EDITORIAL

635 Ex vivo liver resection and auto-transplantation and special systemic therapy in perihilar cholangiocarcinoma treatment
Tchilikidi KY

641 Indocyanine green: The guide to safer and more effective surgery
Fransvea P, Chiarello MM, Fico V, Cariati M, Brisinda G

MINIREVIEWS

650 Alcohol associated liver disease and bariatric surgery: Current perspectives and future directions
Cooper KM, Colletta A, Hebda N, Devani D

658 Applications of gastric peroral endoscopic myotomy in the treatment of upper gastrointestinal tract disease
Chang SY, Jin GH, Sun HB, Yang D, Tang TY

ORIGINAL ARTICLE

Retrospective Cohort Study

670 Evaluation of bacterial contamination and medium-term oncological outcomes of intracorporeal anastomosis for colon cancer: A propensity score matching analysis
Kayano H, Mamuro N, Kamei Y, Ogimi T, Miyakita H, Nakagoshi T, Koyanagi K, Mori M, Yamamoto S

681 Rescue from complications after pancreaticoduodenectomies at a low-volume Caribbean center: Value of tailored peri-pancreatectomy protocols
Cawich SO, Dixon E, Shukla PJ, Shrishande SV, Deshpande RR, Mohammed F, Pearce NW, Francis W, Johnson S, Bujhawan J

689 Comparison of prognosis and postoperative morbidities between standard pancreaticoduodenectomy and the TRIANGLE technique for resectable pancreatic ductal adenocarcinoma
Hang HX, Cai ZH, Yang YF, Fu X, Qiu YD, Cheng H

700 Analysis of the impact of immunotherapy efficacy and safety in patients with gastric cancer and liver metastasis

Retrospective Study

710 Clinical observation of extraction-site incisional hernia after laparoscopic colorectal surgery
Fan BH, Zhong KL, Zhu LJ, Chen Z, Li F, Wu WF

717 Predicting short-term major postoperative complications in intestinal resection for Crohn's disease: A machine learning-based study
Wang FT, Lin Y, Yuan XQ, Gao RY, Wu XC, Xu WW, Wu TQ, Xia K, Jiao YR, Yin L, Chen CQ
Contents

World Journal of Gastrointestinal Surgery
Monthly Volume 16 Number 3 March 27, 2024

731 Analysis of factors impacting postoperative pain and quality of life in patients with mixed hemorrhoids: A retrospective study
Sun XW, Xu JY, Zhu CZ, Li SJ, Jin LJ, Zhu ZD

740 Pre-operative visceral adipose tissue radiodensity is a potentially novel prognostic biomarker for early endoscopic post-operative recurrence in Crohn's disease

751 Clinical study on the relationship between liver cirrhosis, ascites, and hyponatremia
Li XJ, Meng HHI

759 Comparison of the clinical effects of dual-modality endoscopy and traditional laparotomy for the treatment of intra- and extrahepatic bile duct stones
Wang W, Xia H, Dai B

768 Role of ablation therapy in conjunction with surgical resection for neuroendocrine tumors involving the liver
Ostapenko A, Stroever S, Eyasu L, Kim M, Aploks K, Dong XD, Seshadri R

777 Feasibility and safety of minimally invasive multivisceral resection for T4b rectal cancer: A 9-year review
Chan KS, Liu B, Tan MNA, How KY, Wong KY

790 MH-STRALP: A scoring system for prognostication in patients with upper gastrointestinal bleeding

Clinical Trials Study

807 Early postoperative complications after transverse colostomy closure, a retrospective study

816 Clinical study of enhanced recovery after surgery in laparoscopic appendectomy for acute appendicitis
Li ZL, Ma HC, Yang Y, Chen JJ, Wang ZJ

Observational Study

823 Reinforced tissue matrix to strengthen the abdominal wall following reversal of temporary ostomies or to treat incisional hernias
Lake SP, Deeken CR, Agarwal AK

Randomized Controlled Trial

833 Whole-process case management effects on mental state and self-care ability in patients with liver cancer
Ju MD, Qin Q, Li M

