EDITORIAL

8432 Evolution of *World Journal of Clinical Cases* over the past 5 years

Muthu S

OPINION REVIEW

8436 NF-κB: A novel therapeutic pathway for gastroesophageal reflux disease?

Zhang ML, Ran LQ, Wu MJ, Jia QC, Qin ZM, Peng YG

MINIREVIEWS

8443 Obligate aerobic, gram-positive, weak acid-fast, nonmotile bacilli, *Tsukamurella tyrosinosolvens*: Minireview of a rare opportunistic pathogen

8450 Diffusion tensor imaging pipeline measures of cerebral white matter integrity: An overview of recent advances and prospects

Safri AA, Nassir CMNCM, Iman IN, Mohd Taib NH, Achuthan A, Mustapha M

8463 Graft choices for anterolateral ligament knee reconstruction surgery: Current concepts

Chalidis B, Pitsilos C, Kitridis D, Givissis P

8474 Overview of the anterolateral complex of the knee

Garcia-Mansilla I, Zicaro JP, Martinez EF, Astoul J, Yacuzzi C, Costa-Paz M

8482 Complication of lengthening and the role of post-operative care, physical and psychological rehabilitation among fibula hemimelia

Salimi M, Sarallah R, Javanshir S, Mirghaderi SP, Salimi A, Khandadeh S

ORIGINAL ARTICLE

Clinical and Translational Research

8490 Pyroptosis-related genes play a significant role in the prognosis of gastric cancer

Guan SH, Wang XY, Shang P, Du QC, Li MZ, Xing X, Yan B

Retrospective Study

8506 Effects of propofol combined with lidocaine on hemodynamics, serum adrenocorticotropic hormone, interleukin-6, and cortisol in children

Shi S, Gan L, Jin CN, Liu RF

8514 Correlation analysis of national elite Chinese male table tennis players’ shoulder proprioception and muscle strength

Shang XD, Zhang EM, Chen ZL, Zhang L, Qian JH
<table>
<thead>
<tr>
<th>Page</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>8525</td>
<td>Clinical value of contrast-enhanced ultrasound in early diagnosis of small hepatocellular carcinoma (≤ 2 cm)</td>
<td>Mei Q, Yu M, Chen Q</td>
</tr>
<tr>
<td>8547</td>
<td>Clinical significance of half-hepatic blood flow occlusion technology in patients with hepatocellular carcinoma with cirrhosis</td>
<td>Liu D, Fang JM, Chen XQ</td>
</tr>
<tr>
<td>8556</td>
<td>Which octogenarian patients are at higher risk after cholecystectomy for symptomatic gallstone disease? A single center cohort study</td>
<td>D’Acapito F, Solaini L, Di Pietrantonio D, Tauceri F, Mirarchi MT, Antielmi E, Flamini F, Amato A, Framarini M, Ercolani G</td>
</tr>
<tr>
<td>8568</td>
<td>Computed tomography combined with gastroscopy for assessment of pancreatic segmental portal hypertension</td>
<td>Wang YL, Zhang HW, Lin F</td>
</tr>
<tr>
<td>8578</td>
<td>Psychological needs of parents of children with complicated congenital heart disease after admitting to pediatric intensive care unit: A questionnaire study</td>
<td>Zhu JH, Jin CD, Tang XM</td>
</tr>
<tr>
<td>8599</td>
<td>Application of unified protocol as a transdiagnostic treatment for emotional disorders during COVID-19: An internet-delivered randomized controlled trial</td>
<td>Yan K, Yusufi MH, Nazari N</td>
</tr>
<tr>
<td>8615</td>
<td>High-flow nasal cannula oxygen therapy during anesthesia recovery for older orthopedic surgery patients: A prospective randomized controlled trial</td>
<td>Li XN, Zhou CC, Lin ZQ, Jia B, Li XY, Zhao GF, Ye F</td>
</tr>
<tr>
<td>8625</td>
<td>Assessment tools for differential diagnosis of neglect: Focusing on egocentric neglect and allocentric neglect</td>
<td>Lee SH, Lim BC, Jeong CY, Kim JH, Jang WH</td>
</tr>
</tbody>
</table>
CASE REPORT

