MINIREVIEWS

8808 Ear, nose, and throat manifestations of COVID-19 and its vaccines
 Al-Ani RM

8816 Potential influences of religiosity and religious coping strategies on people with diabetes
 Onyishi CN, Eseadi C, Ilechukwu LC, Okoro KN, Okolie CN, Eghule E, Asogwa E

ORIGINAL ARTICLE

Case Control Study

8827 Effectiveness of six-step complex decongestive therapy for treating upper limb lymphedema after breast cancer surgery

Retrospective Study

8837 Hospital admissions from alcohol-related acute pancreatitis during the COVID-19 pandemic: A single-centre study
 Mak WK, Di Mauro D, Pearce E, Karran L, Myintmo A, Duckworth J, Orabi A, Lane R, Holloway S, Manzelli A, Mossadegh S

8844 Indocyanine green plasma clearance rate and 99mTc-galactosyl human serum albumin single-photon emission computed tomography evaluated preoperative remnant liver
 Iwaki K, Kathara S, Kita R, Kitamura K, Hashida H, Uryuhara K

8854 Arthroscopy with subscapularis upper one-third tenodesis for treatment of recurrent anterior shoulder instability independent of glenoid bone loss

8863 Evaluation of the prognostic nutritional index for the prognosis of Chinese patients with high/extremely high-risk prostate cancer after radical prostatectomy
 Yang F, Pan M, Nie J, Xiao F, Zhang Y

Observational Study

8872 Chlorine poisoning caused by improper mixing of household disinfectants during the COVID-19 pandemic: Case series
 Lin GD, Wu JY, Peng XB, Lu XX, Liu ZY, Pan ZG, Qiu ZW, Dong JG

8880 Mental health of the Slovak population during COVID-19 pandemic: A cross-sectional survey
 Kralova M, Brazinova A, Sivcova V, Izakova I.
Contents

Prospective Study

- **8893** Prospective Study: Arthroscopic anatomical reconstruction of lateral collateral ligaments with ligament advanced reinforcement system artificial ligament for chronic ankle instability
 - *Wang Y, Zhu JX*

SYSTEMATIC REVIEWS

- **8906** How to select the quantitative magnetic resonance technique for subjects with fatty liver: A systematic review
 - *Li YW, Jiao Y, Chen N, Gao Q, Chen YK, Zhang YF, Wen QP, Zhang ZM*

CASE REPORT

- **8932** Alagille syndrome associated with total anomalous pulmonary venous connection and severe xanthomas: A case report

- **8939** Colo-colonic intussusception with post-polypectomy electrocoagulation syndrome: A case report
 - *Moon JY, Lee MR, Yim SK, Ha GW*

- **8945** Portal vein gas combined with pneumatosis intestinalis and emphysematous cystitis: A case report and literature review
 - *Hu SF, Liu HB, Hao YY*

- **8948** Quadricuspid aortic valve and right ventricular type of myocardial bridging in an asymptomatic middle-aged woman: A case report
 - *Sopek Merkaš I, Lakušić N, Paar MH*

- **8962** Treatment of gastric carcinoma with lymphoid stroma by immunotherapy: A case report
 - *Cui YJ, Ren YY, Zhang HZ*

- **8968** Gallstone associated celiac trunk thromboembolisms complicated with splenic infarction: A case report
 - *Wu CY, Su CC, Huang HH, Wang YT, Wang CC*

- **8974** Extracorporeal membrane oxygenation for lung cancer-related life-threatening hypoxia: A case report
 - *Yoo SS, Lee SY, Choi SH*

- **8980** Multi-disciplinary treatment of maxillofacial skeletal deformities by orthognathic surgery combined with periodontal phenotype modification: A case report
 - *Liu JY, Li GF, Tang Y, Yan FH, Tan BC*

- **8990** X-linked recessive Kallmann syndrome: A case report
 - *Zhang P, Fu JY*

- **8998** Delayed complications of intradural cement leakage after percutaneous vertebroplasty: A case report
 - *Ma QH, Liu GP, Sun Q, Li JG*
Coexistent Kaposi sarcoma and post-transplant lymphoproliferative disorder in the same lymph nodes after pediatric liver transplantation: A case report

Misdiagnosis of pancreatic metastasis from renal cell carcinoma: A case report
Liang XK, Li LJ, He YM, Xu ZF