Clinical and Translational Research

842 Construction and validation of somatic mutation-derived long non-coding RNAs signatures of genomic instability to predict prognosis of hepatocellular carcinoma
Duan BT, Zhao XK, Cui YY, Liu DZ, Wang L, Zhou L, Zhang XY
Basic Study

860 Influence of different magnetic forces on the effect of colonic anastomosis in rats
 Tian BY, Zhang MM, Ma J, Lyu Y, Yan XP

871 Inflammatory responses in esophageal mucosa before and after laparoscopic antireflux surgery
 Ergun P, Kipcak S, Selvi Gunel N, Yildirim Sozmen E, Bor S

882 Etanercept-synthesizing adipose-derived stem cell secretome: A promising therapeutic option for inflammatory bowel disease
 Kim SJ, Kim OH, Hong HE, Ju JH, Lee DS

SYSTEMATIC REVIEWS

893 Impact of frailty on short-term postoperative outcomes in patients undergoing colorectal cancer surgery: A systematic review and meta-analysis
 Zhou Y, Zhang XL, Ni HX, Shao TJ, Wang P

META-ANALYSIS

907 Endoscopic-ultrasound-guided biliary drainage with placement of electrocautery-enhanced lumen-apposing metal stent for palliation of malignant biliary obstruction: Updated meta-analysis
 Peng ZX, Chen FF, Tang W, Zeng X, Du HJ, Pi RX, Liu HM, Lu XX

921 Clinical efficacy and safety of erlotinib combined with chemotherapy in the treatment of advanced pancreatic cancer: A meta-analysis
 Liu XY, Pan HN, Yu Y

CASE REPORT

932 Link between mutations in ACVRL1 and PLA2G4A genes and chronic intestinal ulcers: A case report and review of literature

944 Mucinous neoplasm of the appendix: A case report and review of literature
 Chang HC, Kang JC, Pu TW, Su RY, Chen CY, Hu JM

955 Abdominal cocoon syndrome—a rare culprit behind small bowel ischemia and obstruction: Three case reports
 Vipudhamorn W, Juthasilaparat T, Satharat P, Sanmee S, Supatrakul E

966 Endoscopic ultrasound-guided lauromacrogol injection for treatment of colorectal cavernous hemangioma: Two case reports
 Zhu HT, Chen WG, Wang JJ, Guo JN, Zhang FM, Xu GQ, Chen HT
ABOUT COVER
Editorial Board Member of World Journal of Gastrointestinal Surgery, Jia-Gang Han, MD, Professor, Department of General Surgery, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China. hjg211@163.com

AIMS AND SCOPE
The primary aim of World Journal of Gastrointestinal Surgery (WJGS, World J Gastrointest Surg) is to provide scholars and readers from various fields of gastrointestinal surgery with a platform to publish high-quality basic and clinical research articles and communicate their research findings online.

WJGS mainly publishes articles reporting research results and findings obtained in the field of gastrointestinal surgery and covering a wide range of topics including biliary tract surgical procedures, biliopancreatic diversion, colectomy, esophagectomy, esophagostomy, pancreas transplantation, and pancreatotomy, etc.

INDEXING/ABSTRACTING
The WJGS is now abstracted and indexed in Science Citation Index Expanded (SCIE, also known as SciSearch®), Current Contents/Clinical Medicine, Journal Citation Reports/Science Edition, PubMed, PubMed Central, Reference Citation Analysis, China Science and Technology Journal Database, and Superstar Journals Database. The 2023 Edition of Journal Citation Reports® cites the 2022 impact factor (IF) for WJGS as 2.0; IF without journal self cites: 1.9; 5-year IF: 2.2; Journal Citation Indicator: 0.52; Ranking: 113 among 212 journals in surgery; Quartile category: Q3; Ranking: 81 among 93 journals in gastroenterology and hepatology; and Quartile category: Q4.

