REVIEW
1694 Nutritional assessment in patients with liver cirrhosis
Haj Ali S, Abu Sneineh A, Hasweh R

MINIREVIEWS
1704 Non-alcoholic fatty liver disease: Is surgery the best current option and can novel endoscopy play a role in the future?
Mandour MO, El-Hassan M, Elkomi RM, Oben JA

1718 Therapies for non-alcoholic fatty liver disease: A 2022 update
Shen K, Singh AD, Modaresi Esfeh J, Wakim-Fleming J

1730 Bile acids as drivers and biomarkers of hepatocellular carcinoma
Colosimo S, Tomlinson JW

1739 Approach to persistent ascites after liver transplantation
Ostojic A, Petrovic I, Silovski H, Kosuta I, Sremac M, Mrzljak A

ORIGINAL ARTICLE
Case Control Study
1747 Alcohol intake is associated with a decreased risk of developing primary biliary cholangitis

Retrospective Cohort Study
1757 Positive autoantibodies in living liver donors
Loh J, Hashimoto K, Kwon CHD, Fujiki M, Modaresi Esfeh J

Retrospective Study
1767 Decrease in liver cancer incidence rates in Bamako, Mali over 28 years of population-based cancer registration (1987-2015)

1778 Modified preoperative score to predict disease-free survival for hepatocellular carcinoma patients with surgical resections

1790 Liver magnetic resonance imaging for evaluation of response to treatment after stereotactic body radiation therapy of hepatocellular carcinoma
<table>
<thead>
<tr>
<th>Page</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>1817</td>
<td>A retrospective study on use of palliative care for patients with alcohol related end stage liver disease in United States</td>
<td>Gupta K, Hans B, Khan A, Sohail SH, Kapuria D, Chang C</td>
</tr>
<tr>
<td>1830</td>
<td>Primary hepatic leiomyosarcoma: A case report and literature review</td>
<td>Ahmed H, Bari H, Nisar Sheikh U, Basheer MI</td>
</tr>
<tr>
<td>1840</td>
<td>Analysis of hepatitis C virus-positive organs in liver transplantation.</td>
<td>Legaz I, Muro M</td>
</tr>
</tbody>
</table>
ABOUT COVER
Editorial Board Member of *World Journal of Hepatology*, Mohit Girotra, MD, FASGE, FACP, Consultant Gastroenterologist and Therapeutic Endoscopist, Digestive Health Institute, Swedish Medical Center, Seattle, WA 98104, United States. girotra.mohit@gmail.com

AIMS AND SCOPE
The primary aim of *World Journal of Hepatology* (*WJH*, *World J Hepatol*) is to provide scholars and readers from various fields of hepatology with a platform to publish high-quality basic and clinical research articles and communicate their research findings online.

WJH mainly publishes articles reporting research results and findings obtained in the field of hepatology and covering a wide range of topics including chronic cholestatic liver diseases, cirrhosis and its complications, clinical alcoholic liver disease, drug induced liver disease autoimmune, fatty liver disease, genetic and pediatric liver diseases, hepatocellular carcinoma, hepatic stellate cells and fibrosis, liver immunology, liver regeneration, hepatic surgery, liver transplantation, biliary tract pathophysiology, non-invasive markers of liver fibrosis, viral hepatitis.

INDEXING/ABSTRACTING
The *WJH* is now abstracted and indexed in PubMed, PubMed Central, Emerging Sources Citation Index (Web of Science), Scopus, Reference Citation Analysis, China National Knowledge Infrastructure, China Science and Technology Journal Database, and Superstar Journals Database. The 2022 edition of Journal Citation Reports® cites the 2021 Journal Citation Indicator (JCI) for *WJH* as 0.52. The *WJH*’s CiteScore for 2021 is 3.6 and Scopus CiteScore rank 2021: Hepatology is 42/70.

RESPONSIBLE EDITORS FOR THIS ISSUE
Production Editor: Yi-Xuan Cai; Production Department Director: Xiang Li; Editorial Office Director: Xiang Li.

