MINIREVIEWS

2160 Tertiary peritonitis: A disease that should not be ignored
Marques HS, Araújo GRL, da Silva FAF, de Brito BB, Versiani PVD, Caires JS, Milet TC, de Melo FF

2170 SARS-CoV-2, surgeons and surgical masks
Khalil MI, Banik GR, Mansoor S, Alqahtani AS, Rashid H

ORIGINAL ARTICLE

Case Control Study

2181 Iguratimod promotes transformation of mononuclear macrophages in elderly patients with rheumatoid arthritis by nuclear factor-κB pathway
Liu S, Song LP, Li RB, Feng LH, Zhu H

Retrospective Study

2192 Factors associated with overall survival in early gastric cancer patients who underwent additional surgery after endoscopic submucosal dissection

2205 Epidemiological and clinical characteristics of 65 hospitalized patients with COVID-19 in Liaoning, China

2218 Comprehensive clinicopathologic characteristics of intraabdominal neurogenic tumors: Single institution experience

2228 Distribution and drug resistance of pathogens in burn patients in China from 2006 to 2019
Chen H, Yang L, Cheng L, Hu XH, Shen YM

Observational Study

2238 Impact of simethicone on bowel cleansing during colonoscopy in Chinese patients

Prospective Study

2247 Effect of suspension training on neuromuscular function, postural control, and knee kinematics in anterior cruciate ligament reconstruction patients
Huang DD, Chen LH, Yu Z, Chen QJ, Lai JN, Li HH, Liu G

CASE REPORT

2259 Turner syndrome with positive SRY gene and non-classical congenital adrenal hyperplasia: A case report
He MN, Zhao SC, Li JM, Tong LL, Fan XZ, Xue YM, Lin XH, Cao Y
Contents

<table>
<thead>
<tr>
<th>Page</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>2274</td>
<td>Bilateral retrocorneal hyaline scrolls secondary to asymptomatic congenital syphilis: A case report</td>
<td>Jin YQ, Hu YP, Dai Q, Wu SQ</td>
</tr>
<tr>
<td>2281</td>
<td>Recurrent undifferentiated embryonal sarcoma of the liver in adult patient treated by pembrolizumab: A case report</td>
<td>Yu XH, Huang J, Ge NJ, Yang YF, Zhao JY</td>
</tr>
<tr>
<td>2289</td>
<td>Adult onset type 2 familial hemophagocytic lymphohistiocytosis with PRF1 c.65delC/c.163C>T compound heterozygous mutations: A case report</td>
<td>Liu XY, Nie YB, Chen XJ, Gao XH, Zhai L, Min FL</td>
</tr>
<tr>
<td>2296</td>
<td>Salvage of vascular graft infections via vacuum sealing drainage and rectus femoris muscle flap transposition: A case report</td>
<td>Zhang P, Tao FL, Li QH, Zhou DS, Liu FX</td>
</tr>
<tr>
<td>2302</td>
<td>Innovative chest wall reconstruction with a locking plate and cement spacer after radical resection of chondrosarcoma in the sternum: A case report</td>
<td>Lin CW, Ho TY, Yeh CW, Chen HT, Chiang IP, Fong YC</td>
</tr>
<tr>
<td>2312</td>
<td>Changes in sleep parameters following biomimetic oral appliance therapy: A case report</td>
<td>Singh GD, Kherani S</td>
</tr>
<tr>
<td>2320</td>
<td>Bone remodeling in sigmoid sinus diverticulum after stenting for transverse sinus stenosis in pulsatile tinnitus: A case report</td>
<td>Qiu XY, Zhao PF, Ding HY, Li XS, Lv H, Yang ZH, Gong SS, Jin L, Wang ZC</td>
</tr>
<tr>
<td>2326</td>
<td>Prolonged use of bedaquiline in two patients with pulmonary extensively drug-resistant tuberculosis: Two case reports</td>
<td>Gao JT, Xie L, Ma LP, Shu W, Zhang LJ, Ning YJ, Xie SH, Liu YH, Gao MQ</td>
</tr>
<tr>
<td>2334</td>
<td>Low-grade mucinous appendiceal neoplasm mimicking an ovarian lesion: A case report and review of literature</td>
<td>Borges AL, Reis-de-Carvalho C, Chorão M, Pereira H, Djokovic D</td>
</tr>
<tr>
<td>2344</td>
<td>Granulomatosis with polyangiitis presenting as high fever with diffuse alveolar hemorrhage and otitis media: A case report</td>
<td>Li XJ, Yang L, Yan XF, Zhan CT, Liu JH</td>
</tr>
<tr>
<td>2352</td>
<td>Primary intramedullary melanoma of lumbar spinal cord: A case report</td>
<td>Sun LD, Chu X, Xu L, Fan XZ, Qian Y, Zuo DM</td>
</tr>
<tr>
<td>Page</td>
<td>Title</td>
<td>Authors</td>
</tr>
<tr>
<td>------</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>2367</td>
<td>Nocardia cyriacigeorgica infection in a patient with pulmonary sequestration: A case report</td>
<td>Lin J, Wu XM, Peng MF</td>
</tr>
<tr>
<td>2380</td>
<td>Solitary bone plasmacytoma of the upper cervical spine: A case report</td>
<td>Li RJ, Li XF, Jiang WM</td>
</tr>
<tr>
<td>2386</td>
<td>Two-stage transcrestal sinus floor elevation-insight into replantation: Six case reports</td>
<td>Lin ZZ, Xu DQ, Ye ZY, Wang GG, Ding X</td>
</tr>
</tbody>
</table>
ABOUT COVER