RESPONSIBLE EDITORS FOR THIS ISSUE
Production Editor: Zi-Hang Xu; Production Department Director: Xiang La; Editorial Office Director: Jia-Ru Fan.
Clinical Trials Study

Early postoperative complications after transverse colostomy closure, a retrospective study

Fei Liu, Xiao-Juan Luo, Zi-Wei Li, Xiao-Yu Liu, Xu-Rui Liu, Quan Lv, Xin-Peng Shu, Wei Zhang, Dong Peng

Abstract

BACKGROUND
Ostomy is a common surgery usually performed to protect patients from clinical symptoms caused by distal anastomotic leakage after colorectal cancer (CRC) surgery and perforation or to relieve intestinal obstruction.

AIM
To analyze the complications after transverse colostomy closure.

METHODS
Patients who underwent transverse colostomy closure from Jan 2015 to Jan 2022 were retrospectively enrolled in a single clinical center. The differences between the complication group and the no complication group were compared. Logistic regression analyses were conducted to find independent factors for overall complications or incision infection.

RESULTS
A total of 102 patients who underwent transverse colostomy closure were enrolled in the current study. Seventy (68.6%) patients underwent transverse colostomy because of CRC related causes. Postoperative complications occurred in 30 (29.4%) patients and the most frequent complication occurring after transverse colostomy closure was incision infection (46.7%). The complication group had longer hospital stays ($P < 0.01$). However, no potential risk factors were identified for overall complications and incision infection.

CONCLUSION
The most frequent complication occurring after transverse colostomy closure...
surgery in our center was incision infection. The operation time, interval from transverse colostomy to reversal, and method of anastomosis might have no impact on the postoperative complications. Surgeons should pay more attention to aseptic techniques.

Key Words: Transverse colostomy closure; Surgery; Complications; A single clinical centre; Risk factors

DOI: https://dx.doi.org/10.4240/wjgs.v16.i3.807

INTRODUCTION

Ostomy is a common surgery usually performed to protect patients from clinical symptoms caused by distal anastomotic leakage after colorectal cancer (CRC) surgery and perforation or to relieve intestinal obstruction[1-3]. Given the convenience and validity of preventing anastomotic leakage, some experts have also suggested performing prophylactic ostomy[4-7]. A temporary stoma was usually recommended to be reversed at nearly 3 months after primary surgery[8,9]. However, several studies have reported a high rate of complications after ostomy closure, especially surgical site infections, with the highest rate reaching 40%[10]. Postoperative complications can lengthen hospital stays and cause heavy financial burdens, and severe complications can lead to death[11,12]. For better management of complications, several risk factors for complications have been reported, such as the interval from ostomy to reversal, operation time, blood transfusion and stapled anastomosis[13-17].

Previous studies have compared the incidence of postoperative complications between ileostomy and colostomy closure and found that patients who underwent colostomy closure were more likely to suffer from complications[18-20]. Most studies reporting complications after colostomy closure were conducted at the end of the last century, and the sample sizes were relatively small[21-23]. Furthermore, which factors, such as the time to stoma closure, affect the incidence of complications remains controversial[24-26].

Currently, colostomy, especially transverse colostomy, is still a commonly used type of ostomy. As a result, the purpose of the current study was to analyse complications after transverse colostomy closure and identify relevant risk factors for complications.

MATERIALS AND METHODS

Patients

Patients who underwent transverse colostomy closure surgery from Jan 2015 to Jan 2022 at a single clinical centre were retrospectively enrolled. The ethics committee of the First Affiliated Hospital of Chongqing Medical University approved this study (number K2024-008-01), and the data used in this study were obtained from public databases. No informed consent was needed. This study was conducted in accordance with the World Medical Association Declaration of Helsinki.

Inclusion and exclusion criteria

Patients who underwent transverse colostomy closure surgery for different diseases were included in this study (n = 140). The exclusion criteria were as follows: (1) Incomplete clinical records (n = 15); and (2) patients who had distant metastasis (n = 22); and 102 patients enrolled in this study (Figure 1).