NAME OF JOURNAL
World Journal of Hepatology

ISSN
ISSN 1948-5182 (online)

LAUNCH DATE
October 31, 2009

FREQUENCY
Monthly

EDITORS-IN-CHIEF
Nikolaos Pyrsopoulos, Ke-Qin Hu, Koo Jeong Kang

EDITORIAL BOARD MEMBERS

PUBLICATION DATE
September 27, 2022

COPYRIGHT
© 2022 Baishideng Publishing Group Inc

INSTRUCTIONS TO AUTHORS
https://www.wjgnet.com/bpg/gerinfo/204

GUIDELINES FOR ETHICS DOCUMENTS
https://www.wjgnet.com/bpg/gerinfo/287

GUIDELINES FOR NON-NATIVE SPEAKERS OF ENGLISH
https://www.wjgnet.com/bpg/gerinfo/240

PUBLICATION ETHICS
https://www.wjgnet.com/bpg/gerinfo/288

PUBLICATION MISCONDUCT
https://www.wjgnet.com/bpg/gerinfo/208

ARTICLE PROCESSING CHARGE
https://www.wjgnet.com/bpg/gerinfo/239

ONLINE SUBMISSION
https://www.f6publishing.com

© 2022 Baishideng Publishing Group Inc. All rights reserved. 7041 Koll Center Parkway, Suite 160, Pleasanton, CA 94566, USA
E-mail: bpgoffice@wjgnet.com https://www.wjgnet.com
Primary hepatic leiomyosarcoma: A case report and literature review

Hassan Ahmed, Hassaan Bari, Umer Nisar Sheikh, Muhammad Irfan Basheer

Abstract

BACKGROUND
Primary hepatic leiomyosarcoma (PHL) is a rare tumor with a very low incidence of about 0.2%.

CASE SUMMARY
A 48-year-old diabetic, hypertensive, and morbidly obese female patient presented with a history of abdominal pain and weight loss for 2 mo. She had no history of fever, jaundice, or other liver disease(s). Clinical examination revealed a palpable mass in the epigastrium. Imaging evaluation with a contrast-enhanced computed tomography (CT) scan of the abdomen and pelvis revealed an ill-defined enhancing hyper vascular hepatic mass of 9.9 cm × 7.8 cm occupying the left hepatic lobe with evidence of central necrosis, compression effect on the left hepatic vein, and partial wash-out on delayed images. On further workup, the maximum standardized uptake value on positron emission computed tomography scan was 6.4, which was suggestive of malignancy. The remaining part of the liver was normal without any evidence of cirrhosis. Ultrasound-guided biopsy of the mass showed smooth muscle neoplasm suggestive of leiomyosarcoma. After optimization for co-morbidities, an extended left hepatectomy was planned in a multidisciplinary team meeting. On intraoperative ultrasound, the left hepatic lobe was entirely replaced by a large tumor extending to the caudate lobe with a compression effect on the middle and left hepatic veins. Final histopathology showed nodular and whorled white tumor comprised of spindled/fascicular cells with moderate to severe pleomorphism and focal necrosis. The mitotic index was greater than 20 mitoses per 10 high-power fields. The resection margins were free of tumor. Immunohistochemistry (IHC) depicted a desmin-positive/caldesmon-negative/discovered on gastrointestinal stromal tumor 1-negative/cluster of differentiation 117-negative profile, confirming the definitive diagnosis as PHL.

CONCLUSION
This case report highlights the rare malignant mesenchymal hepatic tumor. To confirm PHL diagnosis, one requires peculiar histopathological findings with ancillary IHC confirmation. Management options include adequate/complete surgical resection followed by chemotherapy and/or radiotherapy.

Key Words: Leiomyosarcoma; Immunohistochemistry; Hepatectomy; Surgical resection; Case Report

©The Author(s) 2022. Published by Baishideng Publishing Group Inc. All rights reserved.

