Contents

OPINION REVIEW
2363
eHealth, telehealth, and telemedicine in the management of the COVID-19 pandemic and beyond: Lessons learned and future perspectives
Giacalone A, Marin L, Febbi M, Franchi T, Tovani-Palone MR

MINIREVIEWS
2369
Developing natural marine products for treating liver diseases
Wei Q, Guo JS

ORIGINAL ARTICLE

Case Control Study
2382
Analysis of bacterial spectrum, activin A, and CD64 in chronic obstructive pulmonary disease patients complicated with pulmonary infections
Fei ZY, Wang J, Liang J, Zhou X, Guo M

Retrospective Cohort Study
2393
Computed tomography perfusion imaging evaluation of angiogenesis in patients with pancreatic adenocarcinoma
Liu W, Yin B, Liang ZH, Yu Y, Lu N

Retrospective Study
2404
Epidemiological features and dynamic changes in blood biochemical indices for COVID-19 patients in Hebi
Nie XB, Shi BS, Zhang L, Niu WL, Xue T, Li LQ, Wei XY, Wang YD, Chen WD, Hou RF

Clinical Trials Study
2420
Identification and predictive analysis for participants at ultra-high risk of psychosis: A comparison of three psychometric diagnostic interviews
Wang P, Yan CD, Dong XJ, Geng L, Xu C, Nie Y, Zhang S

2429
Prognostic significance of peritoneal metastasis from colorectal cancer treated with first-line triplet chemotherapy

Observational Study
2439
Effect of intraoperative cell rescue on bleeding related indexes after cesarean section
Yu YF, Cao YD
Prospective Study

2447 Effectiveness of the combination of workshops and flipped classroom model to improve tube fixation training for nursing students
Wang YC, Cheng HL, Deng YM, Li BQ, Zhou XZ

META-ANALYSIS

2457 Mortality in patients with COVID-19 requiring extracorporeal membrane oxygenation: A meta-analysis
Zhang Y, Wang L, Fang ZX, Chen J, Zheng JL, Yao M, Chen WY

CASE REPORT

2468 Escitalopram-induced hepatitis: A case report
Wabont G, Ferret L, Houdre N, Lepied A, Bene J, Cousein E

2474 Fatal community-acquired bloodstream infection caused by Klebsiella variicola: A case report

2484 Endoscopic extraction of a submucosal esophageal foreign body piercing into the thoracic aorta: A case report
Chen ZC, Chen GQ, Chen XC, Zheng CY, Cao WD, Deng GH

2491 Severe tinnitus and migraine headache in a 37-year-old woman treated with trastuzumab for breast cancer: A case report

2497 Metastatic urothelial carcinoma harboring ERBB2/3 mutations dramatically respond to chemotherapy plus anti-PD-1 antibody: A case report
Yan FF, Jiang Q, Ru B, Fei XJ, Ruan J, Zhang XC

2504 Retroperitoneal congenital epidermoid cyst misdiagnosed as a solid pseudopapillary tumor of the pancreas: A case report
Ma J, Zhang YM, Zhou CP, Zhu L

2510 Immunoglobulin G4-related kidney disease involving the renal pelvis and perirenal fat: A case report
He JW, Zou QM, Pan J, Wang SS, Xiang ST

2516 Fluoroscopic removal of fractured, retained, embedded Z self-expanding metal stent using a guidewire lasso technique: A case report
Bi YH, Ren JZ, Li JD, Han XW

2522 Treatment and five-year follow-up of type A insulin resistance syndrome: A case report
Chen YH, Chen QQ, Wang CL

2529 Effective response to crizotinib of concurrent KIF5B-MET and MET-CDR2-rearranged non-small cell lung cancer: A case report
Liu LF, Deng JY, Lizaso A, Lin J, Sun S
Contents

