Name of Journal: World Journal of Clinical Cases

Manuscript NO: 75328

Manuscript Type: CASE REPORT

Quadricuspid aortic valve and right ventricular type of myocardial bridging in an asymptomatic middle-aged woman: A case report

Sopek Merkas I et al. Quadricuspid aortic valve

Ivana Sopek Merkaš, Nenad Lakušić, Maja Hrabak Paar

Abstract

BACKGROUND
Quadricuspid aortic valve (QAV) is a very rare congenital cardiac defect with the incidence of 0.0125%-0.033% (< 0.05%) and causing predominantly aortic regurgitation. A certain number of patients (nearly one-half of patients) have abnormal function and often require surgery, commonly in the fifth and sixth decades. QAV usually appears as an isolated anomaly but may also be associated with other cardiac congenital defects. Echocardiography is considered the main diagnostic method, although more and more importance is given to computed tomography (CT), and magnetic resonance (MR) as complementary methods.

CASE SUMMARY
A 60-year-old female patient was referred for transthoracic ultrasound of the heart as a part of routine examination in the treatment of arterial hypertension. She did not have any significant symptoms. QAV was confirmed, there were no elements of valve stenosis, with moderate aortic regurgitation. At first, it seemed that in the projection of the presumed left coronary cusp there were two smaller and equally large cusps along with two larger and normally developed cusps. Cardiac CT imaging was performed to
obtain an even more precise valve morphology, and it showed that the location of the supernumerary cusp is between the right and left coronary cusp, with visible central malcoaptation of the cusps. Also, coronary computed angiography confirmed the right-type of myocardial bridging at the distal segment of the left anterior descending coronary artery. Significant valve dysfunction often occurs in middle-aged patients and results in surgical treatment, therefore a one-year transthoracic echocardiogram control examination and follow-up was recommended to our patient.

CONCLUSION
This case highlights the importance of diagnosing QAV since it leads to progressive valve dysfunction and can be associated with other congenital heart defects which is important to detect, emphasizing the role of cardiac CT and MR.

Key Words: Quadricuspid aortic valve; Congenital cardiac defect; Aortic insufficiency; Multimodal imaging; Myocardial bridging; Case report

Sopek Merkaš I, Lakušić N, Hrabak Paar M. Quadricuspid aortic valve and right ventricular type of myocardial bridging in an asymptomatic middle-aged woman: a case report. World J Clin Cases 2022; In press

Core Tip: The recognition of quadricuspid aortic valve (QAV) has clinical significance as it leads to progressive aortic valve dysfunction (in majority aortic regurgitation), which can be severe enough for surgical correction, and can be associated with other congenital heart defects - in our case right-ventricular type of myocardial bridging at the distal segment of the left anterior descending coronary artery. Therefore, these patients require appropriate diagnosing, careful clinical evaluation and follow-up in order to be properly treated. Cardiac computed tomography, as well as magnetic resonance, is a useful imaging modality for comprehensively assessing of QAV.
INTRODUCTION
Except for the mitral valve which morphologically has two leaflets, the other three heart valves are normally trileaflet. The aortic and pulmonary valves are known as semilunar valves. Semilunar valve formation begins during the fourth week of gestation. The improper fusion or the incomplete dedifferentiation of endocardial cushions is responsible for the formation of anatomically and structurally congenitally abnormal aortic valves. The most common pathophysiological variant seen in everyday clinical practice is bicuspid aortic valve, occurring in 1%-2% of the population, with a 2:1 predominance among men. Unicuspid aortic valve is also one of the variants of congenital valvular defect with an incidence of 0.02% in the general population. The rarest pathophysiological variant in clinical practice is the QAV with a very low incidence of 0.0125%-0.033% in the general population. Each of the described pathophysiological defects of the aortic valve is more prone to accelerated degeneration in the form of stenosis and/or insufficiency in comparison with morphologically normal tricuspid aortic valve, and it is treated mostly by surgery or with transcatheter intervention.