Surgical procedure

The skin and subcutaneous tissue were first incised along the stoma margin, after which the colon was dissociated from the abdominal wall, the scar tissue around the stoma margin was removed, and the bowel was trimmed. Next, the two ends of the stoma were anastomosed with an anastomosis. Finally, the abdominal wall incision was sutured intermit-
Patients who underwent transverse colostomy closure surgery for different diseases (n = 140)

Exclusion (n = 38):
Incomplete baseline information (n = 16)
Patients who had distant metastasis (n = 22)

Included (n = 102)

Figure 1 Flow chart of patient selection.

tently with silk threads (Figure 2).

Data collection
The clinical characteristics included age, sex, body mass index, smoking status, drinking status, hypertension, type 2 diabetes mellitus (T2DM), preoperative haemoglobin, preoperative albumin, interval from transverse colostomy to reversal, method of anastomosis, operation time, blood loss, hospital stay, cause of transverse colostomy and complications were obtained from the electronic medical record system. Postoperative complications were classified on the basis of the Clavien-Dindo classification[27].

Statistical analysis
Continuous variables are expressed as the mean ± SD, and an independent sample t test was used to compare the differences between the complication group and the no complication group. Categorical variables are expressed as absolute values and percentages, and the chi-square test or Fisher’s exact test was used. Logistic regression analyses were also conducted to identify independent factors for overall complications and incisional infection. The data were analysed using SPSS (version 22.0) statistical software. A bilateral P value < 0.05 was considered to indicate statistical significance.

RESULTS

Baseline characteristics of included patients
A total of 102 patients who underwent colostomy closure surgery were enrolled in the current study. The average age of those patients was 57.7 years. Sixty-one (59.8%) patients were males, and 40 (40.2%) patients were females. Postoperative complications occurred in 30 (29.4%) patients. More information is provided in Table 1.

In terms of the causes of transverse colostomy, 70 (68.6%) patients underwent surgery because of CRC-related causes, including anastomotic leakage after CRC surgery (32.4%), prophylactic transverse colostomy after CRC surgery (29.4%), and obstruction of CRC (3.9%). Other related causes involved perforation because of trauma (15.7%), obstruction (6.8%) and so on (Table 2).

The most frequent complication occurring after colostomy closure surgery was incision infection (46.7%), followed by pulmonary infection (13.3%), ileus (13.3%), anastomotic leakage (10%), abdominal infection (10%), and bleeding (6.7%). Moreover, 4 (13.3%) patients had complications ≥ grade III (requiring surgical, endoscopic or radiological intervention), including severe ileus (6.6%) and anastomotic leakage (6.6%; Table 3).

Comparison between the complication group and the no complication group
The complication group had longer hospital stays (P < 0.01). However, there were no differences in terms of the method of anastomosis (P = 0.63), preoperative haemoglobin concentration (P = 0.32), preoperative albumin concentration (P = 0.17), operation time (P = 0.69), blood loss (P = 0.61) or other characteristics (P > 0.05; Table 4).

Logistic regression of overall complications and incisional infection
Univariate logistic regression analysis was also conducted to identify potential risk factors for overall complications and incisional infection. However, no potential risk factors were identified in this study (P > 0.05; Table 5).