Thrice Monthly Volume 10 Number 8 March 16, 2022

<table>
<thead>
<tr>
<th>Page</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>2543</td>
<td>Immunoglobulin G4-related disease involving multiple systems: A case report</td>
<td>An YQ, Ma N, Liu Y</td>
</tr>
<tr>
<td>2550</td>
<td>Daptomycin and linezolid for severe methicillin-resistant Staphylococcus aureus psoas abscess and bacteremia: A case report and review of the literature</td>
<td>Hong XB, Yu ZL, Fu HB, Cui ZH, Chen J</td>
</tr>
<tr>
<td>2559</td>
<td>Isolated scaphoid dislocation: A case report and review of literature</td>
<td>Liu SD, Yin BS, Han F, Jiang HJ, Qu W</td>
</tr>
<tr>
<td>2577</td>
<td>Cardiac rehabilitation in a heart failure patient after left ventricular assist device insertion and subsequent heart transplantation: A case report</td>
<td>Yang TW, Song S, Lee HW, Lee BJ</td>
</tr>
<tr>
<td>2584</td>
<td>Large retroperitoneal atypical spindle cell lipomatous tumor, an extremely rare neoplasm: A case report</td>
<td>Bae JM, Jung CY, Yun WS, Choi JH</td>
</tr>
<tr>
<td>2591</td>
<td>Hepatocellular carcinoma effective stereotactic body radiotherapy using Gold Anchor and the Synchrony system: Two case reports and review of literature</td>
<td>Masuda S, Tsukiyama T, Minagawa Y, Koizumi K, Kako M, Kinbara T, Haruki U</td>
</tr>
<tr>
<td>2604</td>
<td>Mantle cell lymphoma with endobronchial involvement: A case report</td>
<td>Ding YZ, Tang DQ, Zhao XJ</td>
</tr>
<tr>
<td>2616</td>
<td>Takotsubo cardiomyopathy misdiagnosed as acute myocardial infarction under the Chest Pain Center model: A case report</td>
<td>Meng LP, Zhang P</td>
</tr>
<tr>
<td>2629</td>
<td>Silver dressing in the management of an infant’s urachal anomaly infected with methicillin-resistant Staphylococcus aureus: A case report</td>
<td>Shi ZY, Hou SL, Li XW</td>
</tr>
<tr>
<td>2637</td>
<td>Drain-site hernia after laparoscopic rectal resection: A case report and review of literature</td>
<td>Su J, Deng C, Yin HM</td>
</tr>
</tbody>
</table>
Contents

World Journal of Clinical Cases

Thrice Monthly Volume 10 Number 8 March 16, 2022

<table>
<thead>
<tr>
<th>Page</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>2644</td>
<td>Synchronized early gastric cancer occurred in a patient with serrated polyposis syndrome: A case report</td>
<td>Ning YZ, Liu GY, Rao XL, Ma YC, Rong L</td>
</tr>
<tr>
<td>2650</td>
<td>Large cystic-solid pulmonary hamartoma: A case report</td>
<td>Guo XW, Jia XD, Ji AD, Zhang DQ, Jia DZ, Zhang Q, Shao Q, Liu Y</td>
</tr>
</tbody>
</table>

LETTER TO THE EDITOR

<table>
<thead>
<tr>
<th>Page</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
</table>
ABOUT COVER
Editorial Board Member of *World Journal of Clinical Cases*, Nicolae Gica, Doctor, PhD, Assistant Professor, Chief Doctor, Surgeon, Department of Obstetrics and Gynecology Surgery, Carol Davila University of Medicine and Pharmacy, Bucharest 063377, Romania. gica.nicolae@umfcd.ro

AIMS AND SCOPE
The primary aim of *World Journal of Clinical Cases* (WJCC, *World J Clin Cases*) is to provide scholars and readers from various fields of clinical medicine with a platform to publish high-quality clinical research articles and communicate their research findings online.

WJCC mainly publishes articles reporting research results and findings obtained in the field of clinical medicine and covering a wide range of topics, including case control studies, retrospective cohort studies, retrospective studies, clinical trials studies, observational studies, prospective studies, randomized controlled trials, randomized clinical trials, systematic reviews, meta-analysis, and case reports.

