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Abstract 
AIM: To investigate the role of activating transcription 
factor 4 (ATF4) in glucose deprivation (GD) induced 
colorectal cancer (CRC) drug resistance and the mecha-
nism involved.

METHODS: Chemosensitivity and apoptosis were 
measured under the GD condition. Inhibition of ATF4 
using short hairpin RNA in CRC cells under the GD 
condition and in ATF4-overexpressing CRC cells was 
performed to identify the role of ATF4 in the GD 
induced chemoresistance. Quantitative real-time RT-
PCR and Western blot were used to detect the mRNA 
and protein expression of drug resistance gene 1 
(MDR1), respectively.

RESULTS: GD protected CRC cells from drug-induced 
apoptosis (oxaliplatin and 5-fluorouracil) and induced 
the expression of ATF4, a key gene of the unfolded 
protein response. Depletion of ATF4 in CRC cells under 
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the GD condition can induce apoptosis and drug re-
sensitization. Similarly, inhibition of ATF4 in the ATF4-
overexpressing CRC cells reintroduced therapeutic 
sensitivity and apoptosis. In addition, increased MDR1 
expression was observed in GD-treated CRC cells. 

CONCLUSION: These data indicate that GD promotes 
chemoresistance in CRC cells through up-regulating 
ATF4 expression.

Key words: Glucose deprivation; ATF4; Oxaliplatin; 
5-Fluorouracil; Chemoresistance
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Core tip: In this work, we demonstrated that glucose 
deprivation induces chemoresistance in colorectal 
cancer (CRC) cells through up-regulating ATF4 
expression, and ATF4 is an attractive therapeutic target 
to combat therapeutic resistance in CRC cells.
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INTRODUCTION
Colorectal cancer (CRC) is the third most common 
cancer and the third leading cause of cancer death 
worldwide[1]. Chemotherapy is one of the basic treat
ments for CRC. However, more than half of CRC 
patients did not respond to conventional chemotherapy 
due to drug resistance. Multiple factors contribute to 
the failure of CRC chemotherapy, including multidrug 
resistance (MDR) and tumor heterogeneity[2]. Cancer 
cells with MDR phenotype simultaneously become 
resistant to multiple drugs with different structures or 
cellular targets[3]. The development of MDR is commonly 
mediated by multiple factors, including accelerated drug 
efflux, drug activation and inactivation, alterations in 
the drug target, repair of druginduced damage, and 
escape from apoptosis[4]. 

Recent data showed that tumor microenviron
ment plays a key role in tumor MDR[5]. In the tumor 
microenvironment, the abnormal development of 
vasculature results in insufficient blood supply, which 
is a key reason for the tumor progression and has 
been associated with glucose deprivation (GD), chronic 
hypoxia and other nutrient stress. Increasing evidence 
indicates that GD promotes tumor cell survival and 
angiogenesis and induces drug resistance by inducing 
complex signaling pathways, including unfolded 

protein response (UPR)[611]. However, the molecular 
mechanisms by which cancer cells adapt to GD 
condition and inhibit druginduced apoptosis remain 
poorly understood. Recent studies have indicated that 
the activating transcription factor 4 (ATF4) pathway, a 
key player in UPR signaling, is important in regulating 
malignant phenotypes in various types of human 
cancers, including breast cancer[12], CRC[13], and head 
and neck squamous cell carcinoma[14]. In cellular 
adaptation to tumor GD, the GD activates cell survival 
through PERKdependent ATF4 expression. In addition, 
our previous work revealed that GD and amino acid 
deprivation promote tumor angiogenesis through 
activating ATF4[8,9]. Accumulated data strongly suggest 
that ATF4 is an important gene in regulating tumor 
survival under stress conditions, but the functional 
relationships among cell drug resistance, ATF4 and GD 
in CRC have not been fully elucidated.

In this study, we investigated whether and how 
GD affects drug resistance and apoptosis in CRC cells, 
and revealed that GD induces drug resistance and 
apoptosis inhibition by activating PERK/ATF4 signaling 
pathway. 

MATERIALS AND METHODS
Cell lines 
Human CRC cell lines HCT116 and LoVo were obtained 
from ATCC. All cells were cultured in Dulbecco’s 
modified Eagle’s medium (DMEM) containing 23.05 
mmol/L glucose (Hyclone) supplemented with 10% 
fetal bovine serum (FBS; Gibco) and penicillin/
streptomycin at 37 ℃ in a humidified incubator 
containing 5% CO2.