Editorial Board Member of *World Journal of Clinical Cases*, Deb Sanjay Nag, Senior Consultant, Department of Anaesthesiology, Tata Main Hospital, C-Road (West), Bistupur, Jamshedpur 831 001, India. ds.nag@tatasteel.com

AIMS AND SCOPE

The primary aim of *World Journal of Clinical Cases* (*WJCC, World J Clin Cases*) is to provide scholars and readers from various fields of clinical medicine with a platform to publish high-quality clinical research articles and communicate their research findings online.

WJCC mainly publishes articles reporting research results and findings obtained in the field of clinical medicine and covering a wide range of topics, including case control studies, retrospective cohort studies, retrospective studies, clinical trials studies, observational studies, prospective studies, randomized controlled trials, randomized clinical trials, systematic reviews, meta-analysis, and case reports.

INDEXING/ABSTRACTING

The *WJCC* is now indexed in Science Citation Index Expanded (also known as SciSearch®), Journal Citation Reports/Science Edition, Scopus, PubMed, and PubMed Central. The 2020 Edition of Journal Citation Reports® cites the 2019 impact factor (IF) for *WJCC* as 1.013; IF without journal self cites: 0.991; Ranking: 120 among 165 journals in medicine, general and internal; and Quartile category: Q3. The *WJCC*’s CiteScore for 2019 is 0.3 and Scopus CiteScore rank 2019: General Medicine is 394/529.

RESPONSIBLE EDITORS FOR THIS ISSUE

Production Editor: Yan-Xia Xing; Production Department Director: Yan-Xiaojian Wu; Editorial Office Director: Jin-Lei Wang.
Low-grade mucinous appendiceal neoplasm mimicking an ovarian lesion: A case report and review of literature

André Luís Borges, Catarina Reis-de-Carvalho, Martinha Chorão, Helena Pereira, Dusan Djokovic

CASE REPORT

Low-grade mucinous appendiceal neoplasm mimicking an ovarian lesion: A case report and review of literature

André Luís Borges, Catarina Reis-de-Carvalho, Martinha Chorão, Helena Pereira, Dusan Djokovic

ORCID number: André Luís Borges 0000-0002-2733-4374; Catarina Reis-de-Carvalho 0000-0002-5962-1560; Martinha Chorão 0000-0002-8814-2593; Helena Pereira 0000-0001-9025-4255; Dusan Djokovic 0000-0002-1013-8455.

Author contributions: All authors participated in the medical care offered to the patient; Borges AL, Pereira H and Djokovic D performed the surgery; Borges AL and Djokovic D conceptualized the case report; Borges AL and Reis-de-Carvalho C collected data and wrote the manuscript draft; Chorão M performed the histopathological analysis and provided the histological images; Djokovic D and Pereira H reviewed and edited the manuscript; all authors approved the final manuscript.

Informed consent statement: Consent was obtained from the patient for publication of this report and all accompanying images. The host institution ruled that the approval of the Ethics Committee was not required for this project.

Conflict-of-interest statement: The authors declare that there is no conflict of interest.