8634 Exome analysis for Cronkhite-Canada syndrome: A case report
Li ZD, Rong L, He YJ, Ji YZ, Li X, Song FZ, Li XA

8641 Discrepancy between non-invasive prenatal testing result and fetal karyotype caused by rare confined placental mosaicism: A case report
Li Z, Lai GR

8648 Paroxysmal speech disorder as the initial symptom in a young adult with anti-N-methyl-D-aspartate receptor encephalitis: A case report
Hu CC, Pan XL, Zhang MX, Chen HF

8656 Anesthesics management of a renal angiomyolipoma using pulse pressure variation and non-invasive cardiac output monitoring: A case report
Jeon WJ, Shin WJ, Yoon YJ, Park CW, Shim JH, Cho SY

8662 Traumatic giant cell tumor of rib: A case report
Chen YS, Kao HW, Huang HY, Huang TW

8667 Analysis of two naval pilots’ ejection injuries: Two case reports
Zeng J, Liu XP, Yi JC, Lu X, Liu DD, Jiang YQ, Liu YB, Tian JQ

8673 Beware of the DeBakey type I aortic dissection hidden by ischemic stroke: Two case reports
Chen SQ, Luo WL, Liu W, Wang LZ

8679 Unilateral lichen planus with Blaschko line distribution: A case report
Dong S, Zhu WJ, Xu M, Zhao XQ, Mou Y

8686 Clinical features and progress of ischemic gastritis with high fatalities: Seven case reports

8695 Retinoblastoma in an older child with secondary glaucoma as the first clinical presenting symptom: A case report
Zhang Y, Tang L

8703 Recurrent herpes zoster in a rheumatoid arthritis patient treated with tofacitinib: A case report and review of the literature
Lin QX, Meng HJ, Pang YY, Qu Y

8709 Intra-abdominal ectopic bronchogenic cyst with a mucinous neoplasm harboring a GNAS mutation: A case report

8718 Effects of intravascular photobiomodulation on motor deficits and brain perfusion images in intractable myasthenia gravis: A case report
Lan CH, Wu YC, Chiang CC, Chang ST
<table>
<thead>
<tr>
<th>Page</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>8728</td>
<td>Spontaneous acute epidural hematoma secondary to skull and dural metastasis of hepatocellular carcinoma: A case report</td>
<td>Lv GZ, Li GC, Tang WT, Zhou D, Yang Y</td>
</tr>
<tr>
<td>8735</td>
<td>Malignant melanotic nerve sheath tumors in the spinal canal of psammomatous and non-psammomatous type: Two case reports</td>
<td>Yeom JA, Song YS, Lee IS, Han IH, Choi KU</td>
</tr>
<tr>
<td>8742</td>
<td>When should endovascular gastrointestinal anastomosis transection Glissonean pedicle not be used in hepatectomy? A case report</td>
<td>Zhao J, Dang YL</td>
</tr>
<tr>
<td>8749</td>
<td>VARS2 gene mutation leading to overall developmental delay in a child with epilepsy: A case report</td>
<td>Wu XH, Lin SZ, Zhou YQ, Wang WQ, Li JY, Chen QD</td>
</tr>
<tr>
<td>8755</td>
<td>Junctional bradycardia in a patient with COVID-19: A case report</td>
<td>Aedh AI</td>
</tr>
<tr>
<td>8768</td>
<td>High scored thyroid storm after stomach cancer perforation: A case report</td>
<td>Baik SM, Pae Y, Lee JM</td>
</tr>
<tr>
<td>8775</td>
<td>Cholecystitis-an uncommon complication following thoracic duct embolization for chylothorax: A case report</td>
<td>Dung LV, Hien MM, Tra My TT, Lau DT, Linh LT, Duc NM</td>
</tr>
<tr>
<td>8782</td>
<td>Endometrial squamous cell carcinoma originating from the cervix: A case report</td>
<td>Shu XY, Dai Z, Zhang S, Yang HX, Bi H</td>
</tr>
<tr>
<td>8788</td>
<td>Type 2 autoimmune pancreatitis associated with severe ulcerative colitis: Three case reports</td>
<td>Ghali M, Bensted K, Williams DB, Ghaly S</td>
</tr>
</tbody>
</table>

