Contents

REVIEW

3282 Hepatitis B and circadian rhythm of the liver
Skrlec I, Talapko J

3297 Tumor microenvironment in pancreatic ductal adenocarcinoma: Implications in immunotherapy

3314 Crosstalk between dietary patterns, obesity and nonalcoholic fatty liver disease
Ristic-Medic D, Bajerska J, Vucic V

MINIREVIEWS

3334 Application of intravoxel incoherent motion diffusion-weighted imaging in hepatocellular carcinoma

3346 Regulatory T cells and their associated factors in hepatocellular carcinoma development and therapy
Zhang CY, Liu S, Yang M

3359 Single-incision laparoscopic surgery to treat hepatopancreatobiliary cancer: A technical review
Chuang SH, Chuang SC

3370 Probiotics and postbiotics in colorectal cancer: Prevention and complementary therapy
Kvakova M, Kamlarova A, StofiLOva J, Benetinova V, BertoIva I

3383 Interventional strategies in infected necrotizing pancreatitis: Indications, timing, and outcomes
Purschke B, Bolm L, Meyer MN, Sato H

3398 Artificial intelligence in liver ultrasound
Cao LL, Peng M, Xie X, Chen GQ, Huang SY, Wang JY, Jiang F, Cui XW, Dietrich CF

3410 Risk factors and diagnostic biomarkers for nonalcoholic fatty liver disease-associated hepatocellular carcinoma: Current evidence and future perspectives
Ueno M, Takeda H, Takai A, Seno H

ORIGINAL ARTICLE

Basic Study

3422 Accumulation of poly (adenosine diphosphate-ribose) by sustained supply of calcium inducing mitochondrial stress in pancreatic cancer cells
Jeong KY, Sim JJ, Park M, Kim HM
RING finger and WD repeat domain 3 regulates proliferation and metastasis through the Wnt/β-catenin signalling pathways in hepatocellular carcinoma

Associations of gut microbiota with dyslipidemia based on sex differences in subjects from Northwestern China

Prognostic significance of hemoglobin, albumin, lymphocyte, platelet in gastrointestinal stromal tumors: A propensity matched retrospective cohort study
Zhao Z, Yin XN, Wang J, Chen X, Cai ZL, Zhang B

Contrast-enhanced ultrasound Liver Imaging Reporting and Data System: Lights and shadows in hepatocellular carcinoma and cholangiocellular carcinoma diagnosis

Novel index for the prediction of significant liver fibrosis and cirrhosis in chronic hepatitis B patients in China
Liao MJ, Li J, Dang W, Chen DB, Qin WY, Chen P, Zhao BG, Ren LY, Xu TF, Chen HS, Liao WJ

Percutaneous transhepatic cholangiography vs endoscopic ultrasound-guided biliary drainage: A systematic review
Hassan Z, Gadour E

Isolated gastric variceal bleeding related to non-cirrhotic portal hypertension following oxaliplatin-based chemotherapy: A case report
Zhang X, Gao YY, Song DZ, Qian BX

Hepatitis B core-related antigen: Are we near a treatment endpoint?
Gupta T
ABOUT COVER
Editorial Board Member of *World Journal of Gastroenterology*, Govind K Makharia, MD, DM, DNB, Professor, Department of Gastroenterology and Human Nutrition, All India Institute of Medical Sciences, Ansari Nagar, New Delhi 110029, India. govindmakharia@aiims.edu

AIMS AND SCOPE
The primary aim of *World Journal of Gastroenterology* (WJG, *World J Gastroenterol*) is to provide scholars and readers from various fields of gastroenterology and hepatology with a platform to publish high-quality basic and clinical research articles and communicate their research findings online. WJG mainly publishes articles reporting research results and findings obtained in the field of gastroenterology and hepatology and covering a wide range of topics including gastroenterology, hepatology, gastrointestinal endoscopy, gastrointestinal surgery, gastrointestinal oncology, and pediatric gastroenterology.

INDEXING/ABSTRACTING
The WJG is now abstracted and indexed in Science Citation Index Expanded (SCIE, also known as SciSearch®), Current Contents/Clinical Medicine, Journal Citation Reports, Index Medicus, MEDLINE, PubMed, PubMed Central, Scopus, Reference Citation Analysis, China National Knowledge Infrastructure, China Science and Technology Journal Database, and Superstar Journals Database. The 2022 edition of Journal Citation Reports® cites the 2021 impact factor (IF) for WJG as 5.374; IF without journal self cites: 5.187; 5-year IF: 5.715; Journal Citation Indicator: 0.84; Ranking: 31 among 93 journals in gastroenterology and hepatology; and Quartile category: Q2. The WJG’s CiteScore for 2021 is 8.1 and Scopus CiteScore rank 2021: Gastroenterology is 18/149.

RESPONSIBLE EDITORS FOR THIS ISSUE
Production Editor: Wen-Wen Qi; Production Department Director: Xiang Li; Editorial Office Director: Jia-Ru Fan.

NAME OF JOURNAL
World Journal of Gastroenterology

ISSN
ISSN 1007-9327 (print) ISSN 2219-2840 (online)

LAUNCH DATE
October 1, 1995

FREQUENCY
Weekly

EDITORS-IN-CHIEF
Andrzej S Tarnawski

EDITORIAL BOARD MEMBERS
http://www.wjgnet.com/1007-9327/editorialboard.htm

PUBLICATION DATE
July 21, 2022

COPYRIGHT
© 2022 Baishideng Publishing Group Inc

INSTRUCTIONS TO AUTHORS
https://www.wjgnet.com/bpg/gerinfo/204

GUIDELINES FOR ETHICS DOCUMENTS
https://www.wjgnet.com/bpg/GerInfo/287

GUIDELINES FOR NON-NATIVE SPEAKERS OF ENGLISH
https://www.wjgnet.com/bpg/gerinfo/240