CARE Checklist (2016) statement: The authors have read the CARE Checklist (2016), and the

Abstract

BACKGROUND
Appendiceal tumors are rare lesions that may not be easily differentiated from primary ovarian lesions preoperatively, despite the use of advanced diagnostic methods by experienced clinicians.

CASE SUMMARY
A 59-year-old G2P2 woman, with chronic pelvic pain, underwent a pelvic ultrasound that revealed an adnexal mass measuring 58 mm × 34 mm × 36 mm, with irregular borders, heterogeneous echogenicity, no color Doppler vascularization and without acoustic shadowing. Normal ovarian tissue was visualized in contact with the lesion, and it was impossible to separate the lesion from the ovary by applying pressure with the ultrasound probe. Ascites, peritoneal metastases or other alterations were not observed. With the international ovarian tumor analysis ADNEX model, the lesion was classified as a malignant tumor (the risk of malignancy was 27.1%, corresponding to Ovarian-
Adnexal Reporting Data System category 4). Magnetic resonance imaging confirmed the presence of a right adnexal mass, apparently an ovarian tumor measuring 65 mm × 35 mm, without signs of invasive or metastatic disease. During explorative laparotomy, normal morphology of the internal reproductive organs was noted. A solid mobile lesion involved the entire appendix. Appendectomy was performed. Inspection of the abdominal cavity revealed no signs of malignant dissemination. Histopathologically, the appendiceal lesion corresponded to a completely resected low-grade mucinous appendiceal neoplasm (LAMN).

CONCLUSION
The appropriate treatment and team of specialists who should provide health care to patients with seemingly adnexal lesions depend on the nature (benign vs malignant) and origin (gynecological vs nongynecological) of the lesion. Radiologists, gynecologists and other pelvic surgeons should be familiar with the imaging signs of LAMN whose clinical presentation is silent or nonspecific. The assistance of a consultant specializing in intestinal tumors is important support that gynecological surgeons can receive during the operation to offer the patient with intestinal pathology an optimal intervention.

Key Words: Adnexal mass; Appendiceal neoplasm; Diagnostic imaging; Pelvic neoplasm; Adnexal diseases; Pelvic neoplasm; Case report

©The Author(s) 2021. Published by Baishideng Publishing Group Inc. All rights reserved.

Core Tip: Low-grade mucinous appendiceal neoplasm is one of the rarest intestinal tumors. Our case highlights how this neoplasm can mimic the behavior of a gynecological (adnexal) lesion in terms of clinical and imaging presentation, while the management and teams of professionals offering treatment significantly differ from those appropriate in the case of adnexal pathology.

Citation: Borges AL, Reis-de-Carvalho C, Chorão M, Pereira H, Djokovic D. Low-grade mucinous appendiceal neoplasm mimicking an ovarian lesion: A case report and review of literature. World J Clin Cases 2021; 9(10): 2334-2343
URL: https://www.wjgnet.com/2307-8960/full/v9/i10/2334.htm
DOI: https://dx.doi.org/10.12998/wjcc.v9.i10.2334

INTRODUCTION
A pelvic mass with adnexal topography may be a primary adnexal lesion or an ovarian metastasis, but also a primary tumor arising from the uterus, bladder or intestine[1]. Meticulous diagnostic procedures should provide a reliable estimate of the lesion’s nature (benign vs malignant) and its origin (gynecological vs nongynecological), to offer the patient adequate treatment without delay, avoiding unnecessary interventions and reducing the risk of iatrogenic morbidity. Appendiceal tumors are infrequent and, in certain cases, such as the one that we are presenting here, may not be differentiated from primary adnexal lesions despite the use of advanced diagnostic methods and preoperative assessment procedures[2].

CASE PRESENTATION

Chief complaints
A postmenopausal 59-year-old woman, G2P2, was admitted to our Gynecology Department due to ultrasound evidence of an adnexal mass of uncertain behavior in the context of chronic pelvic pain.
History of present illness
Over the past 2-3 mo, the patient experienced mild-to-moderate and persistent pain in the right lower quadrant, without irradiation, which worsened with somatic movements. There was no reference to any specific gastrointestinal, gynecological, urological or other symptom. A right adnexal solid lesion of 5 cm was found on transvaginal ultrasound, which was requested by the general practitioner who referred the patient to our tertiary referral hospital.

History of past illness
The patient's past medical history was unremarkable.

Personal and family history
The patient's personal and family history was also unremarkable.

