MINIREVIEWS

30 Acute coronary syndrome on non-electrocardiogram-gated contrast-enhanced computed tomography
 Yoshihara S

LETTER TO THE EDITOR

47 Diagnostic accuracy of thoracic imaging modalities for the detection of COVID-19
 Dawit H, Absi M, Islam N, Ebrahimzadeh S, McInnes MDF

50 Comments on "Review of the role of diagnostic modalities and imaging findings in the COVID-19 pandemic"
 Vulasala SSR, Gopireddy DR, Bhosale P, Virarkar MK
ABOUT COVER
Associate Editor of World Journal of Radiology, Matteo Bauckneht, MD, PhD, Assistant Professor, Department of Health Sciences, University of Genova and IRCCS Ospedale Policlinico San Martino, Genova 16132, Italy. matteo.bauckneht@hsanmartino.it

AIMS AND SCOPE
The primary aim of World Journal of Radiology (WJR, World J Radiol) is to provide scholars and readers from various fields of radiology with a platform to publish high-quality basic and clinical research articles and communicate their research findings online.

WJR mainly publishes articles reporting research results and findings obtained in the field of radiology and covering a wide range of topics including state of the art information on cardiopulmonary imaging, gastrointestinal imaging, genitourinary imaging, musculoskeletal imaging, neuroradiology/head and neck imaging, nuclear medicine and molecular imaging, pediatric imaging, vascular and interventional radiology, and women's imaging.

INDEXING/ABSTRACTING
The WJR is now abstracted and indexed in Emerging Sources Citation Index (Web of Science), PubMed, PubMed Central, China National Knowledge Infrastructure (CNKI), China Science and Technology Journal Database (CSTJ), and Superstar Journals Database. The 2021 edition of Journal Citation Reports® cites the 2020 Journal Citation Indicator (JCI) for WJR as 0.51.

RESPONSIBLE EDITORS FOR THIS ISSUE
Production Editor: Ying-Yi Yuan; Production Department Director: Xu Gan; Editorial Office Director: Jia-Ping Yan.

NAME OF JOURNAL
World Journal of Radiology

ISSN
ISSN 1949-8470 (online)

LAUNCH DATE
January 31, 2009

FREQUENCY
Monthly

EDITORS-IN-CHIEF
Thomas J Vogl

EDITORIAL BOARD MEMBERS

PUBLICATION DATE
February 28, 2022

COPYRIGHT
© 2022 Baishideng Publishing Group Inc

INSTRUCTIONS TO AUTHORS
https://www.wjgnet.com/bpg/gerinfo/204

GUIDELINES FOR ETHICS DOCUMENTS
https://www.wjgnet.com/bpg/GerInfo/287

GUIDELINES FOR NON-NATIVE SPEAKERS OF ENGLISH
https://www.wjgnet.com/bpg/gerinfo/240

PUBLICATION ETHICS
https://www.wjgnet.com/bpg/gerinfo/208

PUBLICATION MISCONDUCT
https://www.wjgnet.com/bpg/gerinfo/288

ARTICLE PROCESSING CHARGE
https://www.wjgnet.com/bpg/gerinfo/242

STEPS FOR SUBMITTING MANUSCRIPTS
https://www.wjgnet.com/bpg/gerinfo/239

ONLINE SUBMISSION
https://www.f6publishing.com

© 2022 Baishideng Publishing Group Inc. All rights reserved. 7041 Koll Center Parkway, Suite 160, Pleasanton, CA 94566, USA
E-mail: bpgoffice@wjgnet.com https://www.wjgnet.com
Comments on "Review of the role of diagnostic modalities and imaging findings in the COVID-19 pandemic"

Sai Swarupa R Vulasala, Dheeraj R Gopireddy, Priya Bhosale, Mayur K Virarkar

Specialty type: Radiology, nuclear medicine and medical imaging

Provenance and peer review: Invited article; Externally peer reviewed.