GD treatment
To mimic the GD condition of tumor microenvironment, 
HCT116 and LoVo cells were incubated for 48 h in 
DMEM containing 1.5 mmol/L glucose and 10% FBS 
containing about 0.5 mmol/L glucose at 37 ℃ in a 
humidified atmosphere containing 5% CO2.

Assessment of cell proliferation and chemotherapy 
sensitivity
For the cell proliferation assay, 1000 CRC cells were 
plated in 96well plates and incubated for different 
time periods (24, 48, 72, and 96 h), and then the 
cell growth was detected with the Cell Counting 
Kit8 (CCK8, Dojindo, Japan) according to the 
manufacturer’s instructions. For the cell chemotherapy 
sensitivity assay, 2000 LoVo or HCT116 cells were 
plated in 96well plates and treated with oxaliplatin 
(LOHP; range, 016 μg/mL) and 5-fluorouracil (5-FU; 
range, 01.6 μg/mL) for 48 h, and cell inhibition was 
then assessed by the CCK8 assay.

Hoechst staining
Hoechst Staining was performed according to the 

6236 July 21, 2016|Volume 22|Issue 27|WJG|www.wjgnet.com

Hu YL et al . Glucose deprivation induces chemoresistance in CRC



manufacturer’s protocol (Beyotime, China). Cells were 
visualized with a DP70 inverted immunofluorescence 
microscope (Olympus). Cells with condensed and 
fragmented nuclei were judged to be apoptotic.

Quantitative real-time RT-PCR
Total RNA was prepared from cultures on day 10, 
using the RNAiso reagent (TaKaRa, Japan) according to 
the manufacturer’s instructions. Complementary DNA 
(cDNA) was synthesized using the HiFiScript cDNA 
Kit (CWBIO, China). Quantitative realtime RTPCR 
analysis was performed to detect mRNA expression 
using UltraSYBR Mixture (CWBIO), with βactin as an 
internal control. The sequences of primers used in 
this study were as follows: 5’CGTGGTCTTTGCTTGGG 
TG3 ’  and 5 ’ TGCGGTGCTTTGCTGGAAT3 ’ 
fo r  ATF4;  5 ’ GACCTATTGGGGTGTTTCG3 ’ 
a n d  5 ’  C C T C A G C G G TTT C TTT C AT 3 ’  f o r 
Grp78; 5’ATAGTGATAAAGGTTTCGGTT3’ and 
5’ACAGGAGTTCTGGAAGGAG3’  for PERK; 
5’AGTGTGACGTGGACATCCGCAAAG3’ and 
5’ATCCACATCTGCTGGAAGGTGG AC3’ for βactin.

Western blot
Cells were lysed with RIPA buffer and incubated on ice 
for 30 min. After centrifugation, protein concentration 
was measured with BCA Protein Assay Reagent 
(CWBIO). Cell lysates dissolved in sample buffer 
were separated using SDSPAGE and transferred to a 
polyvinylidene fluoride membrane. After blocking with 
Trisbuffered saline containing Tween20 containing 
5% milk, the membrane was immunoblotted with 
appropriate primary antibodies, including anti
Grp78 (Santa Cruz, United States), antiPERK (Cell 
Signaling, United States), antiATF4 (Santa Cruz), anti
MDR1 (Santa Cruz) and antiβactin (Abcam, United 
States), followed by incubation with goat antimouse 
immunoglobulin (Ig) or antirabbit Ig conjugated with 
horseradish peroxidase. After washing, the membrane 
was developed using Chemiluminescent Substrate 
(CWBIO).

Plasmid and lentivirus production
Green fluorescent proteinexpressing lentiviral pla
smids expressing short hairpin RNA (shRNA) against 
human ATF4 (VehicleshATF4) were obtained from 
Open Biosystems (Carlsbad, CA), and ATF4 lentiviral 
plasmid (VehicleATF4) was constructed as described 
in our previous work[8]. The Vehicle, VehicleshATF4, 
Vehicle and VehicleATF4 plasmids were cotransfected 
into HEK293T cells along with the packaging plasmid 
psPAX2 and the envelope plasmid pMD2G using 
Lipofectamine 2000 (Invitrogen). Virus particles were 
harvested 48 h after cotransfection. Then, the particles 
were individually used to infect HCT116 and LoVo cells. 
The cells were then harvested 3 d after infection for 
Western blot and qRTPCR validation.