DISCUSSION
In this study, a total of 102 patients who underwent transverse colostomy closure surgery were enrolled. Postoperative complications occurred in 30 (29.4%) patients. The most frequent complication occurring after colostomy closure surgery was incision infection, with an incidence of 13.7%. The complication group had longer hospital stays than did the no complication group. Furthermore, logistic regression analyses included factors such as operation time, interval from transverse colostomy to reversal, and method of anastomosis; however, no potential risk factors were identified for overall complications or incisional infection.
<table>
<thead>
<tr>
<th>Characteristics</th>
<th>No. (n = 102)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age, yr</td>
<td>57.7 ± 12.7</td>
</tr>
<tr>
<td>Sex</td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>61 (59.8)</td>
</tr>
<tr>
<td>Female</td>
<td>41 (40.2)</td>
</tr>
<tr>
<td>BMI, kg/m²</td>
<td>22.4 ± 3.2</td>
</tr>
<tr>
<td>Smoking</td>
<td>42 (41.2)</td>
</tr>
<tr>
<td>Drinking</td>
<td>36 (35.3)</td>
</tr>
<tr>
<td>Hypertension</td>
<td>21 (20.6)</td>
</tr>
<tr>
<td>T2DM</td>
<td>9 (8.8)</td>
</tr>
<tr>
<td>Pre-operative hemoglobin, g/L</td>
<td>129.6 ± 17.4</td>
</tr>
<tr>
<td>Pre-operative albumin, g/L</td>
<td>42.4 ± 4.4</td>
</tr>
<tr>
<td>Interval from transverse colostomy to reversal, month</td>
<td>7.3 ± 4.5</td>
</tr>
<tr>
<td>Methods of anastomosis</td>
<td></td>
</tr>
<tr>
<td>End-to-end anastomosis</td>
<td>25 (24.5)</td>
</tr>
<tr>
<td>End-to-side anastomosis</td>
<td>27 (26.5)</td>
</tr>
<tr>
<td>Side-to side anastomosis</td>
<td>50 (49.0)</td>
</tr>
<tr>
<td>Operation time</td>
<td>132.8 ± 64.0</td>
</tr>
<tr>
<td>Blood loss</td>
<td>43.8 ± 46.7</td>
</tr>
<tr>
<td>Hospital stay</td>
<td>9.4 ± 9.7</td>
</tr>
<tr>
<td>Complications</td>
<td>30 (29.4)</td>
</tr>
</tbody>
</table>

Variables are expressed as the mean ± SD, n (%). BMI: Body mass index; T2DM: Type 2 diabetes mellitus.

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>No. (n = 102)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CRC related causes</td>
<td>70 (68.6)</td>
</tr>
<tr>
<td>Perforation of CRC</td>
<td>1 (1.0)</td>
</tr>
<tr>
<td>Obstruction of CRC</td>
<td>4 (3.9)</td>
</tr>
<tr>
<td>Anastomotic leakage after CRC surgery</td>
<td>33 (32.4)</td>
</tr>
<tr>
<td>Prophylactic transverse colostomy after CRC surgery</td>
<td>30 (29.4)</td>
</tr>
<tr>
<td>Rectovaginal fistula after CRC surgery</td>
<td>1 (1.0)</td>
</tr>
<tr>
<td>Anastomotic bleeding after CRC surgery</td>
<td>1 (1.0)</td>
</tr>
<tr>
<td>Other related causes</td>
<td>32 (31.4)</td>
</tr>
<tr>
<td>Colorectal benign tumors</td>
<td>3 (2.9)</td>
</tr>
<tr>
<td>Perforation because of trauma</td>
<td>16 (15.7)</td>
</tr>
<tr>
<td>Rectovesical fistula</td>
<td>6 (5.9)</td>
</tr>
<tr>
<td>Obstruction</td>
<td>7 (6.8)</td>
</tr>
</tbody>
</table>

CRC: Colorectal cancer.
Table 3 Complications of the included patients, n (%)

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>No. (n = 30)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grade I-II complications</td>
<td>26 (86.7)</td>
</tr>
<tr>
<td>Pulmonary infection</td>
<td>4 (13.3)</td>
</tr>
<tr>
<td>Abdominal infection</td>
<td>3 (10.0)</td>
</tr>
<tr>
<td>Incision infection</td>
<td>14 (46.7)</td>
</tr>
<tr>
<td>Anastomotic leakage</td>
<td>1 (3.3)</td>
</tr>
<tr>
<td>Ileus</td>
<td>2 (6.7)</td>
</tr>
<tr>
<td>Bleeding</td>
<td>2 (6.7)</td>
</tr>
</tbody>
</table>

≥ Grade III complications

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>No. (n = 30)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anastomotic leakage</td>
<td>2 (6.7)</td>
</tr>
<tr>
<td>Ileus</td>
<td>2 (6.7)</td>
</tr>
</tbody>
</table>