Core Tip: Primary hepatic leiomyosarcoma is an extremely rare tumor among all primary hepatic malignancies, with approximately 70 cases worldwide, including our case. The rare nature of the disease has precluded its underlying pathogenesis. Clinical manifestations are usually nonspecific, and tumors are generally asymptomatic until they significantly increase in size. They have a relatively poor prognosis and aggressive metastatic potential. The preferred type of treatment is surgical excision, which is sometimes combined with adjuvant chemotherapy and radiotherapy; however, little is known about their effectiveness because of the disease rarity. In-depth studies are needed to shed light on this uncommon clinical entity.

Citation: Ahmed H, Bari H, Nisar Sheikh U, Basheer MI. Primary hepatic leiomyosarcoma: A case report and literature review. *World J Hepatol* 2022; 14(9): 1830-1839

URL: https://www.wjgnet.com/1948-5182/full/v14/i9/1830.htm

DOI: https://dx.doi.org/10.4254/wjh.v14.i9.1830

INTRODUCTION
Primary hepatic leiomyosarcoma (PHL) is a rare mesenchymal hepatic tumor whose clinical manifestations are often nonspecific and remain asymptomatic until there is a significant increase in tumor size causing a mass effect. This manuscript presents a case report of a 48-year-old woman with PHL.

CASE PRESENTATION

Chief complaints
A 48-year-old woman presented to the outpatient clinic with complaints of abdominal pain associated with weight loss.

History of present illness
The patient's symptoms started 2 mo prior with recurrent episodes of abdominal pain without any specific aggravating or relieving factor(s).

History of past illness
She had no documented history of fever, jaundice, liver disease(s), blood transfusion, tattooing, or alcohol abuse.

Personal and family history
Her co-morbidities included diabetes, hypertension, and obesity. She had no family history of carcinoma.

Physical examination
On examination, there was a palpable mass in the epigastrium. The rest of the clinical examination was unremarkable, without any signs of disease elsewhere in the body.

Laboratory examinations
Complete blood count, serum biochemical profile, coagulation profile, and carbohydrate antigen 19-9 were normal. Viral serology was nonreactive.

Imaging examinations
An initial imaging evaluation with a contrast-enhanced computed tomography (CT) scan of the abdomen and pelvis showed an ill-defined heterogeneous contrast-enhancing and hyper vascular mass...
in the left lobe of the liver with extension up to the middle hepatic vein and compression effect on the left hepatic vein. The approximate measurement of the mass was 9.9 cm × 7.8 cm with central necrosis in the mass and partial wash-out on delayed images. The tumor encased the left portal vein branch at its point of bifurcation; however, the main portal vein and its right branch were not involved. No signs of hepatic cirrhosis were identified on imaging studies (Figure 1).

Positron emission tomography-CT (PET-CT) scan showed a maximum standardized uptake value (SUV) of the left hepatic mass of 6.4. The remaining liver had a standard baseline hepatic SUV (hepatic parenchymal baseline reference activity was up to 2.96 SUV).

No significant abnormality was seen above or below the diaphragm. In addition, the lungs, gastrointestinal (GI) tract, adrenal glands, kidneys, ovaries, and uterus did not show any evidence of primary disease or metastasis. No metastasis was found elsewhere in the body.

Ultrasound-guided biopsy was done, which showed cores of liver tissue with a proliferation of tumor cells having spindled-shaped nuclei with features of pleomorphism, up to 10 mitosis/10 high-power fields (HPFs), and necrosis. These findings suggested a spindle cell neoplasm raising a differential diagnosis of GI stromal tumor (GIST) and leiomyosarcoma. A panel of Immunohistochemical stains were applied that depicted a desmin-positive/caldesmon-negative/discovered on GIST1-negative (DOG1-)/cluster of differentiation 117-negative (CD117-) profile, thereby supporting the definitive diagnosis of PHL.