Physical examination
Pelvic examination revealed that the external genitalia, vagina and cervix were normal. During bimanual palpation, a 5-6 cm, hard, painful and mobile mass was detected in the right ovarian fossa.

Laboratory examinations
There was no hematological or biochemical alteration. The levels of tumor biomarkers, including CA-125 (6.7 U/mL), were normal.

Imaging examinations
Transvaginal ultrasound revealed a solid lesion measuring 58 mm × 34 mm × 36 mm, in close contact with the normal tissue of the right ovary, with irregular borders, heterogeneous echogenicity, no vascularization visualized by the use of color Doppler (color score 1) and without acoustic shadowing. Ascites, peritoneal metastases or other alterations were not observed. Using the international ovarian tumor analysis (IOTA) ADNEX model and the recommended cutoff of 10%, the lesion was classified as a malignant tumor. The determined risk of malignancy was 27.1%, which corresponded to the Ovarian-Adnexal Reporting Data System 4 risk category (i.e., intermediate risk). Pelvic magnetic resonance imaging (MRI) showed a tumor apparently originating from the right ovary and measuring 65 mm × 35 mm, while no signs of invasive disease were noted. In both imaging techniques, continuity between the tumor and gastrointestinal tract was not observed or documented.

FINAL DIAGNOSIS
The patient underwent an exploratory laparotomy. Normal uterus, fallopian tubes and ovaries were visualized. We found a solid and mobile lesion originating in the appendix. Inspection of the abdominal cavity revealed no signs of malignant dissemination. The lesion histological diagnosis was low-grade mucinous appendiceal neoplasm (LAMN).

TREATMENT
Appendectomy was performed. In accordance with the orientation provided by the general surgery consultant, who was invited to the operative theatre, no other intervention was performed.

OUTCOME AND FOLLOW-UP
The patient had an uneventful postoperative clinical course and was discharged from the hospital on the third postoperative day. Currently, six months after surgery, the patient remains asymptomatic.
DISCUSSION

Pelvic tumors represent one of the most frequent reasons for referral to gynecology departments. The management strategies are guided by the degree of clinical imaging-based suspicion of malignancy, as well as symptoms; the patient's age; and her desire for fertility preservation. To promote survival and/or quality of life, an adequate characterization and clinical contextualization of the observed lesions must be carried out in order to refer the patients with a malignant neoplasm for treatment by
gyneecological oncologists or other specialists in their respective subspecialized units to avoid unnecessary surgery in patients with functional adnexal formations and benign adnexal lesions. The case presented in this study highlights how the preoperative assessment of a patient can be challenging and how gynecologists, despite a detailed and dedicated preoperative evaluation of the patient, can face nongynecological lesions during surgery.

Instead of an expected solid ovarian lesion, our patient had a LAMN, which accounts for 1% of gastrointestinal neoplasms\(^6\). It is a low-grade dysplastic epithelial lesion that, by definition, lacks infiltrative invasion, which would be termed mucinous adenocarcinoma\(^6\). The PubMed search that we conducted on January 1, 2021, identified 23 reports resembling our case (Table 1). A large case series indicated that the median age at LAMN diagnosis is 61 years, which is close to the age of our patient\(^7\). In terms of sex, the literature reports a higher prevalence in females (the female/male ratio varies from 7:1\(^8\) to 1.4:1\(^9\)). Similarly, ovarian carcinoma occurs at the median age of 63 years\(^10\). Regarding clinical presentation, ovarian cancer typically produces symptoms, including nonspecific pelvic/abdominal pain, bloating, urinary urgency or frequency, in the late and advanced stages\(^11,12\). In the same manner, appendiceal mucocele that mimics an adnexal mass most commonly presents with pelvic/abdominal pain\(^13\). The complications of LAMN include intussusception, volvulus, small bowel or ureteral obstruction, rupture and mucinous ascites, namely, pseudomyxoma peritonei. The ovarian etiology assumption by routine and epidemiological/clinical overlap can easily lead to an erroneous diagnosis. Preoperatively, LAMN is commonly misdiagnosed as acute appendicitis or an adnexal mass\(^14\), as occurred in our patient. Differential diagnosis may also include mucinous adenocarcinoma of the appendix and a high-grade appendiceal mucinous neoplasm, a pelvic foreign body and a subserous uterine fibroid. The literature consistently reinforces the idea that the presence of a right-sided adnexal mass should allow for the possibility of an appendiceal neoplasm\(^15,23\). Interestingly, cases of left-sided appendiceal neoplasms mimicking an adnexal mass have recently been reported\(^21,25\).
Table 1 Appendiceal neoplasms mimicking adnexal lesions (cases identified by the PubMed search, published in English language until January 2021)