Peer-review model: Single blind

Peer-review report’s scientific quality classification
Grade A (Excellent): 0
Grade B (Very good): B, B, B
Grade C (Good): 0
Grade D (Fair): 0
Grade E (Poor): 0

P-Reviewer: Al-Ani RM, Samadder S, Shariati MBH

Received: November 6, 2021
Peer-review started: November 6, 2021
First decision: December 10, 2021
Revised: December 11, 2021
Accepted: February 15, 2022
Article in press: February 15, 2022
Published online: February 28, 2022

Abstract

The present letter to the editor corresponds to the article entitled “Comprehensive literature review on the radiographic findings, imaging modalities, and the role of radiology in the coronavirus disease 2019 (COVID-19) pandemic” by Pal et al, published in *World J Radiol*. 2021; 13(9): 258-282. With zero to unknown prevalence, COVID-19 has created a heterogeneous and unforeseen situation across the world. Healthcare providers encountered new challenges in image interpretation, characterization, and prognostication of the disease. Pal et al delineated the radiological findings, which would guide the radiologists to identify the early signs of severe infection.

Key Words: COVID-19; Computed tomography; Lung ultrasound; COVID-19 scoring systems

©The Author(s) 2022. Published by Baishideng Publishing Group Inc. All rights reserved.

Core Tip: Besides reverse transcriptase-polymerase chain reaction being the most standard test, chest X-ray, computed tomography, and lung ultrasound play a supportive role for Coronavirus disease 2019 (COVID-19) diagnosis. The main focus of this letter is to emphasize the importance of imaging in the COVID-19 pandemic. The various imaging characteristics aid in determining the severity of the disease and prognosis. The implementation of scoring systems further improves diagnostic efficiency. In addition, Pal et al discussed their COVID-19 first wave experience and recommended a few strategies for overcoming the second wave.
TO THE EDITOR

We read with interest the article published in the World Journal of Radiology by Pal et al.[1] on the depiction of radiological findings in identifying and predicting coronavirus disease 2019 (COVID-19) patient patterns. We would like to commend the authors for this vital article encompassing the pathophysiology and evidence-based review of COVID-19 severity scoring systems on chest X-ray (CXR), computed tomography (CT), and lung ultrasound (LUS). The authors outlined the artificial intelligence (AI) aspect of the diagnostic process and its importance in supporting human resources during the pandemic.

Although reverse transcriptase-polymerase chain reaction (RT-PCR) is the standard work-up for a specific diagnosis, it is limited by sample quality, laboratory errors, ribonucleic acid (RNA) stability, and variable sensitivity[2]. RT-PCR involves two steps: (1) Reverse transcription; and (2) Quantitative real time polymerase chain reaction. It can detect RNA by using either RNA or deoxyribonucleic acid (DNA) as positive controls. Most of the commercial kits adopt DNA as control in fear of RNA degradation by ribonucleases (RNases). However, DNA kits cannot report failed reverse transcriptase step, thus resulting in high false negative rates (40%) and variable sensitivity[3]. To avoid this concern, appropriate controls are necessary for viral RNA detection. Also, a negative RT-PCR requires repetition of the test in cases of clinical suspicion[4]. In contrast, imaging is a rapid and reliable procedure to evaluate suspicion of COVID-19 in individuals presenting with cough, dyspnea, and fatigue. At the beginning of the pandemic, there was a distinct and contentious discussion on the role and importance of radiology as part of the clinical management of COVID-19.

CXR is a readily accessible and inexpensive modality in the majority of clinical settings. It is helpful for triage among suspected COVID-19 individuals in the emergency department[5]. Peripheral predominant hazy opacification, bilateral lower lobe consolidation, and air space opacities similar to acute respiratory distress syndrome are the characteristic findings of COVID-19 on CXR. Pleural effusion, nodules, and pneumothorax are also unusual findings that can be discerned in COVID-19 patients[6].

Radiological assessment of lung edema (RALE) (Table 1) and Brixia score (Table 2) are the CXR-based grading systems in practice to predict the severity and prognosis of COVID-19 disease. According to a study by Au-Yong et al.[7], RALE and Brixia scores have correlations of 0.87 and 0.86, respectively, in predicting patient outcomes. Individuals with high scores (RALE > 25 and Brixia > 11) have increased chances of intensive care unit admission or death within 60 days after diagnosis. As acknowledged by Pal et al.[1] the usage of CXR has been limited by lower sensitivity (56%) and specificity (60%).