MULTIDISCIPLINARY EXPERT CONSULTATION

The case was discussed for management discussion in GI and hepatobiliary multidisciplinary team (MDT) meetings. According to MDT recommendations, surgical resection of the liver mass was planned, as there was no clinical and radiological evidence of metastatic disease or unknown primary disease elsewhere in the body.

FINAL DIAGNOSIS

The definitive preoperative diagnosis of the presented case was PHL in the absence of clinical and radiological evidence of metastatic disease or unknown primary disease elsewhere in the body.

TREATMENT

A formal extended left hepatectomy was performed. Staging laparoscopy was negative for metastasis, followed by a traditional laparotomy using a Mercedes Benz incision. The total operating time was 540 min with a blood loss of 300 milliliters.

Intraoperatively, the left lobe of the liver was involved by a large tumor extending inferiorly to the caudate lobe (left side only) and superiorly up to the middle hepatic vein (MHV). MHV and its branches were sacrificed. An en bloc resection was achieved with an intact capsule (Figure 2). Resection margins were confirmed to be free of the tumor with the help of intraoperative ultrasound. Enlarged hilar nodes (hepatic artery lymph node) and periportal lymph node were also removed separately. No distant metastasis or aortocaval nodes were found per operatively.

Final diagnosis and histopathology

Grossly, the left hepatectomy specimen measured 18 cm × 12.5 cm × 9.5 cm. Serial slicing of the specimen revealed a tumor (10.5 cm × 7.5 cm) with a nodular and whorled white appearance. The hepatic capsule was intact without any evident perforation. The microscopic evaluation revealed a cellular tumor with a fascicular array of tumor cells having spindle-shaped nuclei with a moderate-to-severe degree of cellular pleomorphism and more than 20 mitoses per 10 HPFs. Necrosis was focally seen. Lympho vascular invasion was not identified (Figures 3 and 4). All three regional lymph nodes (hepatic artery, periportal, and gallbladder neck) were negative for metastasis.

Immunohistochemical stain

Desmin (clone DE-R11, Ventana; Roche Diagnostics, Indianapolis, IN, USA), a marker of smooth muscle differentiation, was positive in tumor cells; and caldesmon (clone E-89; Cell Marque Co., Rocklin, CA, USA) was negative in tumor cells. In addition, CD117 (clone EP-10; Leica, Wetzlar, Germany) and DOG1 (clone SP31; Cell Marque) were also negative in tumor cells, ruling out the possibility of the closest differential diagnosis of GIST (Figure 5).
Ahmed H et al. Primary hepatic leiomyosarcoma

WJH https://www.wjgnet.com
1833 September 27, 2022 Volume 14 Issue 9

Figure 1 Contrast enhanced tomography scan image demonstrating a large enhancing heterogeneous mass in the left lobe of the liver (white arrow), surrounding normal the liver tissue (blue arrow).

Figure 2 Resected specimen.

Figure 3 Leiomyosarcoma, subsequent resection specimen. A: Original magnification: 4 ×, scale bar: 100 μm; B: The above figures show liver parenchyma with a central nodule/tumor fascicular array of cells having spindle-shaped nuclei, moderate degree nuclear atypia (original magnification: 10 ×; scale bar: 100 μm); C: Mitoses marked as T, and normal liver hepatocytes marked as N (original magnification: 40 ×; scale bar: 100 μm).

OUTCOME AND FOLLOW-UP

The postoperative recovery of the patient was uneventful. She was discharged on the 6th postoperative day. The patient remained asymptomatic until the follow-up visit after 6 mo. No short- or long-term postoperative complications were reported. CT and PET-CT scans were performed during this follow-up visit, which showed no evidence of recurrence and metastases. The patient was later presented in the MDT of Sarcoma, where it was decided to keep the patient under bi-annual surveillance, and no
Ahmed H et al. Primary hepatic leiomyosarcoma

DISCUSSION

Sarcomas from the liver are rare, constituting only 1%-2% of all primary hepatic malignant tumors[1,2]. Leiomyosarcoma accounts for 8%-10% of all hepatic sarcomas, whereas other hepatic sarcomas including angiosarcoma, fibrosarcoma, liposarcoma, embryonal sarcoma, malignant fibrous histiocytoma, carcinosarcoma, and epithelioid hemangioendothelioma collectively comprise nearly 70%-80% of hepatic sarcomas[3]. Hepatic leiomyosarcomas are generally metastatic, arising from the GI tract, uterus, retroperitoneum, or lungs, requiring careful staging[2]. To the best of our knowledge, only about 70 cases, including case series, have been published internationally, including our patient (Tables 1 and 2)[1].