PUBLICATION ETHICS
https://www.wjgnet.com/bpg/GerInfo/288

PUBLICATION MISCONDUCT
https://www.wjgnet.com/bpg/gerinfo/208

ARTICLE PROCESSING CHARGE
https://www.wjgnet.com/bpg/GerInfo/242

STEPS FOR SUBMITTING MANUSCRIPTS
https://www.wjgnet.com/bpg/GerInfo/239

ONLINE SUBMISSION
https://www.f6publishing.com

© 2022 Baishideng Publishing Group Inc. All rights reserved. 7041 Koll Center Parkway, Suite 160, Pleasanton, CA 94566, USA
E-mail: bpgoffice@wjgnet.com https://www.wjgnet.com
Probiotics and postbiotics in colorectal cancer: Prevention and complementary therapy

Monika Kvakova, Anna Kamlarova, Jana Stofilova, Veronika Benetinova, Izabela Bertkova

Abstract

Colorectal cancer (CRC) is a leading cause of human mortality worldwide. As conventional anticancer therapy not always being effective, there is growing interest in innovative “drug-free” cancer treatments or interventions that improve the efficacy of established therapy. CRC is associated with microbiome alterations, a process known as dysbiosis that involves depletion and/or enrichment of particular gut bacterial species and their metabolic functions. Supplementing patient treatment with traditional probiotics (with or without prebiotics), next-generation probiotics (NGP), or postbiotics represents a potentially effective and accessible complementary anticancer strategy by restoring gut microbiota composition and/or by signaling to the host. In this capacity, restoration of the gut microbiota in cancer patients can stabilize and enhance intestinal barrier function, as well as promote anticarcinogenic, anti-inflammatory, antimutagenic or other biologically important biochemical pathways that show high specificity towards tumor cells. Potential benefits of traditional probiotics, NGP, and postbiotics include modulating gut microbiota composition and function, as well as the host inflammatory response. Their application in CRC prevention is highlighted in this review, where we consider supportive in vitro, animal, and clinical studies. Based on emerging research, NGP and postbiotics hold promise in establishing innovative treatments for CRC by conferring physiological functions via the production of dominant natural products and metabolites that provide new host-microbiota signals to combat CRC. Although favorable results have been reported, further investigations focusing on strain and dose specificity are required to ensure the efficacy and safety of traditional probiotics, NGP, and postbiotics in CRC prevention and treatment.

Key Words: Colorectal cancer; Traditional probiotics; Next-generation probiotics; Postbiotics; Gut microbiota
INTRODUCTION

Colorectal cancer (CRC) is the third most commonly diagnosed cancer in males and the second in females worldwide; thus a significant change in lifestyle is required to facilitate effective CRC prevention [1]. CRC is a heterogeneous disease of the intestinal epithelium, comprising the colon, rectum, and anus. It is characterized by a dysregulated immune response, accumulation of stem cell mutations, intestinal barrier disruption, and dysbiosis, which is often regarded as an unfavorable alteration in gut microbiota composition and function. Up to 90% of CRC risk is thought to be lifestyle-dependent, primarily due to dietary or environmental factors including feeding patterns that modulate consumption of fiber, red and processed meat or alcohol consumption, and low omega-3 fatty acids and vitamin D intake. Obesity, lack of physical activity, and smoking are also significant risk factors that promote CRC-associated microbiota changes [2]. CRC is linked with microbiome alterations, which include depletion and/or enrichment in particular bacterial species that are present in CRC patients (extensively reviewed by Torres-Maravilla et al [3], Ternes et al [4], Janney et al [2], Fong et al [5], and Wirbel et al [6]).

The human microbiota is a complex ecosystem of bacteria, viruses, eukaryotes, and archea, which can regulate a variety of host physiological functions including digestion, immune response, metabolism, disease pathogenesis, elimination of toxins, and biosynthesis of key compounds such as essential vitamins and cofactors. Microbiota can even modulate gut-brain axis function to alter, for example, anxiety and mood. Symbiotic bacteria that colonize the human gut can be classified into several phyla comprising Bacteroidetes and Firmicutes, followed by Proteobacteria, Fusobacteria, Actinobacteria, and Bifidobacterium thermophilus. These altered microbiota signatures can potentially be used to provide future diagnostics, and their presence/absence may contribute to the pathogenesis or prevention/treatment of CRC. However, the pathophysiological role of dysbiosis in CRC still remains unclear, since microbiota changes may reflect changes in host health status and some bacteria may even confer protection as a compensatory response to disease progression. This complexity is clearly evident by the report of specific bacteria associated with tumor initiation phase (driver bacteria) whereas other bacteria are associated with tumor development during progressive stages of CRC (passenger bacteria). Driver bacteria reportedly contribute to the formation of a tumor microenvironment that is comprised of normal epithelial cells and cancer cells. In this milieu, secreted microbial metabolites trigger damage to normal host cells, thus reprogramming their metabolism to change the intestinal microenvironment and microbiome profile towards a more “CRC supportive” composition [5-10]. Potential driver bacteria include Bacteroides fragilis, Escherichia coli, Enterococcus Faecalis, Bacillus, Bradyrhizobium, Methylobacterium, Streptomyces, Shigella, Citrobacter, Salmonella, Intrasporangiaceae, and Sinobacteraceae. On the other hand, passenger bacteria occupy an existing tumor microenvironment where they are thought to either promote or inhibit CRC progression. Reported passenger bacteria include species Fusobacterium, Parvimonas, Peptostreptococcus, Campylobacter, Streptococcus, Schwartzia, Burkholderiales, Caulobacteraceae, Delftia, Oxalobacteraceae, Faecalibacterium, and Sutterella [8-11]. The host gut microbiota and immune system play important roles in CRC prevention and development. Therefore, probiotics, next-generation probiotics...
Depleted bacteria

Conclusive evidence suggests that the reduction in bacteria associated with CRC, such as BB536 (5 × 10^7 CFU), was associated with a decrease in CRC risk. This reduction was particularly pronounced in the probiotic group, whereas it increased in the placebo group.