LETTER TO THE EDITOR

<table>
<thead>
<tr>
<th>Page</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>8805</td>
<td>Comment on “Posterior reversible encephalopathy syndrome in a patient with metastatic breast cancer: A case report”</td>
<td>Kunić S, Ibrahimagić OĆ, Kojić B, Đılanović D</td>
</tr>
</tbody>
</table>
ABOUT COVER
Editorial Board Member of World Journal of Clinical Cases, Ahmed Mohamed Ahmed Al-Emam, PhD, Associate Professor, Department of Pathology, King Khalid University, Abha 62521, Saudi Arabia. amalemam@kku.edu.sa

AIMS AND SCOPE
The primary aim of World Journal of Clinical Cases (WJCC, World J Clin Cases) is to provide scholars and readers from various fields of clinical medicine with a platform to publish high-quality clinical research articles and communicate their research findings online.

WJCC mainly publishes articles reporting research results and findings obtained in the field of clinical medicine and covering a wide range of topics, including case control studies, retrospective cohort studies, retrospective studies, clinical trials studies, observational studies, prospective studies, randomized controlled trials, randomized clinical trials, systematic reviews, meta-analysis, and case reports.

INDEXING/ABSTRACTING
The WJCC is now abstracted and indexed in Science Citation Index Expanded (SCIE, also known as SciSearch®), Journal Citation Reports/Science Edition, Current Contents/Clinical Medicine, PubMed, PubMed Central, Scopus, Reference Citation Analysis, China National Knowledge Infrastructure, China Science and Technology Journal Database, and Superstar Journals Database. The 2022 Edition of Journal Citation Reports® cites the 2021 impact factor (IF) for WJCC as 1.534; IF without journal self cites: 1.491; 5-year IF: 1.599; Journal Citation Indicator: 0.28; Ranking: 135 among 172 journals in medicine, general and internal; and Quartile category: Q4. The WJCC’s CiteScore for 2021 is 1.2 and Scopus CiteScore rank 2021: General Medicine is 443/826.

RESPONSIBLE EDITORS FOR THIS ISSUE
Production Editor: Ying-Yi Yuan; Production Department Director: Xu Guo; Editorial Office Director: Jin-Lei Wang.

NAME OF JOURNAL
World Journal of Clinical Cases

ISSN
ISSN 2307-8960 (online)

LAUNCH DATE
April 16, 2013

FREQUENCY
Thrice Monthly

EDITORS-IN-CHIEF
Bao-Gan Peng, Jerzy Tadeusz Chudek, George Kontogeorgos, Maurizio Serati, Jia Hyeon Ku

EDITORIAL BOARD MEMBERS
https://www.wjgnet.com/2307-8960/editorialboard.htm

PUBLICATION DATE
August 26, 2022

COPYRIGHT
© 2022 Baishideng Publishing Group Inc

INSTRUCTIONS TO AUTHORS
https://www.wjgnet.com/bpg/gerinfo/204

GUIDELINES FOR ETHICS DOCUMENTS
https://www.wjgnet.com/bpg/GerInfo/287

GUIDELINES FOR NON-NATIVE SPEAKERS OF ENGLISH
https://www.wjgnet.com/bpg/gerinfo/240

PUBLICATION ETHICS
https://www.wjgnet.com/bpg/GerInfo/288

PUBLICATION MISCONDUCT
https://www.wjgnet.com/bpg/gerinfo/208

ARTICLE PROCESSING CHARGE
https://www.wjgnet.com/bpg/gerinfo/242

STEPS FOR SUBMITTING MANUSCRIPTS
https://www.wjgnet.com/bpg/gerinfo/239

ONLINE SUBMISSION
https://www.b6publishing.com
NF-κB: A novel therapeutic pathway for gastroesophageal reflux disease?

