REVIEW
900 Type 2 diabetes and bone fragility in children and adults
 Faienza MF, Pontrelli P, Brunetti G

MINIREVIEWS
912 Orthotic approach to prevention and management of diabetic foot: A narrative review
 Chang MC, Choo YJ, Park IS, Park MW, Kim DH

921 Effects of Chios mastic gum on cardiometabolic risk factors
 Papazafiropoulou AK

926 Advances in neovascularization after diabetic ischemia

940 Nutritional supplementation on wound healing in diabetic foot: What is known and what is new?

949 Combination therapy of hydrogel and stem cells for diabetic wound healing
 Huang JN, Cao H, Liang KY, Cui LP, Li Y

962 Role of defensins in diabetic wound healing
 Tan ZX, Tao R, Li SC, Shen BZ, Meng LX, Zhu ZY

ORIGINAL ARTICLE
Basic Study
972 Dietary N^ϵ-(carboxymethyl) lysine affects cardiac glucose metabolism and myocardial remodeling in mice
 Wang ZQ, Sun Z

Observational Study
986 Risk factor analysis and clinical decision tree model construction for diabetic retinopathy in Western China
ABOUT COVER
Editorial Board Member of World Journal of Diabetes, Jian-Hua Ma, MD, Professor, Department of Endocrinology, Nanjing First Hospital, Nanjing Medical University, Changle Road 68, Nanjing 210006, Jiangsu Province, China. majianhua@china.com

AIMS AND SCOPE
The primary aim of World Journal of Diabetes (WJD, World J Diabetes) is to provide scholars and readers from various fields of diabetes with a platform to publish high-quality basic and clinical research articles and communicate their research findings online.

WJD mainly publishes articles reporting research results and findings obtained in the field of diabetes and covering a wide range of topics including risk factors for diabetes, diabetes complications, experimental diabetes mellitus, type 1 diabetes mellitus, type 2 diabetes mellitus, gestational diabetes, diabetic angiopathies, diabetic cardiomyopathies, diabetic coma, diabetic ketoacidosis, diabetic nephropathies, diabetic neuropathies, Donohue syndrome, fetal macrosomia, and prediabetic state.

INDEXING/ABSTRACTING
The WJD is now abstracted and indexed in Science Citation Index Expanded (SCIE, also known as ScSearch®), Current Contents/Clinical Medicine, Journal Citation Reports/Science Edition, PubMed, PubMed Central, Reference Citation Analysis, China National Knowledge Infrastructure, China Science and Technology Journal Database, and Superstar Journals Database. The 2022 Edition of Journal Citation Reports® cites the 2021 impact factor (IF) for WJD as 4.560; IF without journal self cites: 4.450; 5-year IF: 5.370; Journal Citation Indicator: 0.62; Ranking: 62 among 146 journals in endocrinology and metabolism; and Quartile category: Q2.

RESPONSIBLE EDITORS FOR THIS ISSUE
Production Editor: Yu-Xi Chen; Production Department Director: Xu Guo; Editorial Office Director: Yun-Xiaojiao Wu.

NAME OF JOURNAL
World Journal of Diabetes

ISSN
ISSN 1948-9358 (online)

LAUNCH DATE
June 15, 2010

FREQUENCY
Monthly

EDITORS-IN-CHIEF
Lu Cai, Md. Shahidul Islam, Jian-Bo Xiao, Michael Horowitz

EDITORIAL BOARD MEMBERS

PUBLICATION DATE
November 15, 2022

COPYRIGHT
© 2022 Baishideng Publishing Group Inc

INSTRUCTIONS TO AUTHORS
https://www.wjgnet.com/bpg/gerinfo/204

GUIDELINES FOR ETHICS DOCUMENTS
https://www.wjgnet.com/bpg/gerinfo/287

GUIDELINES FOR NON-NATIVE SPEAKERS OF ENGLISH
https://www.wjgnet.com/bpg/gerinfo/240

PUBLICATION ETHICS
https://www.wjgnet.com/bpg/gerinfo/288

PUBLICATION MISCONDUCT
https://www.wjgnet.com/bpg/gerinfo/208

ARTICLE PROCESSING CHARGE
https://www.wjgnet.com/bpg/gerinfo/242

STEPS FOR SUBMITTING MANUSCRIPTS
https://www.wjgnet.com/bpg/gerinfo/239

ONLINE SUBMISSION
https://www.f6publishing.com
Combination therapy of hydrogel and stem cells for diabetic wound healing