Discoid medial meniscus of both knees: A case report
Zheng ZR, Ma H, Yang F, Yuan L, Wang GD, Zhao XW, Ma LF

Simultaneous laparoscopic and arthroscopic excision of a huge juxta-articular ganglionic cyst compressing the sciatic nerve: A case report
Choi WK, Oh JS, Yoon SJ

One-stage revision arthroplasty in a patient with ochronotic arthropathy accompanied by joint infection: A case report
Wang XC, Zhang XM, Cai WL, Li Z, Ma C, Liu YH, He QL, Yan TS, Cao XW

Bladder paraganglioma after kidney transplantation: A case report
Wang L, Zhang YN, Chen GY

Total spinal anesthesia caused by lidocaine during unilateral percutaneous vertebroplasty performed under local anesthesia: A case report
Wang YF, Bian ZY, Li XX, Hu YX, Jiang L

Ruptured splenic artery aneurysms in pregnancy and usefulness of endovascular treatment in selective patients: A case report and review of literature
Lee SH, Yang S, Park I, Im YC, Kim GY

Gastrointestinal metastasis secondary to invasive lobular carcinoma of the breast: A case report
Li LX, Zhang D, Ma F

Post-bulbar duodenal ulcer with anterior perforation with kissing ulcer and duodenocaval fistula: A case report and review of literature
Alzerwi N

Modified orthodontic treatment of substitution of canines by first premolars: A case report
Li FF, Li M, Li M, Yang X

Renal cell carcinoma presented with a rare case of icteric Stauffer syndrome: A case report
Popov DR, Antonov KA, Atanasova EG, Pentchev CP, Milatchkov LM, Petkova MD, Neykov KG, Nikolov RK

Successful resection of a huge retroperitoneal venous hemangioma: A case report
Qin Y, Qiao P, Guan X, Zeng S, Hu XP, Wang B

Malignant transformation of biliary adenofibroma combined with benign lymphadenopathy mimicking advanced liver carcinoma: A case report
<table>
<thead>
<tr>
<th>Page</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>9112</td>
<td>Congenital hepatic cyst: Eleven case reports</td>
<td>Du CX, Lu CG, Li W, Tang WB</td>
</tr>
<tr>
<td>9121</td>
<td>Endovascular treatment of a rupturedpseudoaneurysm of the internal carotid artery in a</td>
<td>Park JS, Jang HG</td>
</tr>
<tr>
<td></td>
<td>patient with nasopharyngeal cancer: A case report</td>
<td></td>
</tr>
<tr>
<td>9127</td>
<td>Varicella-zoster virus meningitis after spinal anesthesia: A case report</td>
<td>Lee YW, Yoo B, Lim YH</td>
</tr>
<tr>
<td>9132</td>
<td>Chondrosarcoma of the toe: A case report and literature review</td>
<td>Zhou LB, Zhang HC, Dong ZG, Wang CC</td>
</tr>
<tr>
<td>9142</td>
<td>Tamsulosin-induced life-threatening hypotension in a patient with spinal cord injury:</td>
<td>Lee JY, Lee HS, Park SB, Lee KH</td>
</tr>
<tr>
<td></td>
<td>A case report</td>
<td></td>
</tr>
<tr>
<td>9148</td>
<td>CCNO mutation as a cause of primary ciliary dyskinesia: A case report</td>
<td>Zhang YY, Lou Y, Yan H, Tang H</td>
</tr>
<tr>
<td>9156</td>
<td>Repeated bacteremia and hepatic cyst infection lasting 3 years following pancreatoduodenectomy: A case report</td>
<td>Zhang K, Zhang HL, Guo JQ, Tu CY, Lv XL,</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Zhu JD</td>
</tr>
<tr>
<td>9162</td>
<td>Idiopathic cholesterol crystal embolism with atheroembolic renal disease and blue toes</td>
<td>Cheng DJ, Li L, Zheng XY, Tang SF</td>
</tr>
<tr>
<td></td>
<td>syndrome: A case report</td>
<td></td>
</tr>
<tr>
<td>9168</td>
<td>Systemic lupus erythematosus with visceral varicella: A case report</td>
<td>Zhao J, Tian M</td>
</tr>
</tbody>
</table>