Table 4 Comparison between the complication group and the no complication group, n (%)

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>Complications (n = 30)</th>
<th>No complications (n = 72)</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age, yr</td>
<td>58.3 ± 11.3</td>
<td>57.5 ± 13.3</td>
<td>0.756</td>
</tr>
<tr>
<td>Sex</td>
<td></td>
<td></td>
<td>0.677</td>
</tr>
<tr>
<td>Male</td>
<td>17 (56.7)</td>
<td>44 (61.1)</td>
<td></td>
</tr>
<tr>
<td>Female</td>
<td>13 (43.3)</td>
<td>28 (38.9)</td>
<td></td>
</tr>
<tr>
<td>BMI, kg/m²</td>
<td>22.3 ± 2.9</td>
<td>22.4 ± 3.3</td>
<td>0.85</td>
</tr>
<tr>
<td>Smoking</td>
<td>12 (40.0)</td>
<td>30 (41.7)</td>
<td>0.876</td>
</tr>
<tr>
<td>Drinking</td>
<td>13 (43.3)</td>
<td>23 (31.9)</td>
<td>0.273</td>
</tr>
<tr>
<td>Hypertension</td>
<td>6 (20.0)</td>
<td>15 (20.8)</td>
<td>0.924</td>
</tr>
<tr>
<td>T2DM</td>
<td>2 (6.7)</td>
<td>7 (9.7)</td>
<td>1</td>
</tr>
<tr>
<td>Pre-operative hemoglobin, g/L</td>
<td>126.9 ± 20.0</td>
<td>130.7 ± 16.2</td>
<td>0.322</td>
</tr>
<tr>
<td>Pre-operative albumin, g/L</td>
<td>41.5 ± 4.1</td>
<td>42.8 ± 4.5</td>
<td>0.174</td>
</tr>
<tr>
<td>Interval from transverse colostomy to reversal, month</td>
<td>7.8 ± 6.2</td>
<td>7.1 ± 3.6</td>
<td>0.452</td>
</tr>
<tr>
<td>Methods of anastomosis</td>
<td></td>
<td></td>
<td>0.633</td>
</tr>
<tr>
<td>End-to-end anastomosis</td>
<td>8 (26.7)</td>
<td>27 (37.5)</td>
<td></td>
</tr>
<tr>
<td>End-to-side anastomosis</td>
<td>6 (20.0)</td>
<td>21 (29.7)</td>
<td></td>
</tr>
<tr>
<td>Side-to side anastomosis</td>
<td>16 (53.3)</td>
<td>24 (33.3)</td>
<td></td>
</tr>
<tr>
<td>Operation time</td>
<td>133.0 ± 57.3</td>
<td>132.7 ± 67.0</td>
<td>0.979</td>
</tr>
<tr>
<td>Blood loss</td>
<td>47.4 ± 54.9</td>
<td>42.3 ± 43.1</td>
<td>0.617</td>
</tr>
<tr>
<td>Hospital stay</td>
<td>15.4 ± 16.0</td>
<td>6.9 ± 2.7</td>
<td><0.01*</td>
</tr>
</tbody>
</table>

*P value < 0.05.
Variables are expressed as the mean ± SD, n (%). BMI: Body mass index; T2DM: Type 2 diabetes mellitus.

Previous studies have reported complications after transverse colostomy closure surgery. Aston and Everett[24] enrolled 100 patients who had a temporary transverse loop colostomy closed between 1969 and 1982; they found that the most frequent complication was faecal fistula (10%) and stressed that closing the stoma within 3 wk was as safe as closing it within 8 wk. Henry and Everett[21] reported that fistula formation at the site of closure was the most frequent complication. However, with the development of surgical techniques and clinical management, the incidence of complications in recent years has changed. Pokorny et al[16] and Rullier et al[18] reported that wound infection was the most frequent complication, with incidences of 9.0% and 8.9%, respectively, which was in accordance with our studies. In our study, the incidence of incision infection was 13.7%. Although incisional infection after transverse colostomy closure is
Table 5 Univariate logistic regression analysis of overall complications and incision infection