By contrast, Enterobacteriales and Enterococcus faecalis showed an increase in abundance of beneficial bacteria, including Bifidobacteria and Porphyromonas, with increased Actinobacteria and decreased Firmicutes after probiotic intervention. These beneficial shifts in the gut microbiota were observed in CRC patients who received probiotic powder administered BIO THREE® 2 mg Enterococcus faecalis T110, 10 mg Clostridium butyricum TO-A, and 10 mg Bacillus mesentericus TO-A to 75 CRC patients 15 d prior to the surgery. Incidence of postoperative complications and superficial incisional infections were lower, and these health effects were as shown to associate with an increased mean proportion of beneficial Bifidobacterium, postoperatively, even though this organism was not administered as part of the probiotic regime. The change in microbial diversity and improved integrity of the mucosal barrier were also observed by Liu et al.[18] after Lactobacillus plantarum CGMCC 1258, Lactobacillus acidophilus LA-11, Bifidobacterium longum BL-88 (2.6 × 10^10 CFU/2 g/daily) administration 6 d preoperatively and 10 d postoperatively to CRC patients. The numbers of beneficial bacteria, including Bifidobacteria and Lactobacilli, increased in the probiotic group after surgery, whereas they decreased in the placebo group. By contrast, Enterobacteriales and Pseudomonas were decreased in the probiotic group whereas they increased in the placebo group. Based on a number of clinical trials, the preoperative oral intake of probiotics combined with the postoperative treatment in patients who need gastrointestinal surgery is potentially recommended. Larger rigorously controlled clinical trials are required to endorse these preliminary positive outcome studies since avoidance of probiotic use has also been recommended in patients with immunodeficiency and dysbiosis. More studies and the key outcomes are listed in Table 2.

Table 2 Overview of the most relevant bacteria related to colorectal cancer

<table>
<thead>
<tr>
<th>Enriched bacteria</th>
<th>Depleted bacteria</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fusobacterium nucleatum, Peptostreptococcus spp., Porphyromonas asaccharolytica,</td>
<td>Blautia spp., Facalibacterium prausnitzii, Clostridium butyricum, Streptococcus</td>
<td>[4,55-57]</td>
</tr>
<tr>
<td>Prevotella spp., Porvimonas micra, Bacteroides fragilis, Streptococcus galaxis,</td>
<td>thermophilus, Roseburia spp.</td>
<td></td>
</tr>
<tr>
<td>Escherichia coli, Campylobacter spp., Shigella spp., Enterococcus faecalis</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

This minireview summarizes recent CRC findings from clinical, animal, and in vitro studies, and discusses the efficiency of probiotics, NGP, and postbiotics in CRC prevention and therapy.
<table>
<thead>
<tr>
<th>Probiotic strain/synbiotics</th>
<th>Dose/length of the study</th>
<th>Trial type/sample size</th>
<th>Microbial changes/key outcomes</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lactobacillus rhamnosus GC, Bifidobacterium lactis BB12 + inulin enriched with oligofructose</td>
<td>10⁹ CFU and 10 g of prebiotic, 12 wk</td>
<td>Human prevention study-CRC patients (n = 15 placebo, n = 19 probiotics), polypticated patients (n = 19 placebo, n = 21 probiotics)</td>
<td>↑Bifidobacterium, ↓Lactobacillus, ↓Contradia parviflavens; ↓proliferation rate of colorectal cells and stimulation of peripheral blood mononuclear cells (↑IFNg, IL-2)</td>
<td>Raftter et al [58]</td>
</tr>
<tr>
<td>Bifidobacterium longum BB536, Lactobacillus johnsonii La1</td>
<td>2 × 10⁷ CFU or 2 × 10⁸ CFU, 3 d preoperatively and 3 d postoperatively</td>
<td>CRC patients undergoing elective colorectal resection- Randomized double blind, placebo-controlled study (n = 10 placebo, n = 21 probiotics)</td>
<td>B. longum BB536 did not adhere to colonic mucosa only La1, ↓Enterobacteriaceae</td>
<td>Gianotti et al [59]</td>
</tr>
<tr>
<td>Bifidobacterium longum, Lactobacillus acidophilus, Enterococcus faecalis</td>
<td>3 × 10⁸ CFU, 3 d (from -5 to -3 d) preoperatively</td>
<td>Single-center prospective randomized control study (n = 30 placebo, n = 30 probiotics)</td>
<td>↑Bifidobacterium and ↓Escherichia; ↓endotoxins, D-lactic acid, serum IL-6 and C-reactive protein; ↑serum IgG and IgA; ↓postoperative occurrence of infectious complications of CRC</td>
<td>Zhang et al [60]</td>
</tr>
<tr>
<td>Bifidobacterium longum, Lactobacillus acidophilus and Enterococcus faecalis</td>
<td>1:1 daily 6 × 10⁶ CFU, 5 d</td>
<td>Perioperative intake of probiotics in CRC patients (n = 11 placebo, n = 11 probiotics)</td>
<td>↑richness and diversity of mucosal microbes, ↑Peptostreptococcus, ↓Commamonas, ↓Fusobacterium, ↓Enterococcus, ↓Proteobacteria; no clinical effect</td>
<td>Gao et al [61]</td>
</tr>
<tr>
<td>Lactobacillus acidophilus LA-5, Lactobacillus plantarum, Bifidobacterium lactis BB12, Saccharomyces boulardii</td>
<td>1.75 × 10⁶ CFU, 0.5 × 10⁶ CFU, 1.75 × 10⁶ CFU, 1.5 × 10⁶ CFU, respectively, 1 d preoperatively and 15 d postoperatively</td>
<td>CRC patients undergoing surgery- Randomized, double-blind, placebo-controlled study (n = 80 placebo, n = 84 probiotics)</td>
<td>Reduction of the postoperative pneumonia rate, anastomotic leakage and surgical site infections; ↑gene expression of SOCS3; ↑circulating IL-6, TNF-α</td>
<td>Kottampassi et al [62] (NCT02313519)</td>
</tr>
<tr>
<td>Colon Dephilus [Bifidobacterium breve HA-129 (25%), Bifidobacterium bifidum HA-132 HA (20%), Bifidobacterium longum HA-135 (14.5%), Lactobacillus rhamnosus HA-111 (8%), Lactobacillus acidophilus HA-122 (8%), Lactobacillus casei HA-108 (8%), Lactobacillus plantarum HA-119 (8%), Streptococcus thermophilus HA-110 (6%), Lactobacillus brevis HA-112 (2%), Bifidobacterium infantis HA-116 (0.5%)]</td>
<td>10 × 10⁴ CFU/ daily, 12 wk</td>
<td>Patients with CRC, concomitantly with irinotecan chemotherapy- Randomized, placebo-controlled study (n = 23 placebo, n = 23 probiotics)</td>
<td>Reduction in the incidence and severity of chemotherapy induced diarrhea and incidence of enterocolitis.</td>
<td>Mego et al [63] (NCT01410955)</td>
</tr>
<tr>
<td>Saccharomyces boulardii</td>
<td>7 d preoperatively</td>
<td>Randomized study (n = 18 conventional treatment, n = 15 probiotics)</td>
<td>↓mucosal IL-1β, IL-10, and IL-23A mRNA levels; no statistical impact on postoperative infection rates</td>
<td>Consoli et al [64]</td>
</tr>
<tr>
<td>ProBion Clinica (Bifidobacterium lactis BI-04 and Lactobacillus acidophilus NCFM + inulin)</td>
<td>1.4 × 10⁹ CFU, 7 × 10⁸ CFU and 0.63 g of prebiotic, 8-78 d</td>
<td>Prospective randomized intervention (n = 7 placebo, n = 8 probiotics)</td>
<td>Increased abundance of butyrate producing bacteria ↑Firmicutes, ↑Fusobacterium, ↑Eubacterium; ↑Roseburia; ↓Lachnospira; ↓CRC associated bacteria- Fusobacterium and Peptostreptococcus</td>
<td>Hibberd et al [65] (NCT03072641)</td>
</tr>
<tr>
<td>Simbio-flora (Lactobacillus acidophilus NCFM, Lactobacillus rhamnosus HN001, Lactobacillus casei LPC-37, Bifidobacterium lactis HN019 and fructooligosaccharide)</td>
<td>10⁸ CFU and 6 g of prebiotic, 7 d preoperatively</td>
<td>Patients with CRC subjected to colorectal resection- Prospective, randomized, double-blind, placebo-controlled study (n = 37 placebo, n = 36 probiotic)</td>
<td>Reduced inflammatory state (C-reactive protein, IL-6), reductions in morbidity, hospital length of stay, and use of antibiotics. Stimulated bowel function, decreased complications and reduced cumulative duration of antibiotic usage</td>
<td>Polakowski et al [66]</td>
</tr>
<tr>
<td>Lactobacillus acidophilus BCMc ‘12,130, Lactoba- cillus lactis BCMc ‘12,451, Lactobacillus casei subsp BCMc ‘12,313, Bifidobacterium longum BCMc ‘02120, Bifidobacterium bifidum BCMc ‘02290 and Bifidobacterium infantis BCMc ‘02129</td>
<td>30 billion CFU, twice daily for 6 mo</td>
<td>Randomized double-blind placebo-controlled trial (n = 25 placebo, n = 27 probiotics)</td>
<td>Reduction in the levels of pro-inflammatory cytokines, TNF-α, IL-6, IL-10, IL-12, IL-17A, IL-17C and IL-22.</td>
<td>Zaharuddin et al [32] (NCT03782428)</td>
</tr>
</tbody>
</table>