INDEXING/ABSTRACTING
The WJCC is now indexed in Science Citation Index Expanded (also known as SciSearch®), Journal Citation Reports/Science Edition, Scopus, PubMed, and PubMed Central. The 2021 Edition of Journal Citation Reports® cites the 2020 impact factor (IF) for WJCC as 1.337; IF without journal self cites: 1.301; 5-year IF: 1.742; Journal Citation Indicator: 0.33; Ranking: 119 among 169 journals in medicine, general and internal; and Quartile category: Q3. The WJCC’s CiteScore for 2020 is 0.8 and Scopus CiteScore rank 2020: General Medicine is 493/793.

RESPONSIBLE EDITORS FOR THIS ISSUE
Production Editor: Hua-Ge Yu; Production Department Director: Xu Guo; Editorial Office Director: Jin-Lai Wang.

NAME OF JOURNAL
World Journal of Clinical Cases

ISSN
ISSN 2307-8960 (online)

LAUNCH DATE
April 16, 2013

FREQUENCY
Thrice Monthly

EDITORS-IN-CHIEF
Bao-Gan Peng, Jerzy Tadeusz Chudek, George Kontogeorgos, Maurizio Serati, Ja Hyeon Ku

EDITORIAL BOARD MEMBERS
https://www.wjgnet.com/2307-8960/editorialboard.htm

PUBLICATION DATE
March 16, 2022

COPYRIGHT
© 2022 Baishideng Publishing Group Inc

INSTRUCTIONS TO AUTHORS
https://www.wjgnet.com/bpg/gerinfo/204

GUIDELINES FOR ETHICS DOCUMENTS
https://www.wjgnet.com/bpg/gerinfo/287

GUIDELINES FOR NON-NATIVE SPEAKERS OF ENGLISH
https://www.wjgnet.com/bpg/gerinfo/240

PUBLICATION ETHICS
https://www.wjgnet.com/bpg/gerinfo/288

PUBLICATION MISCONDUCT
https://www.wjgnet.com/bpg/gerinfo/208

ARTICLE PROCESSING CHARGE
https://www.wjgnet.com/bpg/gerinfo/242

STEPS FOR SUBMITTING MANUSCRIPTS
https://www.wjgnet.com/bpg/gerinfo/239

ONLINE SUBMISSION
https://www.ffpublishing.com

© 2022 Baishideng Publishing Group Inc. All rights reserved. 7041 Koll Center Parkway, Suite 160, Pleasanton, CA 94566, USA
E-mail: bpgoffice@wjgnet.com https://www.wjgnet.com
Metastatic urothelial carcinoma harboring ERBB2/3 mutations dramatically respond to chemotherapy plus anti-PD-1 antibody: A case report

Fei-Fei Yan, Qi Jiang, Bin Ru, Xiao-Jie Fei, Jian Ruan, Xiao-Chen Zhang

BACKGROUND

Immune checkpoint inhibitors (ICIs) targeting the programmed death (PD)-1 pathway have substantially changed the clinical management of metastatic urothelial carcinoma (mUC); however, the response rate remains low. There are ongoing efforts to identify robust biomarkers that can effectively predict the treatment response to ICIs. Previous studies have suggested that ERBB2/3 mutations are associated with the efficacy of ICIs in gallbladder carcinoma.

CASE SUMMARY

We present a 59-year-old man with mUC harboring ERBB2/3 mutations (in-frame insertion of ERBB2 and ERBB3 amplification), negative PD-ligand 1 expression, and low tumor mutation burden. He received anti-PD-1 antibodies and paclitaxel as second-line treatment. After two cycles of treatment, the lung metastases had significantly shrunk, achieving good partial remission. After six cycles of combination therapy, the patient received sindilimab 200 mg once every 3 wk as maintenance monotherapy. At the last follow-up, the patient continued to exhibit a partial response and progression-free survival for as long as 19 mo.
CONCLUSION
ERBB2/3 mutations may represent a predictive biomarker for selecting a subgroup of mUC patients who will benefit from ICIs.

Key Words: Urothelial carcinoma; Bladder cancer; ERBB; Programmed death; Sindilimab; Case report

©The Author(s) 2022. Published by Baishideng Publishing Group Inc. All rights reserved.