LETTER TO THE EDITOR

<table>
<thead>
<tr>
<th>Page</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>9176</td>
<td>Imaging of fibroadenoma: Be careful with imaging follow-up</td>
<td>Ece B, Aydn S</td>
</tr>
</tbody>
</table>
ABOUT COVER
Editorial Board Member of World Journal of Clinical Cases, Mohsen Khosravi, MD, Assistant Professor, Department of Psychiatry and Clinical Psychology, Zahedan University of Medical Sciences, Zahedan 9819713955, Iran. m.khosravi@zaums.ac.ir

AIMS AND SCOPE
The primary aim of World Journal of Clinical Cases (WJCC, World J Clin Cases) is to provide scholars and readers from various fields of clinical medicine with a platform to publish high-quality clinical research articles and communicate their research findings online.

WJCC mainly publishes articles reporting research results and findings obtained in the field of clinical medicine and covering a wide range of topics, including case control studies, retrospective cohort studies, retrospective studies, clinical trials studies, observational studies, prospective studies, randomized controlled trials, randomized clinical trials, systematic reviews, meta-analysis, and case reports.

INDEXING/ABSTRACTING
The WJCC is now abstracted and indexed in Science Citation Index Expanded (SCIE, also known as SciSearch®), Journal Citation Reports/Science Edition, Current Contents/Clinical Medicine, PubMed, PubMed Central, Scopus, Reference Citation Analysis, China National Knowledge Infrastructure, China Science and Technology Journal Database, and Superstar Journals Database. The 2022 Edition of Journal Citation Reports® cites the 2021 impact factor (IF) for WJCC as 1.534; IF without journal self cites: 1.491; 5-year IF: 1.599; Journal Citation Indicator: 0.28; Ranking: 135 among 172 journals in medicine, general and internal; and Quartile category: Q4. The WJCC’s CiteScore for 2021 is 1.2 and Scopus CiteScore rank 2021: General Medicine is 443/826.

RESPONSIBLE EDITORS FOR THIS ISSUE
Production Editor: Xu Guo; Production Department Director: Xiang Li; Editorial Office Director: Jin-Lei Wang.

<table>
<thead>
<tr>
<th>NAME OF JOURNAL</th>
<th>World Journal of Clinical Cases</th>
</tr>
</thead>
<tbody>
<tr>
<td>ISSN</td>
<td>ISSN 2307-8960 (online)</td>
</tr>
<tr>
<td>LAUNCH DATE</td>
<td>April 16, 2013</td>
</tr>
<tr>
<td>FREQUENCY</td>
<td>Thrice Monthly</td>
</tr>
<tr>
<td>EDITORS-IN-CHIEF</td>
<td>Bao-Gan Peng, Jerzy Tadeusz Chudek, George Kontogeorgos, Maurizio Serati, Ji Hyeon Ku</td>
</tr>
<tr>
<td>EDITORIAL BOARD MEMBERS</td>
<td>https://www.wjgnet.com/2307-8960/editorialboard.htm</td>
</tr>
<tr>
<td>PUBLICATION DATE</td>
<td>September 6, 2022</td>
</tr>
<tr>
<td>COPYRIGHT</td>
<td>© 2022 Baishideng Publishing Group Inc</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>INSTRUCTIONS TO AUTHORS</th>
<th>https://www.wjgnet.com/bpg/gerinfo/204</th>
</tr>
</thead>
<tbody>
<tr>
<td>GUIDELINES FOR ETHICS DOCUMENTS</td>
<td>https://www.wjgnet.com/bpg/gerinfo/287</td>
</tr>
<tr>
<td>GUIDELINES FOR NON-NATIVE SPEAKERS OF ENGLISH</td>
<td>https://www.wjgnet.com/bpg/gerinfo/240</td>
</tr>
<tr>
<td>PUBLICATION ETHICS</td>
<td>https://www.wjgnet.com/bpg/gerinfo/288</td>
</tr>
<tr>
<td>PUBLICATION MISCONDUCT</td>
<td>https://www.wjgnet.com/bpg/gerinfo/208</td>
</tr>
<tr>
<td>ARTICLE PROCESSING CHARGE</td>
<td>https://www.wjgnet.com/bpg/gerinfo/242</td>
</tr>
<tr>
<td>STEPS FOR SUBMITTING MANUSCRIPTS</td>
<td>https://www.wjgnet.com/bpg/gerinfo/239</td>
</tr>
<tr>
<td>ONLINE SUBMISSION</td>
<td>https://www.f6publishing.com</td>
</tr>
</tbody>
</table>
Quadricuspid aortic valve and right ventricular type of myocardial bridging in an asymptomatic middle-aged woman: A case report