<table>
<thead>
<tr>
<th>Risk factors</th>
<th>Univariate analysis of overall complications</th>
<th>Univariate analysis of incision infection</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>OR (95%CI)</td>
<td>P value</td>
</tr>
<tr>
<td>Age, yr</td>
<td>1.005 (0.972-1.040)</td>
<td>0.754</td>
</tr>
<tr>
<td>Sex (male/female)</td>
<td>1.202 (0.507-2.850)</td>
<td>0.677</td>
</tr>
<tr>
<td>BMI, Kg/m²</td>
<td>0.987 (0.862-1.129)</td>
<td>0.848</td>
</tr>
<tr>
<td>Hypertension (yes/no)</td>
<td>0.950 (0.329-2.742)</td>
<td>0.924</td>
</tr>
<tr>
<td>T2DM (yes/no)</td>
<td>0.663 (0.130-3.394)</td>
<td>0.622</td>
</tr>
<tr>
<td>Smoking (yes/no)</td>
<td>0.933 (0.392-2.223)</td>
<td>0.876</td>
</tr>
<tr>
<td>Drinking (yes/no)</td>
<td>1.629 (0.679-3.911)</td>
<td>0.275</td>
</tr>
<tr>
<td>Pre-operative hemoglobin, g/L</td>
<td>0.988 (0.964-1.012)</td>
<td>0.320</td>
</tr>
<tr>
<td>Pre-operative albumin, g/L</td>
<td>0.934 (0.847-1.031)</td>
<td>0.175</td>
</tr>
<tr>
<td>Operation time, min</td>
<td>1.000 (0.993-1.007)</td>
<td>0.979</td>
</tr>
<tr>
<td>Blood loss, mL</td>
<td>1.002 (0.993-1.011)</td>
<td>0.614</td>
</tr>
<tr>
<td>Interval from transverse colostomy to reversal, month</td>
<td>1.035 (0.946-1.133)</td>
<td>0.454</td>
</tr>
<tr>
<td>Methods of anastomosis (Side-to side/end-to-side/end-to-end)</td>
<td>1.046 (0.622-1.761)</td>
<td>0.864</td>
</tr>
</tbody>
</table>

OR: Odds ratio; BMI: Body mass index; T2DM: Type 2 diabetes mellitus.

Figure 2 Surgery procedure. A: Image of transverse loop stoma; B: Surgical site after transverse colostomy closure.

usually not life-threatening, it increases the cost of hospitalization and pain of patients. Gonzalez et al.[28] reported that age, operation time, and cardiac risk factors were found to be independent risk factors for surgical site infection; however, our study did not identify any risk factors, possibly because of the relatively small sample size. More measures should be taken to decrease the incidence of incision infection, including better management of T2DM, purse-string skin closure, an open incision, and a large surgeon volume[26,29,30].

Although the complication group had longer hospital stays, no significant differences were found in terms of the method of anastomosis, operation time or other characteristics, and no risk factors were found. These findings prompted us to further investigate the possible reasons for complications, such as the experience of surgeons and surgical techniques.

The interval from ostomy to reversal was the most common risk factor for postoperative complications, but this topic remains controversial. In 2019, Krebs et al.[25] reported that the time to stoma closure was an independent risk factor for complications after diverting stoma closure, and the optimal cut-off was 240 d[25]. Conversely, a meta-analysis of 7 randomized controlled trials demonstrated that early stoma closure (4 wk) was as safe as routine surgery (8 wk)[31]. Pokorny et al[16] and Aston and Everett[24] reported that the interval was not an independent predictor of complications. Because stoma closure was performed at different times, the conclusions might vary. Our study showed that the interval (ranging from 1.2-14 months) from transverse colostomy closure to reversal did not seem to influence the incidence of
complications. The conclusion above might indicate that the time to perform transverse colostomy closure should be individualized and adjusted for various reasons, such as chemotherapy, primary disease, and complications after primary surgery.