Jia-Na Huang, Hao Cao, Kai-Ying Liang, Li-Ping Cui, Yan Li

Specialty type: Engineering, biomedical
Provenance and peer review: Invited article; Externally peer reviewed.
Peer-review model: Single blind
Peer-review report’s scientific quality classification
Grade A (Excellent): 0
Grade B (Very good): 0
Grade C (Good): 0
Grade D (Fair): 0
Grade E (Poor): 0
P-Reviewer: Jeyaraman M, India; Prasetyo EP, Indonesia
Received: August 28, 2022
Peer-review started: August 28, 2022
First decision: September 12, 2022
Revised: September 25, 2022
Accepted: November 2, 2022
Article in press: November 2, 2022
Published online: November 15, 2022

Abstract

Diabetic wounds (DWs) are a common complication of diabetes mellitus; DWs have a low cure rate and likely recurrence, thus affecting the quality of patients’ lives. As traditional therapy cannot effectively improve DW closure, DW has become a severe clinical medical problem worldwide. Unlike routine wound healing, DW is difficult to heal because of its chronically arrested inflammatory phase. Although mesenchymal stem cells and their secreted cytokines can alleviate oxidative stress and stimulate angiogenesis in wounds, thereby promoting wound healing, the biological activity of mesenchymal stem cells is compromised by direct injection, which hinders their therapeutic effect. Hydrogels form a three-dimensional network that mimics the extracellular matrix, which can provide shelter for stem cells in the inflammatory microenvironment with reactive oxygen species in DW, and maintains the survival and viability of stem cells. This review summarizes the mechanisms and applications of stem cells and hydrogels in treating DW; additionally, it focuses on the different applications of therapy combining hydrogel and stem cells for DW treatment.

Key Words: Combination therapy; Mesenchymal stem cells; Hydrogel; Diabetic wound; Cells delivery; Wound healing

©The Author(s) 2022. Published by Baishideng Publishing Group Inc. All rights reserved.
Core Tip: Diabetic wounds are a common diabetes mellitus complication with a low cure rate and likely recurrence. Although stem cell therapy is suitable for diabetic wound healing, simple transplantation methods, such as intravenous, subcutaneous, intramuscular, and local injection, are not conducive to cell survival, thus resulting in compromised efficacy. To improve the outcome of stem cell therapy, researchers have designed different types of hydrogels for stem cell delivery to ensure cell viability and paracrine functions. Herein, we discuss the current roles and applications of hydrogel and stem cell combination therapy for diabetic wound treatment.

INTRODUCTION

Diabetes mellitus (DM) is a significant global public health burden because of its high incidence and mortality rates[1]. In 2019, 1.5 million people died of DM[2]. Diabetic wounds (DWs) are one of the most concerning complications of DM and affect up to 25% of diabetic patients[3]. In addition to causing patient suffering, DW has a low cure rate and high amputation rate, and thus it places a long-term burden on society[4].

DW is difficult to heal because its healing process is unlike that of normal wounds. Normal wound healing typically includes three phases: Inflammation, proliferation, and remodeling. Various cells, growth factors, and cytokines play important roles in each phase to ensure a smooth wound healing progress[5]. Owing to the elevated levels of reactive oxygen species (ROS), impaired immune function, and cellular dysfunction in the DW microenvironment, the healing stage stagnates in the inflammatory phase[6]. In addition, the peripheral arterial disease leads to a lack of blood perfusion and hypoxia within wounds, thereby increasing ROS release[5]. ROS also induces the expression of extracellular matrix (ECM) degradation enzymes that degrade ECM, thus precluding the normal matrix-cell interaction required for wound healing and prolonging the inflammation phase of DW healing[5].

DW healing remains a clinical challenge because of several complications in the DW microenvironment, including oxidative stress, chronic inflammation, and angiogenic dysfunction[7]. Current clinical treatments (standard care) involve glycemic control, offloading, debridement, and infection management, which are painful and insufficient for curing DWs[8]. Therefore, new approaches for improving DW healing must be developed. The application of functional hydrogel dressings or scaffolds is a promising advanced therapy[9].

Hydrogels are three-dimensional (3D) networks with a high water content and have been intensively studied because they can be functionalized and have good biocompatibility. Several studies have shown that hydrogels provide a moist environment, contribute to cell migration and tissue regeneration, and promote wound healing[10]. Therefore, hydrogels are considered ideal dressings for DWs[11]. Furthermore, hydrogels provide antioxidant, antibacterial, proangiogenic, and proliferative functions owing to the sustained release of bioactive agents encapsulated in hydrogels. Stem cells are bioactive agents that promote wound healing and are effective in skin regeneration[12].

Stem cells possess self-renewal and differentiation abilities and are essential for post-injury skin repair[13]. Thus, stem cell therapy has become a promising new approach for treating DWs. Local injection of the cell suspension or stent implantation stimulates neovascularization, accelerates wound closure, prevents wound contracture and scar formation, and ultimately improves wound healing[14]. However, the outcome of stem cell therapy is hindered by the poor bioactivity of stem cells and thus the low amounts of secreted cytokines in the hyperglycemic inflammatory microenvironment of DWs. Effective stem cell delivery remains a challenge[15].