<table>
<thead>
<tr>
<th>Case</th>
<th>Age</th>
<th>Cardinal symptom</th>
<th>Clinical context</th>
<th>Imaging modality</th>
<th>Tumor marker</th>
<th>Presumed diagnosis</th>
<th>Treatment</th>
<th>Appendix: Histopathology</th>
</tr>
</thead>
<tbody>
<tr>
<td>1[26]</td>
<td>32</td>
<td>Abdominal pain</td>
<td>Acute abdomen (38 wk pregnancy)</td>
<td>US (cystic mass 32 mm × 35 mm × 59 mm)</td>
<td>N/A</td>
<td>Right ovarian torsion</td>
<td>Laparotomy: Appendectomy C-Section</td>
<td>Mucocele (torsion)</td>
</tr>
<tr>
<td>2[26]</td>
<td>49</td>
<td>Pelvic pain</td>
<td>Chronic pain (1 yr)</td>
<td>US (heterogeneous mass 70 mm × 35 mm × 40 mm), MRI (cystic mass 70 mm × 63 mm × 29 mm)</td>
<td>CEA 10.5 μg/L (↑), CA125 normal</td>
<td>Right adnexal mass of paraovarian origin</td>
<td>Laparoscopy: Appendectomy, Peritoneal washing</td>
<td>LAMN. Peritoneal cytology: Negative</td>
</tr>
<tr>
<td>3[17]</td>
<td>81</td>
<td>Abdominal pain</td>
<td>Chronic pain (several months)</td>
<td>US (heterogeneous cystic mass 110 mm × 90 mm), MRI (heterogeneous cystic mass 120 mm × 100 mm)</td>
<td>CA125 13.18 U/mL, CA19.9 20.8 U/mL, CEA 1.76 ng/mL, CA15.3 6.7 U/mL</td>
<td>Right adnexal mass</td>
<td>Laparotomy: Appendectomy and a right hemicolectomy with ileo-transverse anastomosis. Total abdominal hysterectomy and bilateral salpingo-oophorectomy due to pelvic organ prolapse</td>
<td>Appendiceal mucinous neoplasm with low malignancy potential</td>
</tr>
<tr>
<td>4[17]</td>
<td>61</td>
<td>Incidental imaging finding</td>
<td>Preventive gynecological check-up</td>
<td>US (heterogeneous solid mass 104 mm × 40 mm)</td>
<td>CA19.9 40 U/mL (↑), CA125 9 U/mL, CA153.13 U/mL, AFP 2 ng/mL</td>
<td>Left adnexal mass</td>
<td>Laparotomy: Appendectomy. Excisional biopsy of the omentum</td>
<td>LAMN</td>
</tr>
<tr>
<td>5[36]</td>
<td>41</td>
<td>Pelvic pain</td>
<td>Chronic pain</td>
<td>US (cystic mass 60 mm × 28 mm), MRI (70 mm × 40 mm × 30 mm)</td>
<td>CEA and CA19.9 normal</td>
<td>Right adnexal mass</td>
<td>Laparoscopy converted to laparotomy: Right hemicolectomy with side to side ileocolic stapler anastomosis</td>
<td>LAMN</td>
</tr>
<tr>
<td>6[36]</td>
<td>15</td>
<td>Abdominal pain</td>
<td>Acute abdomen</td>
<td>US; CT (no precise description reported)</td>
<td>N/A</td>
<td>Right ovarian torsion</td>
<td>Laparoscopy: Appendectomy</td>
<td>Mucocele</td>
</tr>
<tr>
<td>7[36]</td>
<td>46</td>
<td>Incidental pelvic examination finding</td>
<td>Preventive gynecological check-up</td>
<td>US (cystic mass 115 mm × 40 mm)</td>
<td>N/A</td>
<td>Right adnexal mass (hydropyosalpinx, tubo-ovarian abscess or ovarian cyst)</td>
<td>Laparoscopy: Appendectomy</td>
<td>Mucocele</td>
</tr>
<tr>
<td>8[36]</td>
<td>71</td>
<td>Pelvic pain</td>
<td>Acute pain</td>
<td>US (cystic mass 50 mm × 70 mm), MRI (cystic mass 40 mm × 80 mm)</td>
<td>CA125 9.1 U/mL, CA19.9 5.09 U/mL, AFP 2.4 ng/mL, β-HCG 0.01 mIU/mL</td>
<td>Right adnexal mass</td>
<td>Laparotomy: Appendectomy. Total abdominal hysterectomy and bilateral salpingo-oophorectomy due to pelvic organ prolapse</td>
<td>Mucocele</td>
</tr>
<tr>
<td>9[36]</td>
<td>80</td>
<td>Abdominal pain</td>
<td>Chronic pain (several months)</td>
<td>US (mixed echogenic mass 61 mm × 43 mm × 51 mm), CT (calcified cyst 70 mm × 60 mm × 50 mm)</td>
<td>CA125 normal</td>
<td>Right adnexal mass (ovarian cyst)</td>
<td>Laparotomy: Appendectomy</td>
<td>Mucinous cystadenoma</td>
</tr>
<tr>
<td>10[36]</td>
<td>61</td>
<td>Pelvic pain</td>
<td>Chronic pain (several months)</td>
<td>US (cystic mass), CT (homogeneous mass 110 mm × 35 mm)</td>
<td>Normal (not specified)</td>
<td>Right adnexal mass (ovarian cyst or hydrosalpinx)</td>
<td>Laparoscopy: Appendectomy</td>
<td>LAMN</td>
</tr>
<tr>
<td>11[36]</td>
<td>26</td>
<td>Pelvic pain</td>
<td>Chronic pain</td>
<td>US (cystic mass 30 mm × 30 mm)</td>
<td>N/A</td>
<td>Right adnexal mass (ovarian cyst)</td>
<td>Laparoscopy: Appendectomy</td>
<td>Mucinous cystadenoma with mild-moderate dysplasia</td>
</tr>
<tr>
<td>12[36]</td>
<td>70</td>
<td>Incidental pelvic examination finding</td>
<td>Preventive gynecological check-up</td>
<td>US (solid mass 60 mm × 60 mm × 40 mm)</td>
<td>CA125 120 mg/dL (↑), CEA normal</td>
<td>Right adnexal mass</td>
<td>Laparotomy: Appendectomy. Total abdominal hysterectomy and bilateral salpingo-oophorectomy</td>
<td>Mucinous cystadenoma</td>
</tr>
</tbody>
</table>
13\cite{10} 68 Incidental pelvic examination finding Abnormal uterine bleeding US (cystic mass 39 mm) N/A Right adnexal mass (ovarian cyst) Laparoscopy: Appendectomy Mucocele