CRC: Colorectal cancer; IFNg: Interferon-gamma; Ig: Immunoglobulin; IL: Interleukin; TNF-α: Tumor necrosis factor-alpha.
NGP

One potential approach to achieve CRC prevention and treatment is through NGP administration. As described above, the most frequently used probiotics belong to *Bifidobacterium* spp. and *Lactobacillus* spp. However, recent studies using metagenomic approaches have revealed the importance of further identification and characterization of commensal species, mainly anaerobic ones, residing in the gastrointestinal tract that play an important role in regulating the immune system and maintaining overall gut health. Growing evidence suggests that dysbiosis may contribute to CRC progression as well as several other diseases[19-22]. Although there is no official definition of NGP, it is generally defined as live microorganisms identified on the basis of comparative microbiota analyses between healthy and sick individuals/animals that, when administered with strain-specificity and in dose dependent manner, confer health benefits on the host[23,24]. Compared with healthy individuals, patients with CRC possess a different compositional structure and physiological activity of the gut microbiota with SCFAs-producing bacteria being depleted. This suggests that SCFAs-producing bacteria might potentially exhibit anti-inflammatory and anticarcinogenic properties, as well as being NGP candidates in CRC prevention and therapy. SCFAs, primarily acetate, propionate, and butyrate, are key physiological metabolites of the microbial fermentation of dietary fiber in the colon. Butyrate is the major energy source for colonocyte homeostasis, promoting growth stimulation and production of protective cytokines that maintain gut barrier integrity and function[14,25-27]. Furthermore, increasing levels of SCFAs in the gut helps to create a favorable microenvironment for beneficial bacteria by inhibiting the growth and adhesion of pathogens, and by enhancing vitamin bioavailability, mineral absorption and promoting mucosal integrity. Most butyrate-producing bacteria in the human colon belong to the Firmicutes phylum, clostridial clusters IV and XIVa, the most dominant species being *Faecalibacterium prausnitzii* and *Eubacterium rectale*, followed by *Eubacterium* spp. as well as *Anaerostipes* spp. and *Roseburia* spp. In addition to butyrate-producing bacteria, other NGP candidates with important regulatory effects on gut homeostasis include *Akkermansia muciniphila*, non-toxigenic *Bacteroides fragilis*, *Propionibacterium freudenreichii*, and some strains of *Bacillus* spp. and *Clostridium* spp., which belong to Generally Recognized As Safe microorganisms[7,28,29].