Ivana Sopek Merkaš, Nenad Lakušić, Maja Hrabak Paar

Abstract

BACKGROUND
Quadricuspid aortic valve (QAV) is a very rare congenital cardiac defect with the incidence of 0.0125%-0.033% (< 0.05%) predominantly causing aortic regurgitation. A certain number of patients (nearly one-half) have abnormal function and often require surgery, commonly in their fifth or sixth decade. QAV usually appears as an isolated anomaly but may also be associated with other cardiac congenital defects. Echocardiography is considered the main diagnostic method although more and more importance is given to computed tomography (CT) and magnetic resonance imaging (MRI) as complementary methods.

CASE SUMMARY
A 60-year-old female patient was referred for transthoracic ultrasound of the heart as part of a routine examination in the treatment of arterial hypertension. She did not have any significant symptoms. QAV was confirmed and there were no elements of valve stenosis with moderate aortic regurgitation. At first, it seemed that in the projection of the presumed left coronary cusp, there were two smaller and equally large cusps along with two larger and normally developed cusps.
cusps. Also, coronary computed angiography confirmed the right-type of myocardial bridging at the distal segment of the left anterior descending coronary artery. Significant valve dysfunction often occurs in middle-aged patients and results in surgical treatment, therefore, a 1-year transthoracic echocardiogram control examination and follow-up was recommended to our patient.

CONCLUSION
This case highlights the importance of diagnosing QAV since it leads to progressive valve dysfunction and can be associated with other congenital heart defects which is important to detect, emphasizing the role of cardiac CT and MRI.

Key Words: Quadricuspid aortic valve; Congenital cardiac defect; Aortic insufficiency; Multimodal imaging; Myocardial bridging; Case report

©The Author(s) 2022. Published by Baishideng Publishing Group Inc. All rights reserved.

Core Tip: The recognition of quadricuspid aortic valve (QAV) has clinical significance as it leads to progressive aortic valve dysfunction (aortic regurgitation in the majority), which can be severe enough for surgical correction and can be associated with other congenital heart defects - in our case, right-ventricular type of myocardial bridging at the distal segment of the left anterior descending coronary artery. Therefore, these patients require appropriate diagnosis, careful clinical evaluation and follow-up in order to be properly treated. Cardiac computed tomography, as well as magnetic resonance, is a useful imaging modality for comprehensively assessing of QAV.

Citation: Sopek Merkaš I, Lakušić N, Paar MH. Quadricuspid aortic valve and right ventricular type of myocardial bridging in an asymptomatic middle-aged woman: A case report. *World J Clin Cases* 2022; 10(25): 8954-8961
URL: https://www.wjgnet.com/2307-8960/full/v10/i25/8954.htm
DOI: https://dx.doi.org/10.12998/wjcc.v10.i25.8954

INTRODUCTION
Except for the mitral valve which morphologically has two leaflets, the other three heart valves are normally trileaflet. The aortic and pulmonary valves are known as semilunar valves. Semilunar valve formation begins during the 4th week of gestation. The improper fusion or the incomplete dedifferentiation of endocardial cushions is responsible for the formation of anatomically and structurally congenitally abnormal aortic valves[1]. The most common pathophysiological variant seen in everyday clinical practice is bicuspid aortic valve, occurring in 1%-2% of the population, with a 2:1 predominance among men[2]. Unicuspid aortic valve is also one of the variants of congenital valvular defect with an incidence of 0.02% in the general population[3]. The rarest pathophysiological variant in clinical practice is the QAV with a very low incidence of 0.0125%-0.033% in the general population[4]. Each of the described pathophysiological defects of the aortic valve is more prone to accelerated degeneration in the form of stenosis and/or insufficiency in comparison with morphologically normal tricuspid aortic valve and it is treated mostly by surgery or with transcatheter intervention.