Leiomyosarcoma potentially originates from the smooth muscle cells in the round ligament, intrahepatic blood vessels, and bile ducts. Tumors arising from intrahepatic veins have a worse prognosis because they tend to progress to Budd-Chiari syndrome. The differentiation between benign leiomyoma and low-grade leiomyosarcoma is based on mitotic figures per HPF, although variation occurs according to the site of origin[3,4].
Ahmed H et al. Primary hepatic leiomyosarcoma

Table 1 Management outcomes of published case reports of primary hepatic leiomyosarcoma

<table>
<thead>
<tr>
<th>Ref.</th>
<th>Patient age in yr</th>
<th>Sex</th>
<th>Risk factors</th>
<th>Management</th>
<th>Follow-up/ outcome</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jeong et al[12], 2008</td>
<td>49</td>
<td>F</td>
<td></td>
<td>Wedge resection</td>
<td>Died at 18 mo</td>
</tr>
<tr>
<td>Cioffi et al[2], 1996</td>
<td>62</td>
<td>M</td>
<td></td>
<td></td>
<td>Died at 20 mo</td>
</tr>
<tr>
<td>O'Leary et al[7], 1982</td>
<td>69</td>
<td>M</td>
<td></td>
<td></td>
<td>Alive at 24 mo</td>
</tr>
<tr>
<td>Baur et al[28], 1993</td>
<td>69</td>
<td>F</td>
<td></td>
<td>Surgery</td>
<td>Recurrence after 10 yr</td>
</tr>
<tr>
<td>Sato et al[29], 2000</td>
<td>62</td>
<td>F</td>
<td></td>
<td></td>
<td>Diagnosis at autopsy</td>
</tr>
<tr>
<td>Iordanidis et al[30], 2002</td>
<td>25</td>
<td>M</td>
<td></td>
<td>Surgery</td>
<td>Death at three mo</td>
</tr>
<tr>
<td>Lee et al[31], 2002</td>
<td>64</td>
<td>F</td>
<td></td>
<td>Right lobectomy + wedge resection of the left lobe</td>
<td>No evidence of disease at 24 mo</td>
</tr>
<tr>
<td>O'Leary et al[27], 2011</td>
<td>78</td>
<td>M</td>
<td></td>
<td>Chemotherapy, radiation</td>
<td>Death at 10 mo</td>
</tr>
<tr>
<td>Muranushi et al[33], 2019</td>
<td>62</td>
<td>M</td>
<td>Gastric gist post resection</td>
<td>Left hepatectomy + resection of 3 other lesions</td>
<td>No evidence of disease</td>
</tr>
<tr>
<td>Watanabe et al[34], 1991</td>
<td>62</td>
<td>M</td>
<td></td>
<td>Lobectomy</td>
<td>No evidence of disease at 5 mo</td>
</tr>
<tr>
<td>Esposito et al[35], 2020</td>
<td>78</td>
<td>M</td>
<td></td>
<td>Left hepatectomy</td>
<td>No evidence of disease at 18 mo</td>
</tr>
<tr>
<td>Yoshikawa et al[36], 1977</td>
<td>58</td>
<td>F</td>
<td></td>
<td>Wedge resection</td>
<td>Death, 11th postoperative day</td>
</tr>
<tr>
<td>Bloustein[37], 1978</td>
<td>12</td>
<td>F</td>
<td></td>
<td>Trisegmentectomy, chemotherapy</td>
<td>No evidence of disease at 6 yr</td>
</tr>
<tr>
<td>Maki et al[4], 1987</td>
<td>86</td>
<td>F</td>
<td></td>
<td>Surgery</td>
<td>No evidence of disease at 5 mo</td>
</tr>
<tr>
<td>Holloway et al[15], 1996</td>