Apoptosis detection 
LoVo or HCT116 cells were plated in 6well plates and 
treated with LOHP (0.1 μg/mL) and 5FU (0.05 μg/mL) 
for 48 h. The cells were then harvested and subjected 
to apoptosis analysis using an Annexin V/7AAD 
Apoptosis Detection Kit (CWBIO).

Statistical analysis
Each experiment was repeated at least three times. 
The data are presented as the mean ± SD. Differences 
between groups were analyzed with Student’s t test. 
All statistical analyses were performed using GraphPad 
Prism 5 software. The significance level was set at 0.05.

RESULTS
GD decreases sensitivity of CRC cells to chemotherapy 
and inhibits drug-induced apoptosis
To investigate whether the surviving CRC cells under GD 
could acquire drug resistance, we assessed the potential 
effect of GD on the sensitivity of CRC cells to LOHP and 
5FU, two of the most commonly used drugs for CRC 
treatment[15]. The results revealed that the IC50 values 
of GDtreated HCT116/LoVo cells were significantly 
higher than those of their corresponding control cells 
(Figure 1A and Figure 2), suggesting that GD strongly 
decreases the sensitivity of CRC cells to LOHP and 5FU. 
These data indicate that GD induces a MDR phenotype 
in CRC cells. Next, to determine whether GD inhibits 
chemotherapyinduced apoptosis in CRC cells, we used 
Hoechst staining to investigate the apoptotic rates. 
After incubation under GD condition for 24 h, CRC cells 
were treated with LOHP or 5FU for subsequent 48 h 
under normal culture conditions. These cells were then 
subjected to Hoechst staining. The results revealed 
that the apoptotic rates were much lower in the GD
treated CRC cells than in the control cells (Figure 1B). 
To confirm the MDR phenotype of the GD-treated CRC 
cells, we examined the expression levels of multidrug 
resistance gene 1 (MDR1), a major marker of MDR. As 
shown in Figure 1C and D, both the mRNA and protein 
expression levels of MDR1 were increased in the GD
treated CRC cells as compared to the control cells. 
Taken together, these observations suggest that GD, 
through inhibiting apoptosis, significantly decreases the 
sensitivity of CRC cells to chemotherapy.

Grp78/PERK/ATF4 pathway is activated in GD-induced 
CRC cells 
Our previous work showed that GD induces tumor 
growth and angiogenesis by activating PERK/ATF4 
arm of UPR signaling. To investigate the role of PERK/
ATF4 pathway in GDinduced MDR in CRC cells, we 
examined the mRNA and protein expression of UPR 
markers (Grp78, PERK and ATF4), which are well
known to be induced by stressful microenvironments 
such as GD and hypoxia[8,16]. As expected, the 
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in the bands) was clearly observed in GDtreated 
CRC cells (Figure 3A and B). These data suggest the 
activation of UPR upon GD treatment and the potential 
key role of Grp78/PERK/ATF4 pathway in GDinduced 
MDR phenotype in CRC cells. 

mRNA levels of Grp78 and ATF4 were significantly 
increased in GDtreated CRC cells. Although the 
mRNA and protein expression of PERK was not 
significantly increased as that of Grp78 and ATF4, the 
phosphorylation (activation) of PERK (upward shift 

Figure 1  Glucose deprivation promotes drug resistance of colorectal cancer cells. A: GD decreased drug susceptibility to CRC cells. LoVo cells were treated with 
the indicated doses of the different drugs for 48 h under GD or normal culture condition. The in vitro drug sensitivity was tested by the CCK-8 assay; B: GD inhibited 
LOHP- and 5-FU-induced apoptosis. LoVo cells were treated with 0.1 μg/mL LOHP or 0.05 μg/mL 5-FU for 48 h. Hoechst 33258 nuclear staining and Annexin V/7-AAD 
staining assays were performed to detect apoptosis. C and D: GD promoted the expression of resistance gene MDR1. The mRNA and protein levels of MDR1 were 
examined by qRT-PCR and Western blot, respectively. aP < 0.05, bP < 0.01,cP < 0.001, control vs GD. GD: Glucose deprivation; CRC: Colorectal cancer.