14\cite{10} 50 Pelvic pain - US (tubular mass 96 mm × 40 mm × 33 mm). MRI (no precise description reported) N/A Left adnexal mass (hydrosalpinx) Robotic: Appendectomy Right hemicolectomy Low grade mucinous adenocarcinoma

15\cite{10} 42 Incidental imaging finding 1st trimester bleeding US (cystic mass 120 mm × 108 mm × 58 mm) CA125 16 U/mL Right adnexal mass (ovarian cyst) Laparotomy: Appendectomy Mucocele

16\cite{10} 31 Pelvic pain Fever US, MRI (no precise description reported) CA125 12.2 U/mL, CEA 5.2 U/mL, CA19.9 3.44 ng/mL Right adnexal mass (hydrosalpinx) Laparotomy: Appendectomy Mucocele

17\cite{10} 79 Incidental imaging finding Preventive gynecological check-up US (uniloculated mass, characterized by dishomogeneous content, distal shadowing 59 mm × 43 mm × 40 mm). MRI (cystic mass 80 mm) CEA 1.26 ng/mL, CA125 8.1 U/mL, CA19.9 31.4 U/mL Right adnexal mass (ovarian cyst) Laparoscopy: Appendectomy Mucocele

18\cite{10} 80 Pelvic pain Chronic pain US (cystic/solid mass 83 mm × 65 mm × 64 mm). CT (cystic mass 100 mm × 80 mm) CEA 54.2 ng/mL Right adnexal mass Laparotomy: Appendectomy Omentectomy, total abdominal hysterectomy, and bilateral salpingo-oophorectomy LAMN