To achieve better healing outcomes combining hydrogel and stem cell treatment is one of the most promising therapies for DWs[16]. Although various reviews on stem cell therapy or hydrogel therapy for DWs have been reported, reviews on combined therapy are limited. Herein, we review the mechanisms of DW therapy combining hydrogel and stem cells and focus on preclinical studies of therapy combining hydrogel and stem cells for DWs.

FUNCTIONAL HYDROGELS FOR DW TREATMENT

Wound dressings play an essential role in DWs[2]. Hydrogels have become appealing and promising among various wound dressings owing to their high moisture retention, biocompatibility, and similarities to living tissues[17]. Hydrogels accelerate wound healing by maintaining gas exchange in

Citation: Huang JN, Cao H, Liang KY, Cui LP, Li Y. Combination therapy of hydrogel and stem cells for diabetic wound healing. World J Diabetes 2022; 13(11): 949-961
DOI: https://dx.doi.org/10.4239/wjd.v13.i11.949
the wound, reducing pain by absorbing exudates, preventing infection, and maintaining a moist environment for cell migration. In addition, hydrogels have been used as delivery systems to minimize drug toxicity and improve drug delivery efficiency[2]. Functional hydrogels, such as antioxidant, immune regulation, and vascularization hydrogels, have been designed according to the wound microenvironment of DWs.

DWs are often accompanied by oxidative and antioxidant imbalance in vivo. Hydrogels are designed to alleviate excessive oxidative reactions. Self-antioxidant materials, such as 2-hydroxyethyl methacrylate[18] and polyvinyl alcohol, can directly act on wounds; additionally, gel-loaded antioxidant drugs, such as curcumin[19], or bioactive substances can be used to achieve antioxidant effects. These materials act as reducing agents.

Because the inflammatory phase has an active defense response to external stimuli, the inflammatory response aids in cleaning the wound during the healing process[20]. However, in chronic wounds, such as DWs, owing to repeated tissue damage, cytokines continue to recruit immune cells to the wound, thereby resulting in an excessive inflammatory response and blocked healing[21]. Therefore, the inhibition of excessive immune responses is also considered. Hydrogels, such as sodium alginate and zwitterionic hydrogels, can provide a protective microenvironment for wounds and regulate the transformation of macrophages between proinflammatory and anti-inflammatory[20]. Meanwhile, anti-inflammatory drug-loaded hydrogel dressings have a local sustained-release effect[22]. Responsive hydrogels that can change their properties according to environmental clues to achieve sustained release of entrapped drugs are also desirable.

Angiogenesis is essential for tissue regeneration, whereas the formation of healthy blood vessels is hindered by various microenvironment conditions in DWs[23]. Therefore, promoting blood vessel formation is conducive to DW healing. Studies have shown that some hydrogel materials, such as chitosan and hyaluronic acid, regulate the activity and distribution of cytokines or growth factors[24]. These materials simulate the microenvironment of the ECM, thereby promoting tissue formation. Bioactive components, including epidermal growth factor and vascular endothelial growth factor, can also be encapsulated by hydrogels, which can promote the regeneration of blood vessels[25].

In general, the mechanism of hydrogels in DWs is relatively clear and positively affects DW healing.

CURRENT STUDIES OF MESENCHYMAL STEM CELLS FOR DW HEALING

In addition to selecting different hydrogel materials, drugs, and biological factors, using stem cells to treat DWs is desirable. Stem cells can asymmetrically replicate and differentiate into different cell types[26]. With the unlimited replication capacity, they can provide numerous “sister” stem cells[15]. Furthermore, because stem cells secrete pro-regenerative cytokines, stem cell therapy, which treats diseases or injuries by administering stem cells into damaged tissues, has been used as an intervention for DWs[27]. Stem cells used for wound healing and tissue regeneration include embryonic stem cells, induced pluripotent stem cells, and mesenchymal stem cells (MSCs)[15].

Allogeneic, xenogeneic, and autologous MSCs have been widely used in skin regeneration and wound healing owing to their significant proliferation, migration ability, and long-term self-renewal potential[28]. Considering the impaired function of MSCs derived from patients with diabetes and the risk of tissue rejection, allogeneic MSCs are more widely used[29].

MSCs that are locally injected into wounds are involved in various stages of wound healing. They reduce inflammatory responses through immunomodulation and growth factor production[15], accelerate neovascularization and epithelialization, and stimulate collagen synthesis[30], thereby accelerating wound healing[30]. Additionally, clinical studies have demonstrated the efficacy of MSCs in treating diabetic ulcers[30]. For example, injecting allogeneic MSCs into the dermis-epidermal junction[31] or subcutaneous and intramuscular tissue around wounds[32] facilitated DW healing in patients.