Core tip: Immune checkpoint inhibitors (ICIs) have substantially changed the clinical management of metastatic urothelial carcinoma (mUC); however, the response rate to monotherapy remains low. Previous studies have suggested that ERBB2/3 mutations are associated with the efficacy of ICIs in gallbladder carcinoma. The present case of mUC harboring ERBB2/3 mutations, negative programmed death (PD)-ligand 1 expression, and low tumor mutation burden showed durable response to anti-PD-1 antibodies combined with paclitaxel as second-line treatment. Further studies are required to investigate this finding.

INTRODUCTION
Bladder cancer is considered to be one of the most aggressive neoplasms worldwide[1]. For patients with distant metastases, the 5-year survival rate is as low as approximately 5%-2]. Cisplatin based combination regimens have remained the standard first-line treatment for metastatic urothelial carcinoma (mUC) over the past decade. In the past, following the failure of first-line chemotherapy, paclitaxel, docetaxel, ifosfamide or gemcitabine monotherapy have been the most commonly used drugs, but are associated with low efficacy.

Several immune checkpoint inhibitors (ICIs) have been approved in recent years as first-line treatment for patients who ineligible to cisplatin or as second-line treatment for patients with mUC of the bladder. Despite the success of immune checkpoint blockades as a strategy for activating an antitumor immune response and promoting cancer regression, only a subset of patients experienced a durable clinical benefit. However, low objective response rates (13%-31%) have been observed in mUC [3-5].

The level of programmed death (PD)-1 expression and tumor mutation burden (TMB) are the two most commonly used predictive biomarkers but they are not sufficient[6-9]. Therefore, there is an urgent need to identify biomarkers that can predict patient response or resistance to ICIs. Several clinical trials have attempted to identify robust biomarkers that can effectively predict the treatment response to ICIs in a subgroup analysis, including high levels of microsatellite instability (MSI-H), a mismatch repair deficiency (dMMR)[10], or tumor infiltrating cytotoxic T lymphocytes (TILs)[11,12]. It is suggested that ERBB2/3 mutations are associated with the efficacy of ICIs[13].

Here, we report a case of mUC harboring ERBB2/3 mutations, in which the level of PD-1 expression was negative and TMB was 3.4/Mb, demonstrating a durable response to anti-PD-1 antibodies in combination with chemotherapy as second-line therapy.

CASE PRESENTATION
Chief complaints
A 59-year-old man presented to our department complaining of bloody sputum for 2 wk on March 2020. He was diagnosed with urothelial cancer > 13 years ago.

History of present illness
In May 2006, the patient presented with intermittent hematuria for 6 mo. On June 18, 2006, he received transurethral resection of bladder tumor in a local hospital, and immunohistochemistry revealed invasive UC (grade 3). Due to repeated local recurrence, the patient underwent repeated (10 times) transurethral resection of bladder tumor from June 2006 to July 2017. On July 5, 2017, the patients received laparoscopic total cystectomy and ileal neobladder. Postoperative pathology showed high-
grade papillary UC (WHO grade III) with muscularis invasion (rpT2N0M0, stage II). Pathology confirmed that the surgical margin was negative. In July 2018, the patient presented to a local hospital because of intermittent hematuria for 1 mo. Cystoscopy showed urethral neoplasm. Resection biopsy of the neoplasm confirmed high-grade papillary UC (WHO grade III). The TNM stage was rT1aN0M1 stage IV. The patient received six cycles of gemcitabine and cisplatin (GP) as first-line chemotherapy from July 7, 2018 to January 19, 2019. In March 2020, the patient presented to our department complaining of bloody sputum for 2 wk.