To our knowledge, this is the first study to analyse postoperative complications and predictors, especially for patients who underwent transverse colostomy closure. Although several studies have reported complications after stoma closure and relevant risk factors, they did not separate ileostomy closure from colostomy closure. Because of the greater incidence of complications after colostomy closure than after ileostomy, the current study was necessary.

Some limitations of our study should be considered. First, the retrospective nature of the single-centre study indicated unavoidable selection bias. Second, only 102 patients were enrolled in this study, which was a small sample size. Moreover, additional parameters need to be included to identify risk factors. Thus, further multicentre prospective studies with large sample sizes are needed.

CONCLUSION

In conclusion, the most frequent complication occurring after colostomy closure surgery was incision infection. The operation time, interval from transverse colostomy to reversal, and method of anastomosis might have no impact on postoperative complications.

ARTICLE HIGHLIGHTS

Research background

Previous studies comparing the incidence of postoperative complications in patients with ileostomy and colostomy closure have found that patients undergoing colostomy closure are more likely to experience complications. Most of the studies reporting post-colonostomy complications were conducted at the end of the last century with relatively small sample sizes.

Research motivation

At present, colostomy, especially transverse colostomy, is still a common type of colostomy.

Research objectives

The aim of this study was to analyze complications after transverse colostomy closure and to identify risk factors associated with complications.

Research methods

This article used a retrospective study method to include 102 patients at a single clinical centre. The differences between the complication group and the no complication group were compared. Logistic regression analyses were conducted to find independent factors for overall complications or incision infection.

Research results

A total of 102 patients who underwent transverse colostomy closure were enrolled in the current study. Seventy (68.6%) patients underwent transverse colostomy because of colorectal cancer related causes. Postoperative complications occurred in 30 (29.4%) patients and the most frequent complication occurring after transverse colostomy closure was incision infection (46.7%). The complication group had longer hospital stays ($P < 0.01$). However, no potential risk factors were identified for overall complications and incision infection.

Research conclusions

Finally, we found that the most common complication after colostomy closure was wound infection. Operation time, time interval between transverse colostomy and reversal, and anastomosis method had no effect on postoperative complications.

Research perspectives

The study will conduct to analyze the overall survival after transverse colostomy closure.

FOOTNOTES

Co-first authors: Fei Liu and Xiao-Juan Luo.

Author contributions: Liu F and Luo XJ were co-first authors; Luo XJ was thanked for her significant contribution in revising the manuscript; All the authors agreed that Luo XJ was the co-first author; All authors contributed to data collection and analysis, drafting or revising the manuscript; have agreed on the journal to which the manuscript will be submitted, gave final approval of the version to be
published, and agree to be accountable for all aspects of the work.

Institutional review board statement: The ethics committee of the First Affiliated Hospital of Chongqing Medical University approved this study, No. K2024-008-01.

Clinical trial registration statement: We don’t need URL registration.

Informed consent statement: Because the data used in this study were obtained from public databases, we applied for a waiver of informed consent.

Conflict-of-interest statement: All the authors report no relevant conflicts of interest for this article.

Data sharing statement: The datasets used and analyzed during the current study are available from the corresponding author on reasonable request at carry_dong@126.com.

CONSORT 2010 statement: The authors have read the CONSORT 2010 statement, and the manuscript was prepared and revised according to the CONSORT 2010 statement.

Open-Access: This article is an open-access article that was selected by an in-house editor and fully peer-reviewed by external reviewers. It is distributed in accordance with the Creative Commons Attribution NonCommercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: https://creativecommons.org/Licenses/by-nc/4.0/

Country/Territory of origin: China

ORCID number: Fei Liu 0000-0002-4022-0372; Zi-Wei Li 0000-0001-9759-4535; Xiao-Yu Liu 0000-0001-9448-4592; Xu-Rui Liu 0000-0002-6069-2104; Xin-Peng Shu 0000-0003-0652-4772; Wei Zhang 0000-0002-5822-9970; Dong Peng 0000-0003-4050-4337;

S-Editor: Li L
L-Editor: A
P-Editor: Cai YX

REFERENCES