The potential benefits of MSC therapy have been demonstrated in several studies. Although simple transplantation methods, such as intravenous, subcutaneous, intramuscular, and local injection of MSCs, have achieved some preclinical and clinical success[5], MSC performance still has numerous limitations. Premature senescence and apoptosis of MSCs transplanted in DWs are some of the biggest limitations[33,34]. Owing to hyperglycemia caused by DM, DWs generate a chronic inflammatory microenvironment and accumulate advanced glycation end products, which is not conducive to the survival of stem cells[35] and increases the degradation of growth factors secreted by the effector cells, thus compromising efficacy[36]. Hence, the delivery strategy must be optimized to ensure cell viability, paracrine function, and differentiation function, which in turn ensures MSC therapy outcomes.

Abundant evidence has shown that using hydrogels to deliver MSCs improves DW healing. Hydrogels are ideal carrier systems for stem cells because they produce a relatively uniform distribution of transplanted cells and retain high water content, close to that of the native tissue, thus improving the retention and survival of stem cells at transplantation sites. Transplanted stem cells can exert their functions through paracrine signals and differentiate into the various cell types required in healthy tissues (Figure 1).
Figure 1 Therapy combining hydrogels and mesenchymal stem cells promotes diabetic wound healing. Mesenchymal stem cells (MSCs) in hydrogels are long-lasting in the wound and regulate wound healing. These cells release exosomes, growth factors, and cytokines, reduce the levels of interleukin-1, tumor necrosis factor-α, and other pro-inflammatory cytokines to modulate the inflammatory response, enhance angiogenesis via increasing vascular endothelial growth factor and hepatocyte growth factor, and promote fibroblast and keratinocyte migration. MSCs can also be transdifferentiated into other cell types to increase wound closure. MSCs: Mesenchymal stem cells; IL-1: Interleukin-1; TNF-α: Tumor necrosis factor-α; VEGF: Vascular endothelial growth factor; HGF: Hepatocyte growth factor.

APPLICATIONS OF COMBINATION THERAPY OF HYDROGEL AND STEM CELLS FOR DW HEALING

As previously discussed, although stem cell therapy has promising potentials for DW healing, the lack of an optimal delivery strategy is one of the biggest obstacles to its therapeutic efficacy. Traditional injection of MSCs always results in low cell viability and transient engraftment, whereas using advanced biomaterial scaffolds (such as films, nanofibers, and hydrogels) to maintain cellular viability, proliferation, and differentiation has received considerable attention. Hydrogels have physical and biological characteristics similar to those of natural tissues; this renders them as ideal candidates for stem cell delivery. Inspired by the encouraging outcomes of hydrogels on DW healing and their function as a carrier system for drugs, the efficacy of MSCs has been improved with hydrogels. For a successful clinical application of the therapy, the optimal hydrogel composition for cell delivery must be considered, and appropriate application methods to ensure stem cell viability and promote DW healing must be designed. Currently, the most common application methods of hydrogels and stem cell combination therapy for DW healing are divided into hydrogel sheets, in situ forming hydrogels, and hydrogel microspheres (MS) (Figure 2).

HYDROGEL SHEETS

Applying hydrogel sheets on wounds is a convenient stem cell delivery method, wherein hydrogels are typically preformed in molds, with stem cells seeded onto or inside hydrogels. Rustad et al. seeded MSCs onto collagen-pullulan hydrogels and significantly accelerated wound healing and skin appendage recovery in mice within 11 d. The amount of microangiogenesis was approximately doubled in wounds treated with MSC-seeded hydrogel sheets compared with those treated with MSC injection. Given that the biomimetic hydrogel provides a functional niche to augment the regenerative potential of MSCs, the implanted MSCs differentiated into dermal fibroblasts, pericytes, and endothelial cells, which contribute to wound healing. In another study, Guo et al. demonstrated the improved retention and survival rate of MSCs in hydrogel sheets when transplanted into mouse hearts compared to cell suspension alone. Cells were observed inside the hydrogel sheets for over 9 d in ICR mice.

In vitro culturing of stem cells within hydrogels was found to promote cell adhesion and enhance stem cell functions by supporting normal phenotype maintenance and empowering the transdifferentiation process.
Huang JN et al. Combination therapy for diabetic wound healing

Figure 2 Three application methods of hydrogels and mesenchymal stem cells combination therapy for diabetic wound healing. A: Hydrogel sheets preformed before application; B: In situ forming hydrogels injected at the wound for sol-gel transition; C: Hydrogel microspheres applied onto the diabetic wound. MSCs: Mesenchymal stem cells.

tiation capacity into specific skin lineages compared with the immediate transplantation of stem cell-seeded hydrogels[40]. Da Silva et al[41] pre-cultured adipose-derived stem cells (ADSCs) in hyaluronic acid-based sponge hydrogel in neurogenic/standard media for 14 d before transplantation onto the DWs of mice. Wounds treated with pre-cultured ADSCs-loaded spongy hydrogels improved wound closure rates compared to the untreated control and acellular spongy hydrogel groups after healing for 4 wk. The hydrogel sheet promoted the polarization of M1-type macrophages to the M2 type (anti-inflammatory) and improved successful neoinnervation.

