not all cases can be treated endoscopically. Delayed perforation with general peritonitis, hemodynamic disorder, and failure in endoscopic closure require immediate surgical treatment\(^\text{30}\).

CONCLUSION

Delayed perforation with peritonitis after endoscopic operation is an uncommon but serious complication. Endoscopists should operate carefully throughout the procedure, especially for LSTs in the right colon. If delayed perforation occurs and
Table 1 Summary of previous reports of delayed perforation with non-surgical management

<table>
<thead>
<tr>
<th>Ref.</th>
<th>Case</th>
<th>Age (yr)</th>
<th>Sex</th>
<th>Morphology</th>
<th>Location</th>
<th>Tumor diameter (mm)</th>
<th>Endoscopic therapy</th>
<th>Time of delayed perforation (h)</th>
<th>Perforation size (mm)</th>
<th>Treatment</th>
<th>Hospital stay (d)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kawashima et al.</td>
<td>1</td>
<td>66</td>
<td>Male</td>
<td>LST</td>
<td>Cecum</td>
<td>40</td>
<td>ESD</td>
<td>Within 24</td>
<td>10</td>
<td>Transnasal decompression, antibiotics</td>
<td>26</td>
</tr>
<tr>
<td>Inoki et al.</td>
<td>2</td>
<td>73</td>
<td>Male</td>
<td>LST</td>
<td>Transverse colon</td>
<td>18</td>
<td>EMR</td>
<td>Within 24</td>
<td>NA</td>
<td>Endoscopic closure with clips, antibiotics</td>
<td>9</td>
</tr>
<tr>
<td>Nagami et al.</td>
<td>3</td>
<td>81</td>
<td>Male</td>
<td>LST</td>
<td>Ascending colon</td>
<td>40</td>
<td>ESD</td>
<td>Within 48</td>
<td>NA</td>
<td>Endoscopic closure with clips, polyglycolic acid sheets and fibrin glue, antibiotics</td>
<td>16</td>
</tr>
<tr>
<td>Xiao et al.</td>
<td>4</td>
<td>49</td>
<td>Female</td>
<td>LST</td>
<td>Sigmoid colon</td>
<td>NM</td>
<td>ESD</td>
<td>Within 24-48</td>
<td>3</td>
<td>Endoscopic closure with clips, overtube, nasobiliary tube, antibiotics</td>
<td>29</td>
</tr>
<tr>
<td>Xiao et al.</td>
<td>5</td>
<td>77</td>
<td>Male</td>
<td>LST</td>
<td>Ascending colon</td>
<td>NM</td>
<td>ESD</td>
<td>Within 24-48</td>
<td>6</td>
<td>Endoscopic closure with clips, overtube, nasobiliary tube, antibiotics</td>
<td>12</td>
</tr>
<tr>
<td>Xiao et al.</td>
<td>6</td>
<td>41</td>
<td>Female</td>
<td>Polyp</td>
<td>Transverse colon</td>
<td>NM</td>
<td>EMR</td>
<td>Within 24-48</td>
<td>5</td>
<td>Endoscopic closure with clips, overtube, nasobiliary tube, antibiotics</td>
<td>7</td>
</tr>
<tr>
<td>Iwatsubo et al.</td>
<td>7</td>
<td>45</td>
<td>Male</td>
<td>Protruded</td>
<td>Descending colon</td>
<td>10</td>
<td>ESD</td>
<td>24</td>
<td>NA</td>
<td>Conservative therapy, antibiotics</td>
<td>13</td>
</tr>
<tr>
<td>Iwatsubo et al.</td>
<td>8</td>
<td>53</td>
<td>Male</td>
<td>Flat</td>
<td>Transverse colon</td>
<td>22</td>
<td>ESD</td>
<td>19</td>
<td>NA</td>
<td>Conservative therapy, antibiotics</td>
<td>12</td>
</tr>
<tr>
<td>Iwatsubo et al.</td>
<td>9</td>
<td>74</td>
<td>Female</td>
<td>Protruded</td>
<td>Rectum</td>
<td>110</td>
<td>ESD</td>
<td>14</td>
<td>NA</td>
<td>Conservative therapy, antibiotics</td>
<td>14</td>
</tr>
<tr>
<td>Iwatsubo et al.</td>
<td>10</td>
<td>58</td>
<td>Male</td>
<td>Protruded</td>
<td>Ascending colon</td>
<td>55</td>
<td>ESD</td>
<td>24</td>
<td>NA</td>
<td>Conservative therapy, antibiotics</td>
<td>13</td>
</tr>
</tbody>
</table>

NM: Not mentioned; ESD: Endoscopic submucosal dissection; EMR: Endoscopic mucosal resection; LST: Laterally spreading tumor.

Localized peritonitis exacerbates, even without macroscopic perforation, endoscopic closure is an alternative for patients with stable vital signs in the early stage.

REFERENCES

Delayed perforation after EPMR of a colonic LST

Zhou GYJ et al. Delayed perforation after EPMR of a colonic LST