<td>63</td>
<td>M</td>
<td></td>
<td>Conservative</td>
<td></td>
</tr>
<tr>
<td>Soyer et al[19], 1996</td>
<td>67</td>
<td>F</td>
<td></td>
<td>Surgery</td>
<td></td>
</tr>
<tr>
<td>Tsuji et al[10], 2000</td>
<td>68</td>
<td>M</td>
<td>Hepatitis c</td>
<td></td>
<td>Diagnosis at autopsy</td>
</tr>
<tr>
<td>Fujita et al[9], 2002</td>
<td>33</td>
<td>F</td>
<td>Prior renal transplant</td>
<td>Right posterior segmentectomy</td>
<td>No evidence of disease at 24 mo</td>
</tr>
<tr>
<td>Guilante et al[11], 2009</td>
<td>26</td>
<td>M</td>
<td>Hodgkin’s lymphoma</td>
<td>Right lobectomy + wedge resection of segment id</td>
<td>Death at 25 mo</td>
</tr>
<tr>
<td>Liang et al[21], 2009</td>
<td>44</td>
<td>F</td>
<td></td>
<td>Liver transplant</td>
<td>Death at 34 mo</td>
</tr>
<tr>
<td>Shivathirthan et al[32], 2011</td>
<td>67</td>
<td>M</td>
<td></td>
<td>Extended left hepatectomy + partial resection of segment 6</td>
<td>No evidence of disease at 9 mo</td>
</tr>
<tr>
<td>Tsai et al[5], 2013</td>
<td>Five mo</td>
<td>M</td>
<td></td>
<td>Chemotherapy + partial hepatectomy (segment vi) + adjuvant chemotherapy</td>
<td>No evidence of disease at 48 mo</td>
</tr>
<tr>
<td>Feretis et al[24], 2019</td>
<td>68</td>
<td>F</td>
<td>Hepatitis b</td>
<td>Left hepatectomy + cholecystectomy, chemotherapy, target therapy, redo surgery for recurrence</td>
<td>Recurrence at 18 mo 2nd recurrence at 21 mo died at 37 mo</td>
</tr>
<tr>
<td>Zhu et al[25], 2019</td>
<td>63</td>
<td>M</td>
<td></td>
<td>Unresectable tumor TACE (2011)</td>
<td>No evidence of disease at 82 mo</td>
</tr>
<tr>
<td>Vella et al[1], 2020</td>
<td>77</td>
<td>F</td>
<td></td>
<td>Right hepatectomy</td>
<td>No evidence of disease at 8 mo</td>
</tr>
</tbody>
</table>

F: Female; M: Male; TACE: Transcatheter arterial chemoembolization.

There is no apparent sex predilection with an approximate male-to-female ratio of 1:1 in the literature review of cases reported to date including our patient. Age at the time of presentation is variably reported with a range of 5 mo to 86 years (mean age of 51.3 years)\[^{5,6}\].

No specific pathological causes of PHL have been identified to date, although the literature review shows an association with multiple etiological factors, including immunosuppression due to acquired immunodeficiency syndrome. Epstein-Barr virus infection is reported in two cases and a previous history of immunosuppression postrenal transplant in 1 case. The other reported associations include hepatitis C virus infection, exposure to thorotrast, and previously treated Hodgkin’s lymphoma\[^{7-11}\].
Table 2 Management outcomes of published case series of primary hepatic leiomyosarcoma