Because of the high concentration of inflammatory cytokines in the DW microenvironment, which impairs the activity of MSCs and degrades growth factors secreted by stem cells, single functional hydrogel sheets may not be sufficient for DW healing[42]. To be more suitable for DW treatment, hydrogel sheets that inhibit inflammatory responses or protease activity are more effective[43]. Ahmed et al[44] studied the wound healing efficacy of bone marrow-derived mesenchymal stem cells (BMSCs) delivered by nitric oxide (NO)-releasing hydrogels on diabetic rabbits. As an endogenous molecule, NO increased angiogenesis and improved immune responses during acute infections. NO-releasing hydrogels increased the viability and proliferation of BMSCs under oxidative stress. In addition to improving collagen deposition and promoting re-epithelialization and angiogenic activity, the NO-releasing hydrogel with BMSC treatment upregulated the expression of growth and cytoactive factors for DW healing within 16 d[44].

In addition to traditional manufacturing technology, 3D bioprinting builds special structures layer-by-layer according to a predetermined computer model that better fits the skin’s architecture and geometry, providing hydrogel sheets with more complex structures[45]. Xia et al[46] developed curcumin-incorporated 3D bioprinting gelatin methacryloyl (GelMA) to seed ADSCs and promote DW healing within 21 d. Curcumin encapsulation in 10% GelMA hydrogel exhibited inhibitory effects on ROS generation and ADSC apoptosis, and living cells were detected after scaffolds embedded with ADSCs were implanted into the backs of nude mice for 21 d. Further, the scaffold increased the amount of collagen deposition and induced angiogenesis in DWs[46]. In addition to 3D bioprinting, multifunctional hydrogel sheets with complex 3D structures can be produced by folding or weaving microfiber-shaped hydrogels[47]. Hydrogel sheets can also be easily functionalized, such as the thermally responsive release of stem cells or drugs[48] for oxidative stress resistance, antibacterial activity, and other functions.
Because stem cells can be cultured separately and the hydrogel sheet is easy to handle, combination therapy with hydrogel sheets and MSCs is easily translated into a clinical setting[49]. According to a clinical report, Ravari et al[50] applied BMSCs along with platelets, fibrin glue, and bone marrow-impregnated collagen matrix onto wounds, which resulted in the complete wound closure in 3 of 8 patients with aggressive, refractory DWs within 4 wk of treatment. Additionally, topical administration of placenta-derived mesenchymal stem cells in a sodium alginate hydrogel completely healed diabetic foot ulcers[51]. However, this clinical case report must be evaluated further because of the limited sample size of the report. Although functionalizing or changing shapes is very convenient, hydrogel sheets must be pre-formed before application. Because hydrogel sheets are not conducive to long-term storage and the bonding between the sheets and wound surface is limited, in situ forming hydrogels have attracted attention.

IN SITU FORMING HYDROGELS

In situ forming hydrogels are another mainstream application of combination therapy, with stem cells suspended in the precursor solution before application[52]. After the mixed precursor solution is injected into the wound site, the hydrogel containing stem cells is formed in situ on wound beds via chemical bonds[53]. Compared with hydrogel sheets, injectable hydrogels are more flexible in their application; this flexibility allows them to adapt to complex-shaped wounds and fit closely[54]. Eke et al[55] designed a precursor solution composed of GelMA and methacrylated hyaluronic acid containing ADSCs, which can be crosslinked within 40 s of ultraviolet irradiation to form hydrogels in situ. Reportedly, the hydrogel promoted cell proliferation, and in vivo studies revealed a three-fold increase in vascularization for the ADSC-loaded hydrogel group compared to the hydrogels without cells.

However, because ultraviolet irradiation may induce chromosomal and genetic instability[56], ultraviolet-crosslinked hydrogels on exposed wounds negatively affect cell viability and differentiation[57], which is detrimental to wound healing. Owing to its high biocompatibility and specificity[58], enzymatic crosslinking has received considerable attention[59]. Yao et al[52] developed a gelatin-hydroxyphenyl hydrogel with the dual enzyme crosslinking of horseradish peroxidase and galactose oxidase, and the hydrogel encapsulated with BMSCs achieved gelation within 5 min at the wound site. The gelatin-hydroxyphenyl hydrogel provides a friendly 3D microenvironment for BMSCs, thereby improving the transplanted cells’ survival and accelerating wound closure[52].