CASE PRESENTATION

Chief complaints
A 60-year-old female patient was referred for transthoracic ultrasound of the heart as part of a routine examination because of long-term arterial hypertension treatment. In daily life she reported no significant symptoms in the form of shortness of breath, chest pain or headache. She did not experience syncope or dizziness.

History of present illness
The patient had well-regulated arterial hypertension managed with a combination of losartan and hydrochlorothiazide (50/12.5 mg). Cholesterol levels were within range managed with a low dose statin therapy (atorvastatin 10 mg).
History of past illness
Apart from arterial hypertension for the last 10 years and dyslipidemia that was treated for 2 years, the patient does not have other chronic diseases. In the family, there were no sudden deaths or known cardiovascular diseases.

Personal and family history
There are no documented cardiovascular illnesses in the family.

Physical examination
Blood pressure was 120/75 mmHg, heart rate 68/min. Heart murmur was not described in clinical status and there were no clinical signs of heart failure (no edema of limbs, without lung crackles). Abdomen was not painful and liver and spleen were not enlarged.

Laboratory examinations
Complete blood count was normal, as well as biochemistry and urine analysis. Cholesterol was 5.0 mmol/L and LDL-cholesterol 2.2 mmol/L. Electrocardiogram showed normal sinus rhythm 71/min with no elements of left ventricular hypertrophy (LVH).

Imaging examinations
Transthoracic echocardiogram (TTE) verified normal dimensions of left ventricle (LV) (left ventricular end-diastolic diameter - LVDd 5.1 cm; end-diastolic volume - EDV 118 mL), without LVH (wall thickness 0.9 cm, LVmass 165 g), no regional wall motion abnormalities, with normal global systolic function [LV ejection fraction (EF) - Teichholz 66%, Simpson biplane 65%] and second-degree diastolic dysfunction of the LV (E/A 1.2, dt 220 ms, E/e' 10, during Valsalva maneuver E/A 0.6). Mitral valve function was normal and there were no indirect signs of pulmonary hypertension while resting. The aorta was of normal diameter at all levels (annulus, bulb, sinotubular junction, ascending segment, and arcus). QAV was verified and at first it seemed that in the projection of the presumed left coronary cusp, there were two smaller and equally large cusps along with two larger and normally developed cusps (**Figure 1A**). There were no elements of QAV stenosis (aortic valve area planimetric — 3 cm²) with moderate aortic regurgitation (vena contracta 5 mm, pressure half time — PHT 499 ms, retrograde pressure gradient 45 mmHg, according to the depth of the jet in LV angio 3+, reversal flow in descending aorta 0.14 m/s), (**Figure 1B and C, Video**). Ascending aorta measured 27 mm. The diagnostic algorithm was then extended with multislice computed tomography (MSCT) imaging to obtain an even more precise QAV morphology and it showed that the location of the supernumerary cusp (asterisk) is between the right and left coronary cusp, with visible central malcoaptation of the cusps (**Figure 2A**). Coronary CT angiography (CCTA) confirmed the right ventricular type of myocardial bridging at the distal segment of the left anterior descending (LAD) coronary artery (**Figure 2B**). In this type of myocardial bridging, an intramuscular artery segment is running in the right ventricular anterior wall or in the right ventricular cavity[5]. Other possible associated pathologies such as abnormally located coronary ostia, patent foramen ovale, etc were excluded. Since the patient was asymptomatic, the medicament therapy remained the same. A 1-year TTE control examination was recommended.

FINAL DIAGNOSIS
The final diagnosis of the presented case is QAV with the location of the supernumerary cusp (asterisk) between the right and left coronary cusp and associated anomaly of the right-ventricular type of myocardial bridging at the distal segment of the LAD.

TREATMENT
The recommendation of medicament therapy for arterial hypertension and dyslipidemia remained the same. It was explained to the patient that QAV can lead to progressive valve dysfunction (in this case insufficiency) which can lead to surgical aortic valve replacement. Also, she was instructed to pay attention to possible symptoms - dyspnea, chest discomfort, palpitations, syncope, edema of the legs, etc. It is unclear whether patients with QAVs have increased risk for infective endocarditis, though it has been reported, and antibiotic prophylaxis against infective endocarditis in the QAV patients with unequal-sized cusps is suggested[6] in the case of dental, respiratory tract procedures, gastrointestinal or urogenital procedures. In ESC guidelines there is currently no recommendation regarding infective endocarditis prophylaxis for these patients[7].
OUTCOME AND FOLLOW-UP

A 1-year TTE control examination was recommended. At the control examination the patient was stable, still asymptomatic and without valvular disease progression.