Mao-Lin Zhang, Long-Qing Ran, Meng-Jun Wu, Qin-Chen Jia, Zhi-Ming Qin, Yong G Peng

Abstract

Although gastroesophageal reflux disease (GERD), a common chronic disease in clinical practice, has been widely studied, its potential adverse impact on patients is still a significant clinical concern. It is necessary to understand the pathogenesis of the disease and choose appropriate treatment according to its mechanism. The pathogenesis of GERD is diverse and complex. As the traditional treatment methods are expensive and ineffective in alleviating symptoms in some patients, new treatment options need to be explored. Our previous study suggested that the activation of nuclear factor-kappa beta (NF-κB) in esophageal mucosa may be related to the injury of epithelial barrier function caused by reflux. Based on the literature and our previous study results, it is speculated that inhibition of NF-κB activation may block the insult of GERD on the esophageal mucosal barrier. NF-κB may play an important role in the development of GERD. This article reviews the pathogenesis of GERD and the relationship between NF-κB and GERD, in order to provide new strategies for the treatment of GERD.

Key Words: Gastroesophageal reflux disease; NF-κB; Pathogenesis; Mechanism; Inflammatory injury; Esophageal epithelial barrier
Core Tip: Gastroesophageal reflux disease (GERD) is one of the most common chronic diseases. Current treatments, including drugs and surgery, have significant side effects and some patients do not respond to treatment. This article reviews the pathogenesis of GERD, especially the relationship between the NF-κB pathway and GERD. We also assessed the latest studies on the effects of drugs inhibiting the NF-κB pathway in GERD, providing new possibilities for the treatment of GERD.

INTRODUCTION

Gastroesophageal reflux disease (GERD) is a common clinical disorder in western countries[1]. Symptomatic GERD affects 10%-20% of the population in the western world and 5% of the population in Asia including China. GERD is a serious complication in patients who undergo esophagectomy and gastric tube reconstruction due to cancer. Approximately 50% of patients with esophageal cancer have GERD symptoms after surgery, including burning sensations in the pharynx and neck, obstruction when eating, cervical heartburn, belching, acid reflux, and retrosternal pain[2,3]. When reflux invades the mouth, this can cause soft tissue damage, erosive dental lesions[4], and exposure of dentin often causes painful symptoms[5]. GERD occurs not only after surgery, but also in the non-surgical population.

A large number of previous studies have confirmed that gastroesophageal reflux leads to the destruction of esophageal epithelial barrier function; however, the specific mechanism is still not completely clear. Gastroesophageal reflux leads to the destruction of esophageal epithelial barrier function by regulating the expression and distribution of tight junction proteins (such as Occludin, Cldn1, Cldn3 and Cldn4), reducing the number of desmosomes, and the direct hydrolysis of adhesive junction proteins (such as E-cadherin). This is manifested by the widening of intercellular spaces (ICS) and the reduction of trans-epithelial electrical resistance (TEER)[6-11]. In addition, this is accompanied by an inflammatory response in the mucosal epithelium[12].

Nuclear factor-kappa beta (NF-κB) is an important transcription factor associated with inflammation, which regulates apoptosis, viral replication, tumor formation and autoimmunity in addition to the inflammatory response. Reflux can directly stimulate the esophageal epithelium to recruit a large number of inflammatory cells, activate NF-κB and release inflammatory chemokines (such as interleukin (IL)-1β, IL-6 and IL-8). The up-regulated inflammatory factors and inflammatory cells in turn further activate NF-κB expression in esophageal epithelium[13]. Several clinical studies have shown that NF-κB and related inflammatory factors IL-1β and IL-8 are up-regulated in GERD esophageal mucosa [14-18]. Compared with traditional medications and surgical intervention, targeting NF-κB-mediated esophageal epithelial barrier injury may be a more effective treatment for GERD. It can not only effectively relieve symptoms, but also significantly reduce the side effects caused by medications. Unfortunately, there are few reports on this issue.