Given that frequently studied natural hydrogels, such as gelatin, collagen, or hyaluronic acid, contain a single component of ECM, their potential to provide the optimum microenvironment for stem cell proliferation and differentiation is limited[60]. ECM maintains the original components of the native tissue and is considered an ideal scaffold for tissue regeneration[61]. Chen et al[62] developed an ECM-derived hydrogel from human decellularized adipose tissue matrix to deliver ADSCs to DWs. The hydrogel was prepared via pepsin digestion and pH neutralization. The paracrine activity of ADSCs encapsulated in the hydrogel was enhanced, whereas the secretion of hepatocyte growth factor increased, thus promoting neovascularization during wound healing[62]. Compared with the untreated control, local ADSC injection, and acellular hydrogel groups, treatment with ADSC-hydrogel composites accelerated wound closure in diabetic mice and restored cutaneous appendages within 14 d[62].

For better DW healing outcomes, specific materials are co-entrapped inside the hydrogel for hemostasis and anti-inflammatory properties, and the stem cell viability in the hydrogel can reach an ideal state by optimizing its mechanical strength. Xu et al[53] encapsulated MSCs in an injectable hydrogel system of GelMA and chitosan-catechol cross-linked with dithiothreitol to repair full-thickness DWs. Chitosan-catechol has a good hemostatic effect, and zinc ions were introduced into the hydrogel to enhance angiogenesis. The cell adhesion, proliferation, and differentiation potency of umbilical cord-derived mesenchymal stem cells in vitro were well maintained in GelMA with optimal stiffness. At the same time, the hydrogel-umbilical cord-derived mesenchymal stem cells combined treatment promoted DW healing by inhibiting the inflammatory factors TNF-α and IL-1β in vivo, with a wound closure rate of 92.2% within 14 d. Compared with the untreated control, local umbilical cord-derived mesenchymal stem cell injection, and acellular hydrogel groups, collagen deposition was significantly abundant on day 7, whereas the most vascular regeneration with the earliest hair follicle formation was found on day 14[63].

Dispersive MSCs are usually loaded inside hydrogels. Recently, 3D MSC spheroids were found to possess better differentiation potential than dispersive MSCs[64], which exhibited enhanced vascularization and anti-inflammatory effects[65], thereby promoting wound closure[66]. Yang et al[67] combined injectable thermosensitive chitosan/collagen/β-glycerophosphate hydrogels with 3D MSC spheroids, rapidly converted to a gel by physical cross-linking at body temperature, and then completely covered the wound surface and fitted to any shape of the wound bed. Compared with the local 2D monolayer MSC injection and 2D monolayer MSC-encapsulated hydrogel groups, angiogenic factors were much higher for wounds treated with 3D MSC spheroid-encapsulated hydrogel (almost 3-fold), and neovascularization was enhanced, thereby achieving complete re-epithelialization within 3
CONCLUSION

This review discussed the benefits associated with therapy combining hydrogels and MSCs for DW healing. Researchers have explored different application methods for stem cell delivery with hydrogels, including hydrogel sheets, in situ forming hydrogels, and hydrogel MSs. In addition to providing a friendly microenvironment for stem cells, this strategy enhances the adhesion between the dressing and wound and facilitates the function of stem cells, ultimately benefiting vascular and neural regeneration in DWs. Among these application methods, hydrogel MSs have the advantages of a larger specific surface area, more uniform dispersibility, and more specific functions; additionally, they can effectively deliver various types and functions of cells into the wound. Therefore, hydrogel MSs loaded with stem cells are expected to play an important role in clinical practice.

Therapy combining hydrogels and MSCs has shown great potential for DW healing. However, the plasticity of MSCs has led to their double-sidedness for clinical applications. Although the multi-differentiation ability provides them with good application prospects, it increases the risk of tumorigenicity. As a solution, cell-free treatments, such as exosomes and artificial cell products derived from the MSCs secretome have attracted recent interest. Exosomes and secretomes retain the paracrine factors of stem cells. Although extensive studies have explored the combination therapies of hydrogels and MSCs for DW healing, additional work is required to optimize parameters, such as the storage and transport stability of cells, and avoid their tumorigenic and immunogenic risks. Further improvement and testing of this technology in vivo will also contribute to the clinical transformation of combination therapy.
Table 1 Summary of studies regarding therapy combining hydrogels and stem cells for diabetic wound healing