<table>
<thead>
<tr>
<th>Ref.</th>
<th>Patient age in yr</th>
<th>Sex</th>
<th>Treatment</th>
<th>Follow up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Almogy et al[22]. 2004</td>
<td>58</td>
<td>F</td>
<td>Surgery + chemotherapy</td>
<td>Death at 4 mo</td>
</tr>
<tr>
<td></td>
<td>63</td>
<td>F</td>
<td>Surgery + chemotherapy</td>
<td>Death at 12 mo</td>
</tr>
<tr>
<td>Watanabe et al[34]. 2008</td>
<td>63</td>
<td>F</td>
<td>Diagnosis at autopsy</td>
<td></td>
</tr>
<tr>
<td></td>
<td>49</td>
<td>F</td>
<td>Diagnosis at autopsy</td>
<td></td>
</tr>
<tr>
<td>Matthaei et al[14]. 2009</td>
<td>19</td>
<td>F</td>
<td>Liver transplant</td>
<td>Death at 73 mo</td>
</tr>
<tr>
<td></td>
<td>64</td>
<td>F</td>
<td>Surgery</td>
<td>No evidence of disease</td>
</tr>
<tr>
<td></td>
<td>53</td>
<td>F</td>
<td>Surgery</td>
<td>Death at 21 mo</td>
</tr>
<tr>
<td></td>
<td>55</td>
<td>M</td>
<td>Surgery</td>
<td>No evidence of disease at 133 mo</td>
</tr>
<tr>
<td></td>
<td>51</td>
<td>M</td>
<td>Liver transplant</td>
<td>No evidence of disease at 144 mo</td>
</tr>
<tr>
<td></td>
<td>59</td>
<td>M</td>
<td>Surgery</td>
<td>Death at 45 mo</td>
</tr>
<tr>
<td></td>
<td>63</td>
<td>F</td>
<td>Surgery</td>
<td>No evidence of disease at 133 mo</td>
</tr>
<tr>
<td>Shamseddine et al[23]. 2010</td>
<td>25</td>
<td>F</td>
<td>Right lobectomy</td>
<td>Death at 22 mo</td>
</tr>
<tr>
<td></td>
<td>39</td>
<td>M</td>
<td>Extended right lobectomy</td>
<td>Death at 19 d</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>M</td>
<td>Right lobectomy + chemotherapy</td>
<td>No evidence of disease at 12 mo</td>
</tr>
<tr>
<td>Esposito et al[35]. 2020</td>
<td>78</td>
<td>M</td>
<td>Left hepatectomy</td>
<td>No evidence of disease at 18 mo</td>
</tr>
<tr>
<td></td>
<td>53</td>
<td>M</td>
<td>Right extended hepatectomy</td>
<td>Lung metastasis at seven mo death at 14 mo</td>
</tr>
</tbody>
</table>

F: Female; M: Male.

PHL usually pursues an indolent course being asymptomatic initially until they enlarge in size causing non-specific symptoms such as abdominal pain or discomfort, a palpable mass, fever, jaundice, anorexia, nausea or vomiting, and weight loss. The literature review revealed a single patient presenting as an emergency due to acute intraabdominal hemorrhage following tumor rupture. There is usually a single mass, although there are cases with multiple masses. Tumor size varies significantly ranging from 0.6 cm to 30 cm in the largest dimension (mean and median diameters of 10.3 cm and 9.1 cm, respectively). In our case, the tumor size was 10 cm in its largest dimension. The distribution of PHL within the liver segments and lobes also differs, with 2/3rd cases involving the right lobe and 1/3rd cases involving the left lobe[6,11-16].

Histological examination usually shows intersecting bundles of spindle-shaped cells with hyperchromatic nuclei and mitotic figures. Immunohistochemistry shows positive results with smooth muscle actin, desmin, and vimentin, whereas cytokeratins, neuron-specific enolase, S-100 protein, α-fetoprotein, CD34, CD117, and DOG1 were not expressed.