Our previous study suggested that the activation of NF-κB in esophageal mucosa may be responsible for the interruption of epithelial barrier function caused by reflux. NF-κB can be activated by different stimuli and is considered to be part of the systemic stress response. Based on the literature and our previous study results[19-28], it can be hypothesized that inhibition of NF-κB activation may block the damage to the esophageal mucosal barrier caused by GERD. To prove this theory, we plan in conjunction with in vitro experiments and an animal study to further elucidate the role of NF-κB in the mechanism of reflux-induced esophageal epithelial barrier dysfunction, and explore the effectiveness of specific inhibition of NF-κB activity on reflux-induced esophageal epithelial barrier dysfunction. This alternative therapeutic approach may be a superior intervention for GERD than traditional treatment. The completion of this study will not only further reveal the molecular pathogenesis of esophageal mucosal injury caused by GERD, but also provide a theoretical and experimental basis for the establishment of new treatment methods for GERD.

LITERATURE SEARCH

We conducted a descriptive review of the mechanism associated with GERD in relation to NF-κB. PubMed was searched for articles published from July 1966 to February 2022, using the following MeSH or free-text key words: GERD, NF-κB, pathogenesis, mechanism, inflammatory injury, and esophageal epithelial barrier. The search was limited to papers written in English, with no restrictions on the type of...
PATHOGENESIS OF ESOPHAGEAL MUCOSAL INJURY CAUSED BY GASTROESOPHAGEAL REFUX DISEASE

GERD is a disorder caused by the retrograde flow of reflux into the esophagus. The pathogenesis of GERD involves the interaction of chemical, mechanical, psychological and neural mechanisms (Figure 1).

REFLUX MECHANISM

The reflux insult to esophageal mucosa is the most important pathophysiological mechanism of GERD [29]. However, the components of refluxate are diverse, and include gastric acid, bile acid, and pepsin [30]. Each component has its unique destructive mechanism on the esophageal defense system and consequent impact. GERD is often thought of as acid reflux, where acid refers to hydrochloric acid (HCl) [30], which is a very destructive substance. At the cellular level, the damage caused by HCl to esophageal mucosa is partly due to its influence on the potential difference of esophageal mucosa, which leads to the loss of integrity of epithelial cells and degeneration and necrosis of these cells[31]. In the presence of an acid pocket and hiatal hernia, this increases the exposure time of the esophagus to acidic conditions and is more likely to lead to GERD [32]. However, some patients were found to have a transient elevation in pH up to 7.0 when esophageal pH was tested, indicating the possible presence of alkalinizing agents [33]. Some studies have shown that there is a correlation between bile acid concentration and elevated pH [34]. Under the action of acids, bile acids become lipophilic and can dissolve cell membranes, thus destroying the integrity of the cell after passing through the membrane. It has also been shown to increase the absorption of hydrogen ions in esophageal tissue [35], and the higher the bile concentration, the more esophageal epithelial cells are exposed to this environment, and severe injury can be expected [36]. Bile acid stimulates the release of various inflammatory factors, suggesting that it may have a direct insult on the esophagus [36]. Pepsin, as a peptidase, has a wide range of protein-substrate properties and its release into the esophagus and adjacent structures can cause injury to the surrounding tissues. Unlike the gastrointestinal tract, the esophagus lacks a layer of mucus to protect itself from pepsin digestion and cannot prevent digestion by raising its pH [37]. Thus, pepsin can be activated in the esophagus, leading to cell injury either directly or indirectly [38, 39].

MECHANISM OF ESOPHAGEAL CLEARANCE REDUCTION

When the refluxate enters the esophagus, the esophageal mucosa cannot create the necessary biochemical environment to neutralize the reflux due to the lack of mucous secreting cells and bicarbonate production. In order to reduce the exposure time of the esophageal mucosa to reflux, the clearance mechanism is particularly important. Therefore, it can be speculated that a reduction in esophageal clearance rate will lead to GERD, which is supported by previous literature [40]. The factors affecting esophageal clearance include chemical and mechanical mechanisms, such as glandular secretion and esophageal motility pattern. Salivary secretion can affect esophageal clearance through neutralization of acid. It has been suggested in the literature that reduced salivary gland secretion due to other factors is associated with the development of GERD. The relationship between esophageal dysmotility and GERD is a bidirectional influence. Esophageal motor dysfunction and lower esophageal sphincter (LES) relaxation lead to prolonged indwelling of reflux in the esophagus and reduced clearance rate [41, 42], subsequently leading to GERD.