<table>
<thead>
<tr>
<th>Stem cell information, types, dosage in cells/wound</th>
<th>Hydrogel composition</th>
<th>Hydrogel types</th>
<th>Application methods</th>
<th>Animal</th>
<th>Wound size diameter, location</th>
<th>Full re-epithelialization efficiency</th>
<th>Outcome</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>UMSCs from human, xenogeneic, 1 × 10^6</td>
<td>Self-assembled nanoparticle hydrogels based on RADA16-I, RGDS, and KLT peptide solutions</td>
<td>Self-assembled nanoparticle hydrogels with easy biomimetic functionalization</td>
<td>Cells were encapsulated into the in situ forming hydrogels</td>
<td>NOD/SCID mice</td>
<td>8 mm, dorsal</td>
<td>10 d</td>
<td>Accelerated skin wound healing by inhibiting inflammation and promoting angiogenesis</td>
<td>[14]</td>
</tr>
<tr>
<td>BMSCs from rats, allogenic, 2 × 10^6</td>
<td>N-chitosan/HA-ALD hydrogel</td>
<td>Hemostasis and antimicrobial hydrogels</td>
<td>Cells were encapsulated into the in situ forming hydrogels</td>
<td>STZ-induced diabetic rats</td>
<td>5 mm, foot</td>
<td>12 d</td>
<td>Promoted wound healing; stimulated the secretion of growth factors from rBMSCs, and modulated the inflammatory environment by inhibiting the expression of M1 macrophages and promoting the expression of M2 macrophages, resulting in granulation tissue formation, collagen deposition, nucleated cell proliferation, neovascularization</td>
<td>[37]</td>
</tr>
<tr>
<td>ADSCs from human, xenogeneic, 3 × 10^5</td>
<td>GG-HA spongy hydrogel</td>
<td>Vascularization hydrogels</td>
<td>Cells were seeded onto the top of sponge-like hydrogel sheets</td>
<td>STZ-induced diabetic mice</td>
<td>9 mm, dorsal</td>
<td>4 wk</td>
<td>Accelerated excisional skin wound healing; induced the healing phase switch from the inflammatory to the proliferative phase; presented a thicker epidermis with a high number of proliferative keratinocytes in the basal layer; increased the number of intraepidermal nerve fibers in the regenerated epidermis</td>
<td>[41]</td>
</tr>
<tr>
<td>BMSCs from rabbits, allogenic, 1 × 10^6</td>
<td>SNAP-loaded chitosan-PVA hydrogel</td>
<td>Vascularization hydrogels</td>
<td>Cells were intradermally injected and topically covered with hydrogel sheets</td>
<td>Alloxan monohydrate induced diabetic rabbits</td>
<td>20 mm, dorsal</td>
<td>14 d</td>
<td>Augmented the wound closure, decreased inflammation, and upregulated expression of CD31, VEGF and TGFβ-1; promoted angiogenesis by forming new capillaries and improving the microvascular and vessel maturation; showed an abundant expression of collagen type I on day 14</td>
<td>[44]</td>
</tr>
<tr>
<td>ADSCs from human, xenogeneic, 5 × 10^5</td>
<td>Curcumin-incorporated 3D bioprinting GelMA hydrogel</td>
<td>Antioxidant hydrogels</td>
<td>Cells were encapsulated into hydrogel sheets</td>
<td>STZ-induced diabetic nude mice</td>
<td>15 mm, dorsal</td>
<td>21 d</td>
<td>Promoted wound healing; improved hADSCs apoptosis and increased the amount of collagen</td>
<td>[46]</td>
</tr>
<tr>
<td>ADSCs from human, xenogeneic, 2.5 × 10^5</td>
<td>hDAM hydrogel</td>
<td>Intact ECM-derived hydrogels from living tissues</td>
<td>Cells were suspended in the in situ forming</td>
<td>KK/Upi-Ay/J mice (diabetic mice)</td>
<td>8 mm, dorsal</td>
<td>14 d</td>
<td>Accelerated wound closure and improved skin architecture regeneration,</td>
<td>[62]</td>
</tr>
<tr>
<td>Cells</td>
<td>Hydrogel</td>
<td>Hydrogel Type</td>
<td>Diabetic Mice</td>
<td>Wound Size</td>
<td>Time</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------</td>
<td>---------</td>
<td>---------------</td>
<td>--------------</td>
<td>------------</td>
<td>------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>UMSCs from human, xenogeneic, 5 × 10^6</td>
<td>GelMA/Chi-C hydrogel</td>
<td>Vascularization hydrogels</td>
<td>Diabetic mice (db/db)</td>
<td>8 mm, dorsal</td>
<td>14 d</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PDSCs from human, xenogeneic, 1 × 10^6</td>
<td>Chitosan/collagen/β-GP hydrogel</td>
<td>Thermosensitive and pH-responsive hydrogels</td>
<td>Diabetic mice (db/db)</td>
<td>7 mm, dorsal</td>
<td>3 wk</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ADSCs from rats, allogenic, 5 × 10^6</td>
<td>Gelatin hydrogel</td>
<td>Adaptive hydrogel microspheres with degradation rates well-matched to tissue regeneration</td>
<td>STZ-induced diabetic rats</td>
<td>8 mm, dorsal</td>
<td>14 d</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BMSCs from human, xenogeneic, 5 × 10^6</td>
<td>PEGDA hydrogel</td>
<td>Biocompatible synthetic hydrogels</td>
<td>Genetically diabetic mice (BKS.Cg-m+/+Leprdb/J)</td>
<td>1 cm × 1 cm, dorsal</td>
<td>14 d</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ADSCs from human, xenogeneic, 3 × 10^6</td>
<td>PEG-gelatin hydrogel</td>
<td>Vascularization hydrogels</td>
<td>Diabetic mice (db/db)</td>
<td>6 mm, dorsal</td>
<td>15 d</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Promoted the wound healing process by inhibiting protein expression of TNF-α and IL-1β to decrease inflammation. Accelerated angiogenesis and re-epithelialization, promoted collagen deposition, and induced regeneration of skin appendages such as hair follicles.