CT imaging is the preferred diagnostic modality, given its high sensitivity (94%)[1]. However, the specificity of CT ranges from 25% to 80%[1]. Lateralized, bilateral, multifocal, basilar and peripheral predominance and peripheral ground-glass opacities are the classical CT findings of COVID-19 pneumonia. Non-classical features include subsegmental vessel engorgement, “atoll sign,” reticular opacifications, subpleural curvilinear opacifications, and bilateral hilar lymphadenopathy. All these findings are well illustrated by Pal et al.[1].

COVID-19 reporting and data system (CO-RADS) (Table 3) and MulLBSTA (multilobular inflation, hypo-lymphocytosis, bacterial coinfection, smoking history, hypertension, and age) (Table 4) scoring systems aid in the identification of the lung involvement and prognosis in suspected COVID-19 patients. Pal et al.[1] described that CO-RADS and MulLBSTA have a sensitivity of 61% and 65.1%, and specificity of 81% and 95.4%, respectively. The main drawbacks of CT in clinical setting are: radiation exposure, the need to transfer the patient to the imaging room, and availability.

Lung ultrasound (LUS) may assist physicians in assessing the disease severity with sensitivity and specificity of 65%-76.9% and 72.7%-77.1%, respectively[1]. It identifies subtle lung findings in the periphery which remain hidden in majority of CXR[8]. In addition, the findings of COVID-19 pneumonia on LUS correlate well with CT findings[9,10]. Hence LUS can be employed in the common and standard practice. LUS is advantageous as it eliminates the radiation risk and resource consumption of CXR and CT, if the patients require daily monitoring of lung status. It also overcomes the limitations of CT by its portability and accessibility at bedside with great learning curve. B-line artifacts, subpleural consolidations, pleural irregularities, and patchy opacities can be seen on the LUS of COVID-19-infected patients. The presence of B-lines indicates parenchymal involvement, and they increase proportionately with the disease, resulting in “white lungs”[2]. With recuperation from illness, B-lines are replaced with A-lines, which represent normal lung surface. Subpleural consolidation specifies the inflammatory changes; however, these findings may last for several weeks after recovery.

Citation: Vulasala SSR, Gopireddy DR, Bhosale P, Virarkar MK. Comments on “Review of the role of diagnostic modalities and imaging findings in the COVID-19 pandemic”. World J Radiol 2022; 14(2): 50-54
URL: https://www.wjgnet.com/1949-8470/full/v14/i2/50.htm
DOI: https://dx.doi.org/10.4329/wjr.v14.i2.50
Table 1 Radiological assessment of lung edema classification[13]

<table>
<thead>
<tr>
<th>Score</th>
<th>Extent of alveolar opacities in each lung quadrant.</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0%</td>
</tr>
<tr>
<td>1</td>
<td>0-25%</td>
</tr>
<tr>
<td>2</td>
<td>25-50%</td>
</tr>
<tr>
<td>3</td>
<td>50-75%</td>
</tr>
<tr>
<td>4</td>
<td>> 75%</td>
</tr>
</tbody>
</table>

If consolidation is ≥ 1, then score density

<table>
<thead>
<tr>
<th>Score</th>
<th>Density</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Hazy</td>
</tr>
<tr>
<td>2</td>
<td>Moderate</td>
</tr>
<tr>
<td>3</td>
<td>Dense</td>
</tr>
</tbody>
</table>

Final RALE scoring

<table>
<thead>
<tr>
<th>Right lung</th>
<th>Left lung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Upper quadrant, Cons × Density= Q1</td>
<td>Upper quadrant, Cons × Density= Q3</td>
</tr>
<tr>
<td>Lower quadrant, Cons × Density= Q2</td>
<td>Lower quadrant, Cons × Density= Q4</td>
</tr>
</tbody>
</table>

Total RALE: Q1+Q2+Q3+Q4

RALE: Radiological assessment of lung edema.

Table 2 Brixia score

<table>
<thead>
<tr>
<th>Score</th>
<th>Findings on CXR in three divided zones of each lung</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>No abnormal findings</td>
</tr>
<tr>
<td>1</td>
<td>Interstitial infiltrates</td>
</tr>
<tr>
<td>2</td>
<td>Interstitial > Alveolar infiltrates</td>
</tr>
<tr>
<td>3</td>
<td>Alveolar > Interstitial infiltrates</td>
</tr>
</tbody>
</table>

CXR: Chest X-ray.