History of past illness
In May 2006, the patient presented with intermittent hematuria for 6 mo. On June 18, 2006, he received transurethral resection of bladder tumor in local hospital, and the immunohistochemistry results revealed invasive urothelial cancer (grade 3). Due to repeated local recurrence, the patient received repeated (10 times) of transurethral resection of bladder tumor from June 2006 to July 2017. On July 5, 2017, the patients received laparoscopic total cystectomy and ileal neobladder, the postoperative pathology showed high-grade papillary urothelial carcinoma (WHO grade III) with muscularis invasion (rpT2N0M0, stage II). Pathology confirmed that the surgical margin was negative. In July 2018, the patient presented to local hospital for intermittent hematuria for 1 mo. The cystoscope showed neoplasm on urethra. The resection biopsy of the neoplasm confirmed high-grade papillary urothelial carcinoma (WHO grade III). The TNM stage was rT1aN0M1 stage IV. The patient received six cycles of GP (gemcitabine and cisplatin) as first-line chemotherapy from July 7, 2018 to January 19, 2019. On March 2020, the patient presented at our department complaining of bloody sputum for half a month.

Personal and family history
The patient’s previous medical history was hypertension, without a family history of cancer.

Physical examination
The Eastern Cooperative Oncology Group score was 0 to 1, and the numeric pain intensity scale score was 0. There was an old surgical scar of about 11 cm in the lower abdomen.

Laboratory examinations
Routine blood examination, blood biochemistry and urinalysis were normal. Serum tumor markers including -fetoprotein, carcinoembryonic antigen, cancer antigen (CA)125, CA 19-9, and ferritin were routinely monitored, and all were normal.

Imaging examinations
Electrocardiography was normal. Chest computed tomography (CT) showed multiple lung metastases (Figure 1A). Enhanced abdominal CT showed postoperative changes of bladder cancer. Next-generation sequencing (NGS) showed PD-ligand 1 (PD-L1) < 1%, TMB 3.4/Mb, in-frame insertion of ERBB2 [c.2313-2323dup ATACGTTGATGGC (p.Y772-A775dup), 21.6%] and ERBB3 amplification (2.5 times).

FINAL DIAGNOSIS
mUC (cT0N0M1, stage IV).

TREATMENT
The patient refused CT-guided percutaneous lung biopsy. Since March 19, 2020, the patient received six cycles of paclitaxel 300 mg plus sindilimab 200 mg once every 3 wk as second-line therapy and subsequently received sindilimab 200 mg once every 3 wk as maintenance treatment.

OUTCOME AND FOLLOW-UP
After two cycles of treatment, chest CT revealed that the lung metastases were markedly reduced in size (Figure 1C and D). After six cycles, chest CT revealed further reduction of the lung metastases (Figure 1E and F). The patient received review irregularly in a local hospital or in our central hospital. At the time of the last follow-up on July 5, 2021, the patient exhibited a durable partial response (Figure 1G and H) and progression-free survival (PFS) was 19 mo. No obvious side effects were observed and the patient was satisfied with the treatment.
Yan FF et al. Sindilimab in mUC harboring ERBB2/3 mutations

WJCC https://www.wjgnet.com 2500 March 16, 2022 Volume 10 Issue 8

Figure 1 Results of chest computed tomography. A and B: Before second-line chemotherapy; C and D: After two cycles of treatment; E and F: After six cycles of treatment; G and H: At last follow-up.

DISCUSSION

ICIs have revolutionized the treatment of a range of solid tumors, including lung cancer, melanoma, esophageal cancer, and colorectal cancer with MSI-H for their durable clinical benefit and lower toxic effects[14,15]. Since 2016, US Food and Drug Administration has approved five ICIs (atezolizumab, nivolumab, pembrolizumab, avelumab and durvalumab) for the treatment of mUC (Table 1). Although ICIs are effective at treating metastatic urothelial bladder cancer, only a small proportion of patients receive a definite benefit. Currently, no single biomarker can clearly predict treatment response. To better predict the patients who are the mostly likely to benefit from ICIs, several ongoing trials have been conducted to identify effective biomarkers. With the wide application of NGS, an increasing number of new biomarkers are being discovered.