Chronic oral administration of *Butyrivibrio ruminis* BCRC 81109 (butyrate producing bacteria) to BALB/cByJNarl male mice decreased colon tumor progression over 9 wk. This protection against CRC clinical outcomes was linked to activation of the SCFAs transporter solute carrier family 5 member 8 and/or G-protein-coupled receptor (GPR) 43[30]. Chen *et al*[25] also observed in an in vivo animal study that application of butyrate producing bacteria *Clostridium butyricum* ATCC 19398 (2 × 10⁷ CFU/0.2 mL 3 times a week for 12 wk) inhibited intestinal tumor development by an increasing apoptosis of CRC cells, by modulating the Wnt/β-catenin signaling pathway. There was also a reduction in pathogenic bacteria and bile acid-biotransforming bacteria, whereas an increase in beneficial *Lactobacillus* spp. and SCFAs-producing *Ruminococcus* and *Eubacterium* spp. was evident. Thus, reduction in colonic secondary bile acids increased cecal SCFAs levels and activated G-protein coupled receptors, GPR43 and GPR109A, which were mechanistically implicated. Growth of CRC cell lines (HCT-116 and SW1116) was significantly inhibited by strains *Bacillus subtilis* ATCC 23857 and *Clostridium butyricum* ATCC 19398, and by their main metabolites bacitracin and butyrate. mRNA levels of important receptors and transcriptional factors related to inflammation for example, TLR4, MYD88, nuclear factor-kappa B (NF-kB), interleukin 22 (IL-22), and survivin were decreased and expression of p21WAF1 was increased after treatment of SW1116 cells with *Bacillus subtilis* and *Clostridium butyricum* NGP[31]. Purified components produced by NGP cells were also studied and inhibition of human cancer cell proliferation by controlling the cell cycle was detected. Poly saccharide A purified from *Bacteroides fragilis* NCTC9343 (non-toxigenic) induced the production of the pro-inflammatory cytokine IL-8[32] and aspartic protease Amuc_1434 (recombinant enzyme) from *Akkermansia muciniphila* upregulated the expression of tumor protein 53, increased mitochondrial reactive oxygen species (ROS) levels and promoted apoptosis of LS174T cells[33]. Pahle *et al*[34] employed *Clostridium perfringens* enterotoxin (CPE) in CPE gene therapy to selectively target claudin-3 and claudin-4 expressing colon carcinomas in vitro and in vivo by using a translation optimized CPE expressing vector. Elevated toxicity of the optimized CPE expressing vector was evident in claudin-positive cells 48 h after the transfection, with toxicity rates of 76%–92% and rapid cytotoxic effects such as membrane disruption and necrosis. Further in vivo studies focused on the efficiency of NGP application in CRC are listed in Table 3 and postbiotics derived from NGP are considered below.

POSTBIOTICS

Postbiotics is an extensively researched subject that remains a largely understudied topic in CRC. Due to the phenomenal number and variety of metabolites produced by bacteria, it has been an enormous challenge to isolate and characterize the specific compound/s responsible for the therapeutic efficacy. Moreover, defining safety profiles and appropriate application doses of particular postbiotics in the preclinical and clinical settings may require regulatory guidelines and approvals[5]. The International
Scientific Association for Probiotics and Prebiotics (ISAPP) offers expertise in microbiology, microbial physiology, gastroenterology, nutrition, food science and pediatrics. ISAPP recently provided the clear definition and scope of postbiotics to include “preparation of inanimate microorganisms and/or their components that confer a health benefit on the host”[35]. Postbiotics, which exert desired physiological effects to the host, include inactivated microbial cells or cell components (cell surface proteins, endo- or exopolysaccharides, peptidoglycan-derived muropeptides and teichoic acids) or important metabolites secreted by gut microbiota through a fermentation process or released under certain conditions such as a change in intestinal environment or after lysis (SCFAs including acetate, propionate and butyrate; enzymes; bacteriocins; reuterin; acetoin; organic acids, etc)[5,35,36]. Therefore, the isolation and characterization of new postbiotics is a growing field and requires careful biochemical characterization of beneficial mechanisms. Supplementation with postbiotics, can in some cases be an effective and safer strategy to prevent and/or treat diseases, compared with ingestion of viable probiotic bacteria[5].

Microbial metabolites undoubtedly play an important role in CRC pathogenesis. Certain postbiotics exert antitumor activity, including selective cytotoxicity against tumor cells suggesting their therapeutic potential (Figure 1)[5]. For example, SCFAs are well-known inhibitors of epigenetic enzymes histone deacetylases, which play a central role in gene regulation; thus, SCFAs have the ability to induce cell cycle arrest, and/or apoptosis in many cancer cell lines[37]. Cell-free supernatants (CFS) of different Lactobacillus and Bifidobacterium strains have been shown to induce apoptosis or inhibit proliferation of CRC cell lines[38-40]. Chen et al[41] demonstrated that supernatants of Lactobacillus johnsonii BCRC17010 and Lactobacillus reuteri BCRC14625 strains in high concentrations were able to damage HT-29 cell membranes causing elevated lactate dehydrogenase release. A recent study has reported a potent selective cytotoxicity effect of postbiotic metabolites from Lactobacillus plantarum strains via anti-proliferative effects and induction of apoptosis in HT-29 cells whilst sparing the normal cells[42]. Cousin et al[43] showed that metabolites from Propionibacterium freudenreichii ITG-P9, namely propionate and acetate, had induced intrinsic apoptosis of CRC cells, via the production and release of SCFAs acting on mitochondria. Moreover, CFS or SCFAs in combination with Tumor Necrosis Factor-Related Apoptosis-Inducing Ligand (TRAIL), increased the pro-apoptotic gene expression (TRAIL-R2/DR5), decreased the anti-apoptotic gene expression of FLIP and XIAP in HT-29 cancer cells and enhanced the cytotoxicity in CRC cells compared to human healthy intestinal epithelial cells. Further control studies are required to delineate specific molecular targets in these models since enhanced toxicity to fermentation induced acidic pH shifts remains a potential protective mechanism.