Accelerated wound closure by enhancing angiogenesis and paracrine effects. The hydrogel provided an environment favorable for the attachment and proliferation of encapsulated hPDSCs, accelerating cell proliferation and paracrine factor secretion.

Significantly accelerated wound healing by promoting M2 macrophage polarization, collagen deposition, angiogenesis associated with peripheral nerve recovery, and hair follicle formation. The microspheres well embedded in the tissue, exhibited good biocompatibility and adaptive biodegradation rates.

Significantly accelerated wound closure; the encapsulated cells attached and diffused well inside the hydrogel, improving cell retention in vivo; reduced inflammatory cell infiltration and enhanced neovascularization.

Wound size (side length × side length).
3D: Three dimensional; ADSCs: Adipose-derived stem cells; β-GP: β-glycerophosphate; BMSCs: Bone marrow-derived mesenchymal stem cells; Chi-C:

1Wound size (side length × side length).
3D: Three dimensional; ADSCs: Adipose-derived stem cells; β-GP: β-glycerophosphate; BMSCs: Bone marrow-derived mesenchymal stem cells; Chi-C:
Huang JN et al. Combination therapy for diabetic wound healing

Chitosan-catechol; ECM: Extracellular matrix; GelMA: Gelatin methacryloyl; GG-HA: Gellan gum-hyaluronic acid; HA-ALD: Hyaluronic acid-aldehyde; hADSCs: Human adipose-derived stem cells; hBMSCs: Human bone marrow-derived mesenchymal stem cells; hDAM: Human decellularized adipose tissue matrix; hPDSGs: Human placenta-derived mesenchymal stem cells; N-chitosan: N-carboxyethyl chitosan; PEG: Poly(ethylene glycol); PEGDA: Polyethylene glycol diacrylate; PVA: Polyvinyl alcohol; rBMSCs: Rat bone marrow-derived mesenchymal stem cells; SNAP: S-nitroso-N-acetyl-penicillamine; STZ: Streptozotocin; UMSCs: Umbilical cord-derived mesenchymal stem cells; VEGF: Vascular endothelial growth factor.

FOOTNOTES

Author contributions: Li Y designed the research study; Huang JN and Cao H searched the literature and drafted the initial manuscript; Liang KY and Cui LP provided further revision; all authors have read and approved the final version of the manuscript.

Supported by the Shenzhen Basic Research Project, No. JCYJ20190807155805818; and the Foundation of Guangdong Provincial Key Laboratory of Sensor Technology and Biomedical Instrument, No. 2020B1212060077.

Conflict-of-interest statement: There are no conflicts of interest to report.

Open-Access: This article is an open-access article that was selected by an in-house editor and fully peer-reviewed by external reviewers. It is distributed in accordance with the Creative Commons Attribution NonCommercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: https://creativecommons.org/Licenses/by-nc/4.0/

Country/Territory of origin: China

ORCID number: Yan Li 0000-0003-3115-8380,

S-Editor: Chen YL
L-Editor: Filipodia
P-Editor: Chen YL

REFERENCES

Huang JN et al. Combination therapy for diabetic wound healing

Da Silva LP, Reis RL, Correlo VM, Marques AP. Hydrogel-based strategies to advance therapies for chronic skin wounds. In: Yamush ML. Annual review of biomedical engineering. 201: 145-169

Radmanesh S, Shabangizi S, Koupaei N, Hassanzadeh-Tabrizi SA. 3D printed bio polymeric materials as a new perspective for wound dressing and skin tissue engineering applications: a review. *J Polym Res* 2022; 29 [DOI: 10.1007/s10965-022-02899-

Huang JN et al. Combination therapy for diabetic wound healing

10.1039/c8tb02835d]