CASE PRESENTATION
Imaging examinations
Transthoracic echocardiogram (TTE) verified normal dimensions of left ventricle (LV) (left ventricular end-diastolic diameter - LVDd 5.1 cm; end-diastolic volume - EDV 118 mL), without left ventricular hypertrophy (LVH) (wall thickness 0.9 cm, LV mass 165 g), no regional wall motion abnormalities, with normal global systolic function [LV ejection fraction (EF) - Teichholz 66%, Simpson biplane 65%] and second-degree diastolic dysfunction of the LV (E/A 1.2, dt 220 ms, E / e' 10, during Valsalva maneuver E/A 0.6). Mitral valve function was normal and there were no indirect signs of pulmonary hypertension while resting. The aorta was of normal diameter at all levels (annulus, bulbus, sinotubular junction, ascending segment, and arcus). QAV was verified, and at first it seemed that in the projection of the presumed left coronary cusp there were two
smaller and equally large cusps along with two larger and normally developed cusps (Figure 1A). There were no elements of QAV stenosis (aortic valve area planimetric - 3 cm²) with moderate aortic regurgitation (vena contracta 5 mm, pressure half time - PHT 499 ms, retrograde pressure gradient 45 mmHg, according to the depth of the jet in LV angio 3+, reversal flow in descending aorta 0.14 m/s), (Figure 1B and C, Video 1). Ascending aorta measured 27 mm. The diagnostic algorithm was then extended with multislice computed tomography (MSCT) imaging to obtain an even more precise QAV morphology and it showed that the location of the supernumerary cusp (asterisk) is between the right and left coronary cusp, with visible central malcoaptation of the cusps (Figure 2A). Other possible associated pathologies such as abnormally located coronary ostia, patent foramen ovale, etc., were excluded. Since the patient was asymptomatic, the medicament therapy remained the same. A one-year TTE control examination was recommended. Coronary CT angiography (CCTA) confirmed the right ventricular type of myocardial bridging at the distal segment of the left anterior descending (LAD) coronary artery (Figure 2B). In this type of myocardial bridging, an intramuscular artery segment is running in the right ventricular anterior wall, or in the right ventricular cavity[5]. Other possible associated pathologies such as abnormally located coronary ostia, patent foramen ovale, etc., were excluded. Since the patient was asymptomatic, the medicament therapy remained the same. A one-year TTE control examination was recommended.

Laboratory examinations

Complete blood count was normal, as well as biochemistry and urine analysis. Cholesterol was 5.0 mmol/L and LDL-cholesterol 2.2 mmol/L. Electrocardiogram showed normal sinus rhythm 71/min with no elements of LVH.

Physical examination

Blood pressure was 120/75 mmHg, heart rate 68/min. Heart murmur was not described in clinical status and there were no clinical signs of heart failure (no edema of
limbs, without lung crackles). Abdomen was not painful, liver and spleen were not enlarged.

Personal and family history
There are no documented cardiovascular illnesses in the family.

History of past illness
Apart from arterial hypertension for last ten years and dyslipidemia that was treated for two years, the patient does not have other chronic diseases. In the family there were no sudden deaths or known cardiovascular diseases.

History of present illness
The patient had well-regulated arterial hypertension managed with a combination of losartan and hydrochlorothiazide (50/12.5 mg), and cholesterol levels were within range managed with a low dose statin therapy (atorvastatin 10 mg).

Chief complaints
A 60-year-old female patient was referred for transthoracic ultrasound of the heart as part of a routine examination because of long-term arterial hypertension treatment. In daily life she reported no significant symptoms in the form of shortness of breath, chest pain or headache. She did not experience syncope or dizziness.

FINAL DIAGNOSIS
The final diagnosis of the presented case is QAV with the location of the supernumerary cusp (asterisk) between the right and left coronary cusp and associated anomaly of the right-ventricular type of myocardial bridging at the distal segment of the LAD.

TREATMENT
The recommendation of medicament therapy for arterial hypertension and dyslipidemia remained the same. It was explained to the patient that QAV can lead to progressive valve dysfunction (in this case insufficiency) which can lead to surgical aortic valve replacement. Also, she was instructed to pay attention to the possible symptoms - dyspnea, chest discomfort, palpitations, syncope, edema of the legs, etc. It is unclear whether patients with QAVs have increased risk for infective endocarditis, though it has been reported, and antibiotic prophylaxis against infective endocarditis in the QAV patients with unequal-sized cusps is suggested\(^6\) in the case of dental, respiratory tract procedures, gastrointestinal, or urogenital procedures. Currently in ESC guidelines there is no recommendation for infective endocarditis prophylaxis for these patients\(^7\).

OUTCOME AND FOLLOW-UP

A one-year TTE control examination was recommended. At control examination the patient was stable, still asymptomatic, without the valvular disease progression.

DISCUSSION

QAV was first described in 1862 by Balington\(^8\). In the large PubMed database QAV was first mentioned in 1958\(^9\). QAV is an extremely rare congenital anomaly and depending on the observed population the incidence of QAV ranges from 0.0125\%-0.033\% in the general population\(^4\), 0.00028\%-0.00033\% in the autopsy series, 0.0059\%-0.0065\% for patients undergoing TTE and 0.05\%-0.1\% for patients undergoing aortic valve replacement due to aortic regurgitation\(^6\).

The mechanisms of QAV development remain unclear. Abnormal septation of the conotruncus and abnormal septation of one of the endocardial cushions, as a result of an inflammatory episode, is a possible pathophysiological mechanism of QAV development\(^6\).

There are several QAV classification schemes according to the morphology of the cusps. The Hurwitz and Roberts classify and divide QAV into 7 types from A to G.
based on the relative size of the supernumerary cusp (Figure 3A)10. Type A, B and C represent more than 85% of the cases. At first, according to the TTE, we considered that our patient has a type C morphology of QAV (two equal larger cusps and two equal smaller cusps). However, CT confirmed type B form of QAV (three equal-sized cusps and one smaller cusp). Vali et al11 supplemented the original Hurwitz and Roberts classification with type H of QAV (Figure 3B). Furthermore, Nakamura et al12 designed a simplified classification by focusing on the position of the supernumerary cusp (Figure 3C) where our patient falls in Type I (supernumerary cusp between the left and right coronary cusps).