The epidermal growth factor receptor (EGFR) family of receptor tyrosine kinases consists of four members: EGFR1/ERBB1/HER1, ERBB2/HER2, ERBB3/HER3, and ERBB4/HER4[16]. Signaling through these receptors regulates many key cellular activities, including cell division, migration, adhesion, differentiation and apoptosis[17]. ERBB2/3 mutations (including point mutations and amplification) are observed in many types of solid tumors (e.g., breast cancer, gastric cancer, lung cancer and UC). An ERBB2 in-frame insertion into exon 20 has been associated with tyrosine kinase inhibitor resistance in lung adenocarcinoma[18]. Moreover, ERBB3 overexpression has been associated with resistance to a large number of therapies in some cancers[19,20]. ERBB2/3 mutations are associated with the treatment efficacy of PD-L1 monoclonal antibodies for gallbladder carcinoma[13]. ICI monotherapy after the failure of first-line treatment is another reason for the low response rate associated with ICIs.
Table 1 United States Food and Drug Administration approval of immune checkpoint inhibitors in urothelial carcinoma

<table>
<thead>
<tr>
<th>Anti-PD-L1 antibodies</th>
<th>Approvals of FDA</th>
<th>Clinical trials</th>
</tr>
</thead>
<tbody>
<tr>
<td>US FDA approval of anti-PD-L1 antibodies in UC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Atezolizumab</td>
<td>May 18, 2016: As second-line monotherapy for patients with locally advanced or metastatic urothelial carcinoma (UC) who have disease progression during or following platinum-containing chemotherapy or have disease progression within 12 mo of neoadjuvant or adjuvant treatment with platinum-containing chemotherapy</td>
<td>IMvigor 210</td>
</tr>
<tr>
<td></td>
<td>Initial approval April 2017 and modified June 19, 2018 (restricted to PD-L1+): as first-line monotherapy for patients with locally advanced or metastatic UC who: 1) are not eligible for cisplatin-containing chemotherapy and whose tumors express PD-L1 (PD-L1 stained tumor-infiltrating immune cells covering ≥ 5% of the tumor area), as determined by an FDA-approved test, or 2) are not eligible for any platinum-containing chemotherapy regardless of PD-L1 status</td>
<td>IMvigor 210, IMvigor130</td>
</tr>
<tr>
<td>Avelumab</td>
<td>May 9, 2017: As second-line monotherapy for patients with locally advanced or metastatic UC whose disease progressed during or following platinum-containing chemotherapy or within 12 months of neoadjuvant or adjuvant platinum-containing chemotherapy</td>
<td>JAVELIN101b</td>
</tr>
<tr>
<td></td>
<td>June 30, 2020: As maintenance treatment for patients with locally advanced or metastatic UC that has not progressed with first-line platinum-containing chemotherapy</td>
<td>JAVELIN Bladder 100</td>
</tr>
<tr>
<td>Durvalumab</td>
<td>May 1, 2017: As second-line monotherapy for patients with locally advanced or metastatic UC who have disease progression during or following platinum-containing chemotherapy or who have disease progression within 12 mo of neoadjuvant or adjuvant treatment with platinum-containing chemotherapy</td>
<td>NCT01693562</td>
</tr>
<tr>
<td>US FDA approval of anti-PD-1 antibodies in UC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anti-PD-1 antibodies</td>
<td>Approvals of FDA</td>
<td>Clinical trials</td>
</tr>
<tr>
<td>Nivolumab</td>
<td>February 2, 2017: As second-line monotherapy for patients with locally advanced or metastatic UC who have disease progression during or following platinum-containing chemotherapy or have disease progression within 12 months of neoadjuvant or adjuvant treatment with a platinum-containing chemotherapy.</td>
<td>Checkmate 275</td>
</tr>
<tr>
<td>Pembrolizumab</td>
<td>May 18, 2017: As second-line monotherapy for patients with locally advanced or metastatic UC who have disease progression during or following platinum-containing chemotherapy or within 12 mo of neoadjuvant or adjuvant treatment with platinum-containing chemotherapy</td>
<td>Keynote-045</td>
</tr>
<tr>
<td></td>
<td>May 18, 2017: As first-line monotherapy for patients with locally advanced or metastatic UC who are not eligible for cisplatin-containing chemotherapy.</td>
<td>Keynote-052</td>
</tr>
</tbody>
</table>