GRADIENT MECHANISM OF GASTROESOPHAGEAL REFUX

Based on anatomy, the major portion of the esophagus is located in the thoracic cavity, and the pressure in the thoracic cavity is lower than that in the abdominal cavity. The maintenance of tension in the LES plays a crucial role in preventing reflux from entering the esophagus. The LES no longer maintains its tension due to external causes such as obesity, hiatal hernia, low tension in the LES itself, or elevated pressure in the abdominal cavity, resulting in reflux into the esophagus and the development of GERD [43, 44]. As a related factor, shorter abdominal cavity length was found to cause more reflux [45], which may also be related to the formation of a pressure gradient.
CORRELATION BETWEEN GERD AND NF-KB

The esophageal mucosal barrier is mainly composed of esophageal mucosal epithelial cells. The defensive barrier structure of esophageal epithelium is mainly composed of the apical junctional complexes (AJCs) of esophageal keratinocytes and epithelial cell membrane, which is responsible for preventing luminal ions (mainly hydrogen ions) and small molecules from entering the submucosa [46]. The cell AJCs consist of tight junctions, adherent junctions and desmosomes [47, 48]. The esophageal epithelial barrier function mainly involves TEER, the permeability of mucosal epithelium to neutral small molecules and the ICS. A lower TEER value of the same type of epithelial tissue in the same area indicates that the mucosal permeability to ions is stronger, and the mucosal defense barrier function is weaker. GERD activates inflammation when the epithelial barrier is disrupted, and NF-κB is an important transcription factor associated with inflammation [49, 50]. Reflux can directly stimulate the esophageal epithelium to produce inflammatory cytokines, up-regulate NF-κB expression, and release inflammatory chemokines such as IL-1β, IL-6 and IL-8. Changes in the microenvironment in turn activate NF-κB to form a positive feedback [11]. As previously discussed, a large number of clinical studies have shown that GERD esophageal epithelium NF-κB and related inflammatory factors are up-regulated. NF-κB can directly regulate tight junction protein expression and impair epithelial barrier function by relaxing tight junctions [51-53]. Previous animal studies have also shown that NF-κB pathway inhibitors can significantly prevent destruction of the reflux-induced esophageal mucosal barrier [44]. During reflux, TEER decreases, which can be offset by the use of inhibitors. Similarly, IL-1β and IL-6 were significantly reduced after the use of NF-κB inhibitors. In another animal model of GERD, a specific inhibitor of NF-κB was also used [20]. Compared with the control group, the inhibitor increased the pH of the distal esophagus, alleviated esophageal mucosal tissue injury and inhibited the inflammatory response, suggesting that NF-κB is a potential therapeutic target for GERD. In addition, in several animal studies using drugs that inhibit the NF-κB pathway, mucosal damage was significantly reduced compared with the control group, and the release of inflammatory factors was reduced as well as oxidation [21-24]. In an in vitro study, lipopolysaccharide (LPS)-induced inflammatory responses in RAW 264.7 cells were also found to be alleviated after treatment with drugs that inhibited the NF-κB pathway [25-26]. These studies suggest that drugs which inhibit the NF-κB pathway can relieve esophageal mucosal injury caused by GERD and down-regulate related inflammatory factors.

In our previous study, we established a mouse model of gastroesophageal reflux and found that injury of the epithelial barrier of reflux esophageal mucosa was associated with NF-κB-mediated inflammation. However, an esophageal perfusion model in rabbits (acid/bile salt was directly injected into the rabbit esophageal cavity through a catheter) suggested that damage to the epithelial barrier function of esophageal mucosa was related to direct chemical injury by reflux. Also, by comparing the above two studies, it was found that acid reflux did not cause obvious injury and inflammation to the esophageal mucous membrane epithelium in mice, but caused obvious damage and inflammation to the esophageal mucosa in rabbits [31]. These differences may be due to the fact that the esophageal mucosa of rodents (e.g., mice and rats) is coated with hyper-keratinized laminated squamous epithelium, which is highly

Figure 1 Mechanisms of gastroesophageal reflux.
resistant to acid. The esophageal mucosa of rabbit is similar to that of humans, and is covered with incomplete keratinized lamellar squamous epithelium and has poor resistance to acid. In conclusion, we propose that the reduction of esophageal mucosal barrier function induced by gastroesophageal reflux may be the result of a combination of direct chemical destruction and a NF-κB-mediated inflammation process.