Ultrasonography usually shows hypoechoic or heterogeneous echogenic mass. CT findings generally describe a hypodense and sometimes heterogeneous mass with inhomogeneous and often peripheral enhancement after intravenous contrast administration, which may show regions of cystic degeneration, demonstrated in our case[17]. Ferrozzi et al[18] reported that hemorrhagic necrosis, along with cystic degeneration and necrosis, are likely to be secondary to tumor growth. Magnetic resonance imaging characteristically displays homogeneous or heterogeneous hypointense T1-weighted images and hyperintense T2-weighted images[19]. PET-CT scan SUV max can be correlated with the tumor size, tumor-node-metastasis staging, and histology subtype[20]. In our case, the SUV max of the primary tumor was 6.4, with a baseline hepatic parenchymal SUV of 2.96.

Therapeutic options vary depending upon the tumor size and/or stage on initial presentation. Hepatic resection (wedge resection, segmentectomy, lobectomy, or extended hepatectomy with the intention of R0 resection) remains the only potentially curative surgical option for non-metastatic including our case. However, 4 patients with tumors confined within the liver had liver transplantation[14,21].

Some authors have also reported that adjuvant chemotherapy consisted of various drugs, including doxorubicin and ifosfamide, which help to attain prolonged survival after complete resection. In addition, three cases have been treated with radiotherapy as part of a combined adjuvant treatment along with chemotherapy[5,22-24].

Transarterial chemoembolization and transarterial infusion of epirubicin and carboplatin were also reported in individual cases as treatment modalities for PHL[25].
The median survival is 37.5 mo with a 5-year survival rate of about 40%; two large case series reported 67% disease-specific survival at 5 years after R0 resection. Matthei et al[14] in a case series, reported more than 10 years of survival after hepatectomy. Chi et al reported a median overall survival of 19 mo with 1-, 2-, and 5-year survival rates of 61.2%, 41.1%, and 14.5% respectively[26].

Age is another crucial predictive factor for prognosis, with patients below 50 years achieving better survival. Currently, no effective therapeutic options have been reported for unresectable PHL. Fujita et al[9] reported a patient with metastatic leiomyosarcoma surviving 3 mo after diagnosis, who received only palliative and conservative therapy.

CONCLUSION
In conclusion, PHL is a rare malignant disease with often delayed presentation, relatively poor prognosis, and aggressive metastatic potential. The most preferred management options include surgical excision combined with chemotherapy and radiotherapy. However, very little is known about the efficacy of available therapeutic options because of the rarity of the disease. Therefore, in-depth studies are required to assess its causative, prognostic, and predictive parameters.

FOOTNOTES

Author contributions: Ahmed H and Bari H were the patient’s surgeons, reviewed the literature, and contributed to manuscript drafting; Sheikh UN and Basheer MI performed the histopathological analyses and interpretation; All authors issued final approval for the version submitted.

Informed consent statement: Informed written consent was obtained from the patient to publish this report and any accompanying images.

Conflict-of-interest statement: The authors have no conflicts of interest to declare.

CARE Checklist (2016) statement: The authors have read the CARE Checklist (2016), and the manuscript was prepared and revised according to the CARE Checklist (2016).

Open-Access: This article is an open-access article that was selected by an in-house editor and fully peer-reviewed by external reviewers. It is distributed in accordance with the Creative Commons Attribution NonCommercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: https://creativecommons.org/Licenses/by-nc/4.0/

Country/Territory of origin: Pakistan

ORCID number: Hassan Ahmed 0000-0002-0244-8939; Hassaan Bari 0000-0001-7098-6942; Umer Nisar Sheikh 0000-0001-6305-2252; Muhammad Irfan Basheer 0000-0001-5873-7759.

S-Editor: Wang LL
L-Editor: Filipodia
P-Editor: Wang LL

REFERENCES

7 Chelimilla H, Badiapatla K, Ithimoyan A, Niazi M. A rare occurrence of primary hepatic leiomyosarcoma associated with

Ahmed H et al. Primary hepatic leiomyosarcoma

1950562 DOI: 10.1111/j.1440-1827.1991.tb03213.x