DISCUSSION

QAV was first described in 1862 by Balington[8]. In the PubMed database QAV was first mentioned in 1958[9]. QAV is an extremely rare congenital anomaly and depending on the observed population the incidence of QAV ranges from 0.0125%-0.033% in the general population[4], 0.00028%-0.00033% in the autopsy series, 0.0059%-0.0065% for patients undergoing TTE and 0.05%-0.1% for patients undergoing aortic valve replacement due to aortic regurgitation[6].

The mechanisms of QAV development remain unclear. Abnormal septation of the conotruncus and abnormal septation of one of the endocardial cushions as a result of an inflammatory episode is a possible pathophysiological mechanism of QAV development[6].

There are several QAV classification schemes according to the morphology of the cusps. The Hurwitz and Roberts classify and divide QAV into 7 types from A to G based on the relative size of the supernumerary cusp (Figure 3A)[10]. Type A, B and C represent more than 85% of the cases. At first, according to the TTE, we considered that our patient has a type C morphology of QAV (two equal larger cusps and two equal smaller cusps). However, CT confirmed type B form of QAV (three equal-sized cusps and one smaller cusp). Vali et al[11] supplemented the original Hurwitz and Roberts classification with type H of QAV (Figure 3B). Furthermore, Nakamura et al[12] designed a simplified classification by focusing on the position of the supernumerary cusp (Figure 3C) where our patient falls in Type I (supernumerary cusp between the left and right coronary cusps).

QAV commonly occurs as an isolated defect but has been associated with the aortic dilatation[13] as well as other congenital heart defects such as patent foramen ovale[14] and ductus arteriosus[15], atrial
Figure 3 Classification of quadricuspid aortic valve. A: Hurwitz and Roberts [10] (a: Four equal-sized cusps; b: Three equal-sized larger cusps and one smaller cusp; c: Two equal-sized larger cusps and two equal-sized smaller cusps; d: One larger cusp, two equal mid-sized cusps and one smaller cusp; e: Three equal-sized smaller cusps and one larger cusp; f: Two equal-sized larger cusps and two unequal smaller cusps; g: Four unequal cusps); B: Vali et al. [11] supplement to Hurwitz and Roberts quadricuspid aortic valve classification (Type h: One larger cusp, one mid-sized cusps and two equal-sized smaller cusps); C: Nakamura et al. [12] (Type I: Supernumerary cusp between the left and right coronary cusps; Type II: Supernumerary cusp between the right and non-coronary cusps; Type III: Supernumerary cusp between the left and noncoronary cusps; Type IV: Unidentified supernumerary cusp as of two equal-sized smaller cusps; L: Left coronary cusp; N: Noncoronary cusp; R: Right coronary cusp; S: Supernumerary cusp).

and ventricular septal defect [16,17], subaortic stenosis [18], hypertrophic cardiomyopathy [19], etc (Table 1). Coronary ostium and anomalies of the coronary arteries are the most frequently associated disorders in patients with QAV. For example, malformation and displacement of coronary ostia is found in 10% of patients with a QAV [6]. Thus, CCTA confirmed that our patient has the right-ventricular type of myocardial bridging at the distal segment of the LAD coronary artery. Myocardial bridging is a congenital coronary anomaly, mostly benign and asymptomatic. However, it can be associated with myocardial ischemia, exertional angina, ventricular arrhythmias, acute coronary syndrome, sudden death, etc: Symptoms may appear in case of LVH, vasospasm, diastolic and microvascular dysfunction. The prevalence varies considerably depending on the diagnostic method used (CCTA — 25%, coronary angiography — 0.5%-16%) and emphasizes the difference of significant functional findings from an anatomic finding [20].

Aortic valvular insufficiency is commonly observed in QAV. It occurs secondary to a central orifice formed from malcoaptation of the four valvular leaflets [6,21,22]. In addition to aortic, associated mitral regurgitation is possible [23].