A 12-zone scoring system is used to quantify and predict the severity of lung involvement. Individuals are classified as normal, mild, moderate, and severely infected, with scores of 0, 1-5, 6-14, and ≥ 15, respectively. A cutoff score of 8 of 36 is 91% sensitive in predicting COVID-19 diagnosis. Hence LUS may be used as a screening tool, but in conjunction with other imaging modalities due to its ineffective differentiation between acute ongoing infection and recovery[1,2].

Although the role of magnetic resonance imaging, Fluorodeoxyglucose positron emission tomography, CT pulmonary angiography, and point-of-care echocardiography is limited in COVID-19, they may help detect complications such as myocarditis, cardiomyopathy, right ventricular dilatation, and pulmonary embolism and monitor the treatment response. AI is an algorithm-based entity that allows rapid diagnosis and enhances a health system’s capability. AI COVID-19 algorithm has a sensitivity, specificity, and accuracy of 84%, 93%, and 90.8%, respectively. AI-based deep learning technology has detected COVID-19 on CT with an area under the receiver operating characteristic curve of 0.96 and sensitivity and specificity of 90% and 96%, respectively[11]. Wehbe et al[12] compared the performance of AI and radiologists and reported similar diagnostic accuracy of 82% and 81%, respectively. Hence, AI has the ability to assist radiologists in prompt diagnosis and to improve workflow efficiency.

Familiarity with the COVID-19 imaging findings was essential for radiologists working during the pandemic. Even though the disease spread is controlled currently, the discovery of newer virus strains highlights the importance of strategies such as increasing work capacity and imaging capabilities that might be helpful during a future unanticipated outbreak.
Table 3 Coronavirus disease 2019 reporting and data system classification.

<table>
<thead>
<tr>
<th>Category</th>
<th>Level of COVID-19 suspicion</th>
<th>Findings</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Non-interpretable</td>
<td>Technically insufficient scan to assign a score</td>
</tr>
<tr>
<td>1</td>
<td>Very low</td>
<td>Normal lung</td>
</tr>
<tr>
<td>2</td>
<td>Low</td>
<td>Typical of infection other than COVID-19</td>
</tr>
<tr>
<td>3</td>
<td>Equivalent/unsure</td>
<td>Non-specific findings to COVID-19 and other infections</td>
</tr>
<tr>
<td>4</td>
<td>High</td>
<td>Suspicious of COVID-19</td>
</tr>
<tr>
<td>5</td>
<td>Very high</td>
<td>Typical COVID-19 findings</td>
</tr>
<tr>
<td>6</td>
<td>Proven</td>
<td>Positive RT-PCR for COVID-19</td>
</tr>
</tbody>
</table>

Table 4 Multilobular infiltration, hypo-lymphocytosis, bacterial coinfection, smoking history, hypertension, and age scoring system

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
<tbody>
<tr>
<td>Multi-lobar involvement</td>
<td>+5</td>
<td>0</td>
</tr>
<tr>
<td>Lymphopenia (≤ 0.8 ×10^9/L)</td>
<td>+4</td>
<td>0</td>
</tr>
<tr>
<td>Bacterial co-infection in blood or sputum</td>
<td>+4</td>
<td>0</td>
</tr>
<tr>
<td>Smoking history</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Active smoker: + 3; Prior Smoker: + 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hypertension</td>
<td>+2</td>
<td>0</td>
</tr>
<tr>
<td>Age ≥ 60 yr</td>
<td>+2</td>
<td>0</td>
</tr>
</tbody>
</table>

FOOTNOTES

Author contributions: Vulasala SSR, Gopireddy DR, Bhosale P, Virarkar MK have equal contributions; all authors have read and approved the final manuscript.

Conflict-of-interest statement: The authors declare they have no conflicts of interest.

Open-Access: This article is an open-access article that was selected by an in-house editor and fully peer-reviewed by external reviewers. It is distributed in accordance with the Creative Commons Attribution NonCommercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: https://creativecommons.org/Licenses/by-nc/4.0/

Country/Territory of origin: United States

ORCID number: Sai Swarupa R Vulasala 0000-0002-9387-3673; Dheeraj R Gopireddy 0000-0001-8441-7804; Priya Bhosale 0000-0003-4014-4941; Mayur K Virarkar 0000-0002-5825-3102.

S-Editor: Xing YX
L-Editor: A
P-Editor: Xing YX

REFERENCES