Ongoing trials are investigating the regimens of ICIs combined with chemotherapy. The rationale is chemotherapy induces immunogenic cell death resulting in tumor antigens releasing and increasing MHC-I-mediated tumor antigen presentation which may enhance the effects of the immune response within the tumor. Another mechanism is directly modulating the activity and/or quantity of immunosuppressive cellular subsets\(^{[2,21-22]}\). Several trials have explored the efficacy of ICIs in combination with chemotherapy for mUC. IMvigor-130 is a double blind, three-arm, multicenter, phase 3 trial investigating the use of atezolizumab as monotherapy or combined with platinum-based chemotherapy comparing with chemotherapy alone as first-line treatment for patients with locally advanced or metastatic bladder carcinoma\(^{[23]}\). The addition of atezolizumab to platinum-based chemotherapy as a first-line treatment prolonged PFS in patients with mUC (mPFS 8.2 mo (95%CI: 6.5-8.3) in the atezolizumab plus platinum-based chemotherapy group and 6.3 (6.2-7.0) mo in the placebo plus platinum-based chemotherapy group (stratified hazard ratio: 0.82, 95%CI: 0.70-0.96; one-sided \(P = 0.007\)). In addition, the median overall survival was 16.0 (13.9–18.9) mo in the atezolizumab plus platinum-based chemotherapy group and 13.4 (12.0–15.2) mo in the placebo plus platinum-based chemotherapy group (0.83, 0.69–1.0; one-sided \(P = 0.027\)). A similar three-arm, multicenter, phase 3 clinical trial (KEYNOTE-036) was established to investigate pembrolizumab as a monotherapy or combined with platinum-based chemotherapy against standard chemotherapy plus placebo as first-line treatment. A phase 2 study also investigated cisplatin combined with gemcitabine plus ipilimumab compared with chemotherapy alone for patients with mUC. The objective response rate was as high as 69% and the completed response rate was 17%\(^{[2]}\).

We first reported metastatic bladder UC harboring an ERBB2 in-frame insertion in an exon 20 mutation and ERBB3 amplification treated with paclitaxel plus sindimlimab as second-line treatment. Although PD-L1 expression was negative and the TMB was low, the patient still achieved a durable response, with lung metastases being significantly reduced. At the last follow-up, the PFS was 19 mo. We will continue to focus on the follow-up treatment of this patient. However, we only included one case in this report, further studies and cases are required to confirm the relationship between ERBB2/3 mutations and response to ICIs in mUC.
CONCLUSION

This case indicates that mUC patients with ERBB2/3 mutations may benefit from ICIs. Further studies and cases are required to explore the ability of ERBB2/3 mutations to predict the efficacy of ICIs.

FOOTNOTES

Author contributions: Yan FF, Jiang Q, and Zhang XC were the patient’s oncologists, reviewed the literature, and contributed to manuscript drafting; Ru B and Fei XJ analyzed and interpreted the imaging findings; Ruan J and Zhang XC reviewed and edited the manuscript; Yan FF and Jiang Q contributed equally to this work; all authors read and approved the final manuscript.

Supported by the Zhejiang Medical Association, No. 2018ZYC-A18.

Informed consent statement: Informed written consent was obtained from the patient for publication of this report and any accompanying images.

Conflict-of-interest statement: The authors declare that they have no conflict of interest.

CARE Checklist (2016) statement: The authors have read the CARE Checklist (2016), and the manuscript was prepared and revised according to the CARE Checklist (2016).

Open-Access: This article is an open-access article that was selected by an in-house editor and fully peer-reviewed by external reviewers. It is distributed in accordance with the Creative Commons Attribution NonCommercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: http://creativecommons.org/Licenses/by-nc/4.0/

Country/Territory of origin: China

ORCID number: Fei-Fei Yan 0000-0001-5003-096X; Qi Jiang 0000-0002-5307-3129; Bin Ru 0000-0003-0628-3243; Xiao-Jie Fei 0000-0002-8914-0573; Jian Ruan 0000-0003-1354-4720; Xiao-Chen Zhang 0000-0002-7014-868X.

S-Editor: Ma YJ
L-Editor: A
P-Editor: Ma YJ

REFERENCES

