EDITORIAL

3016 Alanine aminotransferase predicts incident steatotic liver disease of metabolic etiology: Long life to the old biomarker!
Lonardo A

3022 Fecal calprotectin and endoscopic scores: The cornerstones in clinical practice for evaluating mucosal healing in inflammatory bowel disease
Costa MHM, Sassaki LY, Chebli JMF

3036 Harnessing autophagy: A potential breakthrough in digestive disease treatment
Esrefoglu M

3044 Aspergillus niger prolyl endopeptidase in celiac disease
Colella M, Cafiero C, Palmirotta R

3048 Colorectal cancer screening: Modalities and adherence
Metaxas G, Papachristou A, Stathaki M

3052 Risk of hepatitis B virus reactivation in cancer patients undergoing treatment with tyrosine kinase-inhibitors

ORIGINAL ARTICLE

Retrospective Study

3059 Development and validation of a prognostic immunoinflammatory index for patients with gastric cancer
Ba ZC, Zhu XQ, Li ZG, Li YZ

Observational Study

3076 Helicobacter pylori infection alters gastric microbiota structure and biological functions in patients with gastric ulcer or duodenal ulcer
Jin LX, Fang YP, Xia CM, Cai TW, Li QQ, Wang YY, Yan HF, Chen X

Basic Study

3086 Effect and mechanism of Qingre Huashi decoction on drug-resistant Helicobacter pylori
Lin MM, Yang SS, Huang QY, Cui GH, Jia XF, Yang Y, Shi ZM, Ye H, Zhang XZ

SCIENTOMETRICS

3106 Mapping global research trends: Nutrition associations with nonalcoholic fatty liver disease - a Scopus bibliometric analysis
Shakhshir M, Zyoud SH
LETTER TO THE EDITOR

3120 Managing immune checkpoint inhibitor-associated gastritis: Insights and strategies
 Yu LL, He ZL, Qian XL

3123 Gastric microbiota transplantation as a potential treatment for immune checkpoint inhibitor-associated gastritis
 Ma BT, Sang LX, Chang B
Managing immune checkpoint inhibitor-associated gastritis: Insights and strategies

Li-Li Yu, Zhi-Lin He, Xin-Lai Qian

Abstract
Immune checkpoint inhibitors (ICIs) are widely used due to their effectiveness in treating various tumors. Immune-related adverse events (irAEs) are defined as adverse effects resulting from ICI treatment. Gastrointestinal irAEs are a common type of irAEs characterized by intestinal side effects, such as diarrhea and colitis, which may lead to the discontinuation of ICIs.

Key Words: Immunotherapy; Immune checkpoint inhibitor; Immune checkpoint inhibitor-related gastritis; Immune-related adverse events; Autoimmune responses

©The Author(s) 2024. Published by Baishideng Publishing Group Inc. All rights reserved.

Core Tip: Immune checkpoint inhibitor (ICI)-related gastritis is rare but may lead to serious complications such as gastorrhagia. The strategies such as early identification, pathological diagnosis, management interventions, and immunotherapy reactivation are discussed to enable clinicians to better manage ICI-related gastritis and improve the prognosis of these patients.

Citation: Yu LL, He ZL, Qian XL. Managing immune checkpoint inhibitor-associated gastritis: Insights and strategies. World J Gastroenterol 2024; 30(24): 3120-3122
URL: https://www.wjgnet.com/1007-9327/full/v30/i24/3120.htm
TO THE EDITOR

I am writing to express my concern regarding the paper titled “Immune checkpoint inhibitor-associated gastritis: Patterns and management” by Lin et al[1], recently published in the World Journal of Gastroenterology. The authors systematically summarize the occurrence patterns and management strategies of immune checkpoint inhibitor (ICI)-associated gastritis, providing important evidence for research and practice in this field.

Over the last decade, the emergence of ICI therapy has revolutionized the treatment of a growing number of malignancies[2]. Immune-related adverse events (irAE) are side effects that resemble autoimmune responses in the patients receiving ICIs[3]. ICI-related gastritis, although rare, may lead to serious complications, such as gastrorrhagia. The most common abnormality reported on endoscopy is erythema, followed by erosions. Other findings include granularity, sloughing, exudates, ulcers, atrophy, and rarely, severe hemorrhagic gastritis[4-6].

A common mechanism (Figure 1) by which ICIs exert their effects involves activation of effector T cells by inhibition of programmed death 1, programmed death-ligand 1, and cytotoxic T-lymphocyte antigen 4 [7]. It is also proposed that the proliferation of activated T cells and increased cytokine production, caused by a lack of self-tolerance, may result in irAEs [8,9]. However, the detailed mechanisms underlying irAEs remain unclear. Therefore, the treatment decisions for ICI-related gastritis are based on individual clinical presentations.

However, the article does not adequately address individualized treatment options for diverse patient populations. Considering the patient's immune status, gastritis severity, and other factors, the formulation of an individualized treatment plan is particularly important. For example, before starting an ICI, autoantibody screening may be considered for patients with a personal or familial history of autoimmune disease or those presenting with signs or symptoms suggestive of an underlying autoimmune disease. This precaution is due to their enhanced risk of developing a full-blown autoimmune disease post-treatment[10]. Second, the article neglects to mention the evaluation and monitoring strategies prior to ICI therapy when discussing preventive measures, which are important for reducing the risk of gastritis.

Additionally, the issue of re-provocation after ICI treatment warrants attention, particularly the risk of recurrence of gastritis. Upon complete resolution of irAEs, the resumption of immunotherapy is crucial for treatment and prognosis despite the risk of irAE relapse.

In the future, we need to continue to deepen our understanding of irAE gastritis, enabling timely and appropriate diagnosis and treatment and providing clinicians with guidance for the treatment of ICI-related gastritis to improve patient prognosis.

ACKNOWLEDGEMENTS

We acknowledge all the authors whose publications are used as references in our article.
FOOTNOTES

Author contributions: He ZL drafted the manuscript; Yu LL edited and revised the manuscript; Qian XL revised the letter and approved the final version of the manuscript.

Supported by the National Natural Science Foundation of China, No. 81671226; Natural Science Foundation of Henan Province, No. 232300421047; Science and Technology Innovation Talents in Universities of Henan Province, No. 24HASTIT067; and Henan Province Young and Middle-aged Health Science and Technology Innovation Talent Project, No. JQRC2023001.

Conflict-of-interest statement: The authors declare no conflicts of interest.

Open-Access: This article is an open-access article that was selected by an in-house editor and fully peer-reviewed by external reviewers. It is distributed in accordance with the Creative Commons Attribution NonCommercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: https://creativecommons.org/Licenses/by-nc/4.0/

Country of origin: China

ORCID number: Li-Li Yu 0000-0001-5832-1024.

S-Editor: Chen YL

L-Editor: A

P-Editor: Chen YX

REFERENCES