As inflammation is undeniably linked to carcinogenesis, any postbiotic that inhibits inflammation is also an important candidate acting as anti-tumor agent. It was shown that Lactobacillus rhamnosus GG-

Table 3 Efficiency of next-generation probiotics in colorectal cancer in vivo

<table>
<thead>
<tr>
<th>NGP strain</th>
<th>Application</th>
<th>Study/ cohort</th>
<th>Mechanism/effect(s)</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Akkermansia muciniphila</td>
<td>pasteurized culture 1.5×10^6 CFU/100 μL or</td>
<td>23-wk in vivo animal study, acute colitis was induced by AOM (10 mg/kg) (intraperitoneally) + 2% DSS (in water)-male C57BL/6j mice</td>
<td>Prevention of AOM/DSS-induced tumorigenesis by DNA damage attenuation, cell apoptosis and abnormal proliferation. Significant amelioration of acute colitis, relieved colon shortening and splanchnomacy, delayed tumor formation and reduced expression of β2XAX, cleaved caspase 3 and Ki67. Blunted CAC through the activation and activation of cytotoxic T lymphocytes, indicated by TNF-α induction and PD-1 downregulation</td>
<td>Wang et al [67]</td>
</tr>
<tr>
<td>MucT ATCC BAA-835</td>
<td>recombinant Amuc_1100 3 pg (specific outer membrane protein)/2 wk before AOM injection until sacrifice</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Akkermansia muciniphila ATCC BAA-835</td>
<td>1×10^6 CFU/mouse every other day (day 7-12), gavage administration</td>
<td>4-wk in vivo animal study, CRC induced by mice colon cancer cells CT-26 (1×10^6) (subcutaneously)-n = 70, male BALB/c mice</td>
<td>A. muciniphila colonization significantly increased inhibition rate/anti-cancer effect of FOLFOX (from 48% to 76%) and significantly decreased marker of proliferation-Ki67 (5% of positively stained cells)</td>
<td>Hou et al[68]</td>
</tr>
<tr>
<td>Clostridium butyricum (powder by Kexing Biepharm CO., LTD)</td>
<td>2×10^6 CFU/0.2 mL/3 times per week, gavage administration</td>
<td>78 d in vivo animal study, CAC induced by intraperitoneal AOM (12.5 mg/kg) + 2.5% DSS (in water)-n = 30, C57BL/6 mice</td>
<td>Inhibition of NF-κB pathway and apoptosis promotion. Change in the microbiome composition-reduction of Firmicutes to Bacteroidetes ratio. Reduction of incidence and size of CRC and increase of tumor cells apoptosis. Reduction in cytokines including TNF-α, IL-6 and level of COX-2. Decrease in phosphorylation of NF-κB and level of Bcl-2. Increase in Bax expression</td>
<td>Liu et al[69]</td>
</tr>
<tr>
<td>Clostridium butyricum ATCC 19098 or Bacillus subtilis ATCC 23857</td>
<td>2.5×10^7 CFU/0.5 mL/3 times per week for 28 wk, oral administration</td>
<td>28 wk in vivo animal study. CRC induced by DMH (20 mg/kg body weight)/weekly (intraperitoneally)-n = 72, male C57BL/6 mice</td>
<td>Inhibition of intestinal tumorigenesis and modulation of immunity and inflammation. Reduction in tumor size and incidence. After supplementation with probiotics, mice showed decreased Th2 and Th17 expression and increased CD4/CD8 expression compared to DMH-treated mice. Reduced gene expression of TLR4-MYD88-NF-κB, IL-22 and increase of F21 wild and Thi3 mRNA levels in intestinal mucosa</td>
<td>Chen et al[31]</td>
</tr>
</tbody>
</table>

AOM: Azoxymethane; CAC: Colitis-associated cancer; CRC: Colorectal cancer; DMH: 1,2-dimethylhydrazine; DSS: Dextran sulfate sodium; FOLFOX: Oxaliplatin, fluorouracil and calcium folinate; IL: Interleukin; NF-κB: Nuclear factor-kappa B; TNF-α: Tumor necrosis factor-alpha.
derived protein p40 can play a role in the prevention of CRC by suppressing intestinal epithelial inflammation, inhibiting epithelial cells apoptosis and by promoting IgA production[44-46]. CFS derived from several other probiotic strains, such as, *Lactobacillus acidophilus*, *Lactobacillus casei*, *Lactobacillus rhamnosus* GG and *Bifidobacterium breve*, were able to downregulate inflammation, exhibit antioxidant activity or maintained intestinal barrier integrity[47-49].

To date, only a few animal studies have been performed to evaluate the effectiveness of postbiotics in CRC prevention and therapy *in vivo*. The stage is now set to expand this work with the use of translational *in vivo* models and clinical trials, which are essential to demonstrate efficacy. Sharma and Shukla [50] observed that CFS from *Lactobacillus rhamnosus* MD 14 MH65799 containing acetamide, acetate, propionate, butyrate, thiocyanic acid and oxalic acid attenuated early colon carcinogenesis in Sprague-Dawley rats (n = 36). The protective mechanism was linked to reduced fecal procarcinogenic enzymes, oxidants, aberrant crypt foci, vis-a-vis downregulating oncogenes (β-catenin, K-ras, Cox-2, NF-kB) and upregulating tumor suppressor p53 gene leading to an almost healthy colon histology. De Moreno de LeBlanc et al.[51] evaluated the effect of the enzyme catalase as a postbiotic from catalase-producing *Lactococcus lactis* htrA-NZ9000 on the prevention/regression of 1,2-dimethylhydrazine (DMH) induced CRC in BALB/c mice (n = 180-210). Catalase-producing *Lactococcus lactis* increased catalase activity in DMH-treated mice and reduced H$_2$O$_2$ levels compared with the control group. Using the histopathological grading scale of chemically induced CRC, mice that received catalase-producing *Lactococcus lactis* had significantly less colonic damage and inflammation (2.0 ± 0.4) compared to control animals that received non-catalase-producing *Lactococcus lactis* (4.0 ± 0.3) or placebo-treated animals (4.7 ± 0.5). Increased antioxidant activity reduced levels of H$_2$O$_2$ and ROS involved in CRC onset and progression.

There are also promising results from studies of postbiotics derived from NGP. Recently, numerous *in vitro* studies showed that supernatant from SCFAs-producing bacteria, such as Butyricicoccus pullicorum BCRC 81109[30], *Clostridium butyricum* ATCC 19398[25], *Propionibacterium freudenreichii* TL142[52], *Propionibacterium acidipropionici* CNRZ80, *Propionibacterium freudenreichii* subsp. freudenreichii ITG18, *Propionibacterium freudenreichii* subsp. shermanii SI41[53] suppressed CRC cells proliferation and induced apoptosis. The same results were documented by Zhao et al.[54], where single strain CFS from human *Bacillus* strains BY38, BY40, BY43, BY45 exhibited inhibitory effects on the proliferation of CRC cells in a dose-dependent manner through the induction of cell apoptosis. These results suggest that NGP could represent novel and promising anti-tumor agents against CRC. Further *in vitro* studies focused on the activity of postbiotics derived from different probiotic strains in CRC cell lines are listed in Table 4.

CONCLUSION

Traditional probiotics have utility in the management of CRC as adjuvant treatment, mainly to reduce postoperative complications and to alleviate the side effects of chemotherapy. Antitumorigenic mechanisms of probiotics include the modification of intestinal microbiome, improvement of intestinal barrier integrity, immune potentiation and maintaining gut homeostasis. However, it is well known that the efficiency of probiotics is strain specific. The available clinical data indicate that CRC patients most
Table 4 Efficiency of probiotics on cancer cells in vitro

<table>
<thead>
<tr>
<th>Probiotic strain</th>
<th>Derived postbiotic</th>
<th>Cell line</th>
<th>Mechanism/effect(s)</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lactobacillus casei ATCC334</td>
<td>CFS (ferrichrome)</td>
<td>Caco-2/bbe, SKCCO-1, SW620</td>
<td>In CFS, ferrichrome subsequently identified as the responsible molecule that induced apoptosis via JNK-DDT13 signaling axis, thus having tumor-suppressive effect and exerted minimal effect on normal intestinal epithelial cells</td>
<td>Konishi et al[70]</td>
</tr>
<tr>
<td>Lactobacillus rhamnosus MD 14 MH 656799</td>
<td>CFS (acetate, butyrate, propionate, acetylthiaoic acid, and oxalic acid)</td>
<td>Caco-2, HT-29</td>
<td>CPS with metabolites exhibited both anti-genotoxic and cytotoxic potential against CRC cells</td>
<td>Sharma et al[71]</td>
</tr>
<tr>
<td>Bifidobacterium adolescentis SPM0212</td>
<td>CFS</td>
<td>Caco-2, HT-29, SW480</td>
<td>CPS significantly inhibited the proliferation of cancer cells</td>
<td>Kim et al[59]</td>
</tr>
<tr>
<td>Lactobacillus fermentum KCTC 3112</td>
<td>CFS</td>
<td>CDD18- C0, HCT-116, HT-29</td>
<td>Induction of cancer cells apoptosis by CPS up-regulating Caspase-3, Bax, Bak, Nixa, and Bid mRNA expressions</td>
<td>Lee et al[38]</td>
</tr>
<tr>
<td>Lactobacillus casei (ATCC 334), Lactobacillus rhamnosus (GG ATCC 53103)</td>
<td>CFS</td>
<td>HCT-116</td>
<td>Anti-metastatic effects of high molecular weight fractions</td>
<td>Escamilla et al[40]</td>
</tr>
<tr>
<td>Lactobacillus acidophilus ATCC 4536, Lactobacillus lactis ATCC 11454, Lactobacillus casei ATCC 334, Lactobacillus reuteri ATCC 55148, Saccharomyces boulardii ATCC MYA-796</td>
<td>CFS</td>
<td>HT-29</td>
<td>Downregulation of the expression of PGE-2 and IL-8 in cancer cells by metabolites of probiotics. CPS differently modulated IL-1β, IL-6, TNF-α, and IL-10 production by human macrophages, suggesting a peculiar anti-inflammatory activity</td>
<td>De Marco et al[48]</td>
</tr>
<tr>
<td>Lactobacillus casei ATCC 393</td>
<td>Sonicated-cell suspension</td>
<td>CT26, HT-29</td>
<td>Inhibition of cancer cells proliferation and induction of apoptosis</td>
<td>Tiptiri-Kourpeti et al[72]</td>
</tr>
<tr>
<td>Lactobacillus reuteri PTCC 1655</td>
<td>Sonicated-cell suspension</td>
<td>HT-29- SbE</td>
<td>Anti-metastatic and anti-proliferative effects</td>
<td>Magwood et al[73]</td>
</tr>
<tr>
<td>Lactococcus lactis PTCC 1336</td>
<td>Nisin, cell wall, cytoplasmic extract of nisin</td>
<td>SW480</td>
<td>Anti-proliferative effects, associated with the decreased expression of cyclin D1 in SW480 cell line</td>
<td>Hosseini et al[74]</td>
</tr>
<tr>
<td>Pedicoccus pentosaceus FP3, Lactobacillus salivarius FP25/FP35, Enterococcus faecium FP51</td>
<td>SCFAs (butyrate and propionate)</td>
<td>Caco-2</td>
<td>Significant proliferation inhibition of Caco-2 cells and activation of apoptosis</td>
<td>Thirabunyanon and Hongwittayakorn[75]</td>
</tr>
<tr>
<td>Streptomyces levis ABRINW111</td>
<td>Extracted metabolites</td>
<td>SW480</td>
<td>SW480 growth inhibition, increased Caspase-3 and reduced Ki67 expression in a concentration/time-dependent manner; subG1 phase (apoptosis) increased by metabolites and cell cycle arrest in G0, G1/M and S phase; p53 gene expression followed SW480 cells treatment significantly</td>
<td>Faramarzian Azimi Maragheh et al[76]</td>
</tr>
<tr>
<td>Streptomyces sp. MUM256</td>
<td>MUM256 extract</td>
<td>HT-29, Caco-2</td>
<td>Antioxidant properties, cytotoxicity against CRC cells by reduction in viability and induction of apoptosis (depolarization of mitochondrial membrane potential and arrest in subG1 phase)</td>
<td>Tan et al[77]</td>
</tr>
<tr>
<td>Clostridium butyricum ATCC 19398</td>
<td>SCFAs</td>
<td>HCT-116, HCT-8, Caco-2</td>
<td>Suppression of the Wnt/b-catenin signaling pathway and modulation of the gut microbiota composition.</td>
<td>Chen et al[25]</td>
</tr>
</tbody>
</table>