19\cite{10} 83 Incidental imaging finding Preventive gynecological check-up US (cystic/solid mass 87 mm). MRI (cystic mass 90 mm) CEA 5.3 ng/mL (↑), CA15.3 31.4 U/mL Right adnexal mass Laparotomy: Appendectomy LAMN

20\cite{10} 78 Asymptomatic Known adnexal mass on ultrasound follow-up US (cystic mass 58 mm × 42 mm × 35 mm). MRI (bilocular cystic mass 41 mm × 19 mm) CEA, CA125 and CA19.9 normal Right adnexal mass Laparotomy: Appendectomy. Total abdominal hysterectomy and bilateral salpingo-oophorectomy due to pelvic organ prolapse Mucinous cystadenoma

21\cite{10} 28 Pelvic pain Acute abdomen CT (cystic mass 33 mm × 50 mm) N/A Right adnexal mass (ovarian cyst rupture) Laparoscopy: Appendectomy Mucocele (torsion: Hemorrhagic transmural necrosis)

22\cite{10} 36 Pelvic pain - US (cystic complex mass) CEA ↑; CA19.9 ↑ Right adnexal mass Laparotomy: Appendectomy Mucinous cystadenoma

23\cite{10} 75 Asymptomatic Adnexal mass on ultrasound (investigation due to CEA) US. CT (cystic mass 90 mm) CEA 17.7 ng/mL (↑), CA125 and CA19.9 normal Right adnexal mass (ovarian malignancy) Laparotomy: Appendectomy Mucinous cystadenoma

\[1\]: Above the upper limit of normal; AFP: Alpha-Fetoprotein; C-section: Cesarean section; CA125: Cancer antigen 125; CA15.3: Cancer antigen 15.3; CA19.9: Carbohydrate antigen 19.9; CEA: Carcinoembryonic antigen; CT: Computed Tomography; MRI: Magnetic resonance imaging; N/A: Not available; US: Ultrasound; LAMN: Low-grade mucinous appendiceal neoplasm; β-hCG: β-human chorionic gonadotropin.

Imaging modalities for diagnosis include ultrasound, computed tomography (CT) and MRI. Regarding the ultrasound imaging features, it has been described that an appendiceal mucocele (the LAMN includes lesions that were described previously as mucoceles) should be suspected when a cystic mass with concentric echogenic layers (the “onion skin” sign) and a normal ovary are detected in the right lower quadrant\cite{10}. In parallel, the possibility of separating a lesion from the ovary by applying pressure with the ultrasound probe (“split” sign) also indicates its nonovarian origin\cite{10}. In our patient, we observed the “onion skin” sign (Figure 1) but not the “split” sign. The IOTA models have been externally validated and found to be valuable tools for discriminating between benign and malignant ovarian tumors (1); however, they
should not be used if nonadnexal lesions with adnexal topography are suspected. We used the IOTA ADNEX model because it seemed a lesion originating from the ovarian parenchyma. The obtained output could not properly assist us. The literature suggests that CT scan are superior to ultrasound evaluations in diagnosing LAMN[23], namely, to distinguish LAMN from acute appendicitis. Nevertheless, CT is diagnostic in less than 50% of cases[23]. We used MRI to complement the ultrasound assessment, and the MRI findings were consistent with a primary ovarian lesion.

Once the appendiceal lesion was confirmed during the explorative intervention, the assistance of a surgeon specializing in intestinal pathology was of fundamental importance to provide an appropriate treatment to the patient. In accordance with the Clinical Practice Guidelines of the American Society of Colon and Rectal Surgeons[39], LAMNs with negative margins and no evidence of perforation or peritoneal involvement are safely treated with appendectomy alone.

CONCLUSION

The spectrum of lesions that have adnexal topography is wide, and in addition to diverse adnexal lesions, it includes uterine, bladder and intestinal pathology. LAMN should be suspected when a right adnexal mass with concentric echogenic layers separable from normal ovarian tissue is observed. Despite meticulous preoperative examination, when unexpectedly nongynecological lesions are identified, intraoperative cooperation between gynecologists and other specialists is crucial to offer adequate intervention to the patient. Registering such cases and reviewing the preoperative imaging findings may increase preoperative diagnostic sensitivity and specificity and therefore should not be omitted.

REFERENCES

1. Sorensen SS, Mosgaard BJ. Combination of cancer antigen 125 and carcinoembryonic antigen can improve ovarian cancer diagnosis. Dan Med Bull 2011; 58: A4331 [PMID: 22047929]