Figure 2  Glucose deprivation promotes drug resistance of HCT116 cells to LOHP and 5-FU. HCT116 cells were treated with the indicated doses of the different 
drugs for 48 h under GD or the normal condition. The in vitro drug sensitivity was tested by the CCK-8 assay. cP < 0.001, control vs GD. GD: Glucose deprivation.
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ATF4 pathway contributes to GD-induced drug 
resistance in CRC cells
To explore whether the acquisition of antiapoptotic 
property in glucosedepleted CRC cells was due to the 
activation of ATF4, we silenced the expression of ATF4 
using shATF4 in the GDtreated LoVo and HCT116 
cells (Figure 4A). The results showed that silencing 
ATF4 expression counteracted GDinduced drug 
resistance of CRC cells to both drugs (LOHP and 5FU) 
compared with the control cells (Figure 4B and Figure 
5A). Moreover, both Hoechst nuclear staining (Figure 
5B) and Annexin V/7AAD staining assays (Figure 5C) 
showed that ATF4 knockdown significantly increased 
apoptotic rates of GDtreated CRC cells compared with 
the control cells. These results suggest that GD inhibits 
apoptotic activity in CRC cells by activating ATF4 
expression. In addition, downregulation of MDR1 was 
observed in the ATF4depleted CRC cells treated with 
LOHP compared with the control cells, suggesting that 
ATF4 may mediate GDinduced MDR effect in CRC 
cells by upregulating MDR1 expression (Figure 5D). 
Collectively, these results suggest that the activation 
of ATF4 plays a crucial role in the GDinduced MDR 
phenotype in CRC cells.

ATF4 knockdown increases the sensitivity of CRC 
cells to chemotherapy and counteracts drug-induced 
apoptosis 
To further investigate the role of ATF4 in the drug 
resistance of CRC cells, forced expression of ATF4 was 
induced in LoVo and HCT116 cells (LoVoATF4 and 
HCT116ATF4) using lentivirus transduction. ATF4
overexpressing CRC cells were cotreated with shATF4 
and therapeutic drugs, and the results demonstrated 
that inhibition of ATF4 increased the sensitivity of 
LoVoATF4 and HCT116ATF4 cells to chemotherapy 
(Figure 6A and Figure 7A). Moreover, we detected the 
apoptosis in ATF4overexpressing cells treated with 
shATF4, and revealed that the apoptotic rates were 
much higher compared with the control cells (Figure 
6B and Figure 7B). Meanwhile, qRTPCR and Western 
blot results also showed the decreased expression 
of MDR1 (Figure 6C and D). These findings further 
demonstrate that ATF4 contributes to the induction of 
chemoresistance in CRC cells.

ATF4 promotes proliferation of CRC cells
Previous studies have proved the role of ATF4 in tumor 
proliferation. To investigate the proliferationprompting 
function of ATF4 in CRC, we overexpressed ATF4 
in LoVo and HCT116 cells and then inhibited ATF4 
in these cells or their control cells, respectively (As 
shown in Figure 8A). ATF4 overexpression significantly 
increased the growth rates of HCT116 and LoVo 
cells compared to the vector control (Figure 8B). In 
contrast, inhibition of ATF4 in the ATF4overexpressing 
CRC cells significantly decreased the growth rates 
compared to the control cells (Figure 8C). The results 

suggest that ATF4 may play multiple roles in CRC 
progression. 

DISCUSSION
Therapeutic resistance remains a major cause of 
tumor chemotherapy failure. Its mechanisms are 
very complicated. Recently, GD has been reported 
to promote cell proliferation, migration, invasion, 
angiogenesis and drug resistance in a variety of human 
cancers through different mechanisms, suggesting 
its extensive function in tumor development and 
progression[610,17,18]. UPR is an important mechanism 
by which GD regulates malignant phenotypes of tumor 
cells. Our previous work showed that GD contributes 
to tumor angiogenesis by increasing expression of 
multiple proangiogenic factors through the PERK/
ATF4 signaling, a key signaling pathway in UPR[8]. 
In this study, we revealed that GD can decrease 
the sensitivity of CRC cells to two most commonly 
used chemotherapeutic drugs (LOHP and 5FU) in 
CRC cells by activating PERK/ATF4 pathway. Further 
analysis showed that silencing ATF4 expression could 
counteract the inhibitory effect of GD on druginduced 
apoptosis, suggesting the key role of ATF4 in GD
induced chemoresistance in CRC. 

Due to their rapid and uncontrollable growth, 