CFS: Cell-free supernatant; CRC: Colorectal cancer; IL: Interleukin; SCFAs: Short-chain fatty acids; TNF-α: Tumor necrosis factor-alpha.

often benefit from combined administration of strains *Lactobacillus acidophilus*, *Lactobacillus casei*, *Bifidobacterium lactis*, and *Bifidobacterium longum*. Use of their combination or in combination with other species is more effective than individual supplementation. Nevertheless, consideration of each CRC patient’s health status is still strictly recommended before administering viable probiotics. The gut microbiota is emerging as a contributing factor in the etiopathology of CRC. It is necessary to consider gut microbiota–drug interactions, including composition and metabolic activity of gut microbiota, which can both positively and negatively affect the outcome of CRC therapy. And even though research in this area is still in its infancy, it can be assumed that future clinical treatment and prevention of CRC will focus on supplementing the microbiome with commensal species (NGP candidates) that are predominantly anaerobic. Recent studies indicate that SCFAs-producing bacteria, such as *Akkermansia muciniphila*, *Propionibacterium freudenreichii*, and *Butyrivibrio coccoacaeorum* belong to
beneficial NGP that may have applicability in CRC therapy. Furthermore, it was discovered that strains previously defined as potential pathogens appear to possess probiotic properties when these lack key virulence factors, for example non-toxigenic *Bacteroides fragilis* NCTC9343 has positive effects on patient's health. A significant disadvantage of NGP is, above all, their safety as this has not yet been sufficiently confirmed in animal and clinical studies. Safety validation is of particular importance before administering NGP to oncology patients. Although NGP research is experimentally demanding, emerging data shows great potential. Therefore, it is necessary to continue and explore new possibilities of NGP use in the therapy or prevention of diseases, including CRC, especially through clinical trials. Supplementation with probiotics should be favorable in CRC therapy, because postbiotics have the ability to stimulate immune responses, inhibit cancer cell proliferation, induce apoptosis and necrosis, and they can shape microbiome composition in CRC patients. The advantage of postbiotics is that they do not pose a risk of unwanted infection to the patient, although screening for product contamination will be important. Moreover, it is possible to accurately determine and verify administered doses of a particular postbiotic. However, this emerging research area currently lack in vivo or clinical data to assess feasibility. In conclusion, the administration of traditional probiotics, NGP or postbiotics, supported by various experimental studies, is an efficient complementary therapeutic approach to combat CRC. A protective effect of probiotics and postbiotics against CRC onset is also indicated, however, lifestyle changes are recommended as a first line of defense in CRC prevention.

ACKNOWLEDGEMENTS

We are thankful to Tor C Savidge, PhD for the editorial assistance.

FOOTNOTES

Author contributions: All authors contributed equally to the conceptualization and design of the manuscript; Kvakova M prepared and finalized the manuscript; Kamlarova A, Stofilova J, and Benetinova V reviewed the literature, and prepared the tables and figure; Bertkova I as senior author revised the manuscript; all authors approved the final manuscript.

Supported by: Scientific Grant Agency of the Ministry of Education of Slovak Republic and Academy of Sciences VEGA, No. 1/0393/20; and the Operational Program Integrated Infrastructure Within the Project: Demand-Driven Research for the Sustainable and Innovative Food, Co-financed by the European Regional Development Fund, No. Drive4SIFood 313011V336.

Conflict-of-interest statement: All the authors report no relevant conflicts of interest for this article.

Open-Access: This article is an open-access article that was selected by an in-house editor and fully peer-reviewed by external reviewers. It is distributed in accordance with the Creative Commons Attribution NonCommercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: https://creativecommons.org/Licenses/by-nc/4.0/

Country/Territory of origin: Slovakia

ORCID number: Monika Kvakova 0000-0002-9659-5584; Anna Kamlarova 0000-0001-7871-5338; Jana Stofilova 0000-0002-9409-4153; Veronika Benetinova 0000-0001-9523-8203; Izabela Bertkova 0000-0003-3076-2711.

REFERENCES

Kvakova M et al. Pro/postbiotics in CRC prevention and therapy

July 21, 2022 | Volume 28 | Issue 27

38 Lee YP, Chiu CC, Lin TJ, Huang SW, Chiu CF, Huang YT, Chen YH, Chen TH, Chuang HL. The germ-free mice monocolonization with *Bacteroides fragilis* improves azoxymethane/dextran sodium sulfate induced colitis-associated colorectal cancer. *Immunopharmacol Immunotoxicol* 2019; 41: 207-213 [PMID: 30706742 DOI: 10.1080/08923973.2019.1569947]

40 Escamilla J, Lane MA, Maitin V. Cell-free supernatants from probiotic *Lactobacillus casei* and *Lactobacillus rhamnosus* GG decrease colon cancer cell invasion in vitro. *Nutr Cancer* 2012; 64: 871-878 [PMID: 22830611 DOI: 10.1080/01635581.2012.700738]

52 Lan A, Lagadic-Gossmann D, Lemaire C, Brenner C, Jan G. Acidic extracellular pH shifts colorectal cancer cell death from apoptosis to necrosis upon exposure to propionate and acetate, major end-products of the human probiotic

https://www.wjgnet.com

75 Thirabunyanon M, Hongwittayakorn P. Potential probiotic lactic acid bacteria of human origin induce antiproliferation of colon cancer cells via synergetic actions in adhesion to cancer cells and short-chain fatty acid bioproduction. *Appl Biochem*
Kvakova M et al. Pro/postbiotics in CRC prevention and therapy