The treatment of GERD has many challenges. First, the pathogenesis of GERD has not been completely clarified[54,55]. Although research has made progress in recent years, consensus results have not been established in the literature. However, the incidence of GERD is high and the impact on patients’ quality of life is significant. Second, as mentioned above, traditional therapies are flawed and there is a lack of effective targets for treatment. Third, although the relationship between GERD and NF-κB is well documented and NF-κB inhibitors have only been shown to be effective in animal studies, more investigations are warranted to improve their clinical application.

CONCLUSION

As one of the most common chronic disorders, the symptoms of GERD can be variable, and include non-cardiogenic chest pain, chronic cough, hoarseness, globular and throat irritation[56]. NF-κB activation plays an important role in the development of GERD. However, there is limited information on the treatment of GERD via this pathway. NF-κB is a well-known transcription factor involved in inflammation and cell proliferation. If research is able to demonstrate the benefit of altering NF-κB level in the development of GERD, it would have an enormous impact on GERD treatment in clinical practice.

FOOTNOTES

Author contributions: Zhang ML and Ran LQ contributed equally to this work. They edited the article together; Wu MJ provided writing guidance for this paper; Jia QC collected and organized the articles; Yong GP polished the language of the article; Qin ZM determined the propositional direction of the article; all authors have read and approved the final manuscript.

Conflict-of-interest statement: There is no conflict of interest in this article.

Open-Access: This article is an open-access article that was selected by an in-house editor and fully peer-reviewed by external reviewers. It is distributed in accordance with the Creative Commons Attribution NonCommercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: https://creativecommons.org/Licenses/by-nc/4.0/

Country/Territory of origin: China

ORCID number: Mao-Lin Zhang 0000-0003-3366-4156; Mengjun Wu 0000-0002-6899-4318; Zhiming Qin 0000-0002-7538-5596.

S-Editor: Ma YJ
L-Editor: Webster JR
P-Editor: Ma YJ

REFERENCES

5 Lussi A, Schlueuter N, Rakhamuttina E, Ganss C. Dental erosion--an overview with emphasis on chemical and histopathological aspects. Caries Res 2011; 45 Suppl 1: 2-12 [PMID: 21625128 DOI: 10.1159/000325915]
Zhang ML et al. NF-κB: Pathway for treatment of GERD?

DOI: 10.1053/gast.1996.v111.pm898633

8 Oshima T, Koseki J, Chen X, Matsumoto T, Miwa H. Acid modulates the squamous epithelial barrier function by modulating the localization of Claudins in the superficial layers. Lab Invest 2012; 92: 22-31 [PMID: 21912379 DOI: 10.1038/labinvest.2011.139]

Zhang ML et al. NF-κB: Pathway for treatment of GERD?

1981; 68: 286-293 [PMID: 6788804 DOI: 10.1172/jcli10246]

Johnston N, Knight J, Dettmar PW, Lively MO, Kofunjan J. Pepsin and carbonic anhydrase isoenzyme III as diagnostic markers for laryngopharyngeal reflux disease. Laryngoscope 2004; 114: 2129-2134 [PMID: 15564833 DOI: 10.1097/01.mlg.0000149445.07146.03]

Rodgers LS, Fanning AS. Regulation of epithelial permeability by the actin cytoskeleton. Cytoskeleton (Hoboken) 2011; 68: 653-660 [PMID: 22083950 DOI: 10.1002/cm.20547]

Al-Sadi RM, Ma TY. IL-1beta causes an increase in intestinal epithelial tight junction permeability. J Immunol 2007; 178: 4641-4649 [PMID: 17372023 DOI: 10.4049/jimmunol.178.7.4641]