The basic diagnostic method of detecting QAV is TTE with further confirmation of the diagnosis using transesophageal echocardiography (TEE). TEE is a more sensitive method than TTE and it can additionally visualize the coronary ostia. However, echocardiography is a subjective method — it is operator-dependent and its diagnostic value depends on several factors (e.g., suboptimal acoustic windows, subject body habitus, and in cases of uncertain valvular anatomy, differential diagnosis [24] (Table 2) and may require additional imaging [25]. MSCT and MRI are complementary methods in detecting possible associated anomalies and differential diagnosis [12,25,26].

Multiple clinical courses are possible for patients with QAV. At a younger age (< 20 years), patients usually have no difficulties and the anomaly is accidentally found at routine TTE examinations. Significant QAV dysfunction often occurs in middle-aged patients and results in a surgical treatment. About one-third of the patients with QAV require aortic valve surgery [26] and patients’ complaints are mostly related to congestive heart failure (CHF) symptoms due to stenosis and/or significant valve insufficiency [27].

Treatment of severe dysfunctional QAV (stenosis and/or insufficiency) includes aortic valve repair (required skill and experience of a cardiac surgeon), surgical aortic valve replacement and transcatheter aortic valve replacement [28-32].
Table 1 Possible associated anomalies

<table>
<thead>
<tr>
<th>Possible associated anomalies</th>
</tr>
</thead>
<tbody>
<tr>
<td>Atrial septal defect</td>
</tr>
<tr>
<td>Ventricular septal defect</td>
</tr>
<tr>
<td>Patent ductus arteriosus</td>
</tr>
<tr>
<td>Mitral valve regurgitation</td>
</tr>
<tr>
<td>Mitral valve prolapse</td>
</tr>
<tr>
<td>Sinus of Valsalva fistula</td>
</tr>
<tr>
<td>Subaortic fibromuscular stenosis</td>
</tr>
<tr>
<td>Hypertrophic non-obstructive cardiomyopathy</td>
</tr>
<tr>
<td>Transposition of the great arteries</td>
</tr>
<tr>
<td>Tetralogy of Fallot</td>
</tr>
<tr>
<td>Ehlers-Danlos syndrome</td>
</tr>
<tr>
<td>Coronary artery and coronary ostium anomalies</td>
</tr>
</tbody>
</table>

Table 2 Differential diagnosis

<table>
<thead>
<tr>
<th>Differential diagnosis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tumor of the valve</td>
</tr>
<tr>
<td>Valvular degeneration (with possible calcification)</td>
</tr>
<tr>
<td>Thrombus</td>
</tr>
<tr>
<td>Vegetations</td>
</tr>
</tbody>
</table>

CONCLUSION

QAV is a very rare congenital cardiac defect. It is often detected accidentally at a routine TTE examination and the clinical course in younger patients is mostly asymptomatic with symptoms often starting in middle-aged patients. When diagnosing QAV and possible related anomalies, multimodal imaging plays a pivotal role[26,33]. In the case of severe QAV dysfunction and CHF symptoms as well as in severe aortic valve dysfunction of other etiology, surgical or transcatheter treatment is required.

FOOTNOTES

Author contributions: Sopek Merkaš I and Lakušić N were responsible for the conception and design of the manuscript, literature review, data collection, processing and wrote the first original draft; Lakušić N contributed in making critical revisions related to the important intellectual content of the manuscript; Hrabak Paar M analyzed and interpreted the CT imaging findings, literature review and made critical revisions related to the important intellectual content; All authors issued final approval for the version to be submitted.

Informed consent statement: The authors confirm that written consent for submission and publication of this case report including images and associated text have been obtained from the patient.

Conflict-of-interest statement: All the authors report no relevant conflicts of interest for this article.

CARE Checklist (2016) statement: The authors have read the CARE Checklist (2016), and the manuscript was prepared and revised according to the CARE Checklist (2016).

Open-Access: This article is an open-access article that was selected by an in-house editor and fully peer-reviewed by external reviewers. It is distributed in accordance with the Creative Commons Attribution NonCommercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: https://creativecommons.org/Licenses/by-nc/4.0/

Country/Territory of origin: Croatia

ORCID number: Ivana Sopek Merkaš 0000-0002-0888-5005; Nenad Lakušić 0000-0002-2329-2582; Maja Hrabak Paar 0000-0002-0390-8466.
REFERENCES