QAV commonly occurs as an isolated defect but has been associated with the aortic dilatation13 and other congenital heart defects such as patent foramen ovale14 and ductus arteriosus15, atrial and ventricular septal defect16,17, subaortic stenosis18, hypertrophic cardiomyopathy19, etc., (Table 1). Coronary ostium and anomalies of the coronary arteries are the most frequently associated disorders in patients with QAV. For example, malformation and displacement of coronary ostia is found in 10% of patients with a QAV6. Thus, CCTA confirmed that our patient has the right-ventricular type of myocardial bridging at the distal segment of the LAD coronary artery. Myocardial bridging is congenital coronary anomaly, mostly benign and asymptomatic. However, it can be associated with myocardial ischemia, exertional angina, ventricular arrhythmias, acute coronary syndrome, sudden death, etc. Symptoms may appear in case of LVH, vasospasm, diastolic and microvascular dysfunction. The prevalence varies considerably depending on the diagnostic method used (CCTA - 25%, coronary angiography - 0.5%-16%) and emphasize the difference of significant functional finding from an anatomic finding20.

Aortic valvular insufficiency is commonly observed in QAV. It occurs secondary to a central orifice formed from malcoaptation of the four valvular leaflets6,21,22. In addition to aortic, associated mitral regurgitation is possible23.

The basic diagnostic method of detecting QAV is TTE with further confirmation of the diagnosis using transesophageal echocardiography (TEE). TEE is more sensitive
method than TTE and it can additionally visualize the coronary ostia. However, echocardiography is a subjective method - it is operator-dependent, and its diagnostic value depends on several factors (e.g., suboptimal acoustic windows, subject body habitus, and in case of uncertain valvular anatomy differential diagnosis24 (Table 2) may require additional imaging)25. MSCT and MR are complementary methods in detecting possible associated anomalies and differential diagnosis12,25,26.

Multiple clinical courses are possible for patients with QAV. At a younger age (< 20 years), patients usually have no difficulties, and the anomaly is accidentally found at a routine TTE examinations. Significant QAV dysfunction often occur in middle-aged patients and results in a surgical treatment. About one-third of the patients with QAV require aortic valve surgery26, and patients' complaints are mostly related to congestive heart failure (CHF) symptoms due to stenosis and/or significant valve insufficiency27.

Treatment of severe dysfunctional QAV (stenosis and/or insufficiency) includes aortic valve repair (required skill and experience of a cardiac surgeon), surgical aortic valve replacement, and transcatheter aortic valve replacement28-32.

CONCLUSION
QAV is a very rare congenital cardiac defect. It is often detected accidentally at a routine TTE examination, and the clinical course in younger patients is mostly asymptomatic with symptoms often starting in middle-aged patients. When diagnosing QAV and possible related anomalies, multimodal imaging plays a pivotal role26,33. In case of severe QAV dysfunction and CHF symptoms, as well as in severe aortic valve dysfunction of other etiology, surgical or transcatheter treatment is required.

REFERENCES
1 Anderson RH, Webb S, Brown NA, Lamers W, Moorman A. Development of the heart: (3) formation of the ventricular outflow tracts, arterial valves, and intrapericardial arterial trunks. \textit{Heart} 2003; \textbf{89}: 1110-1118 [PMID: 12923046 DOI: 10.1136/heart.89.9.1110]

75328_Auto_Edited-check.docx

ORIGINALITY REPORT

<table>
<thead>
<tr>
<th>Position</th>
<th>Source</th>
<th>Words</th>
<th>Similarity</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>emedicine.medscape.com</td>
<td>72</td>
<td>3%</td>
</tr>
<tr>
<td>2</td>
<td>www.ncbi.nlm.nih.gov</td>
<td>62</td>
<td>3%</td>
</tr>
<tr>
<td>3</td>
<td>ecronicon.com</td>
<td>30</td>
<td>1%</td>
</tr>
<tr>
<td>4</td>
<td>nepjol.info</td>
<td>28</td>
<td>1%</td>
</tr>
<tr>
<td>5</td>
<td>s3-eu-west-1.amazonaws.com</td>
<td>25</td>
<td>1%</td>
</tr>
<tr>
<td>6</td>
<td>content.onlinejacc.org</td>
<td>15</td>
<td>1%</td>
</tr>
<tr>
<td>7</td>
<td>link.springer.com</td>
<td>15</td>
<td>1%</td>
</tr>
<tr>
<td>8</td>
<td>medultrason.ro</td>
<td>12</td>
<td>1%</td>
</tr>
<tr>
<td>9</td>
<td>www.hindawi.com</td>
<td>12</td>
<td>1%</td>
</tr>
</tbody>
</table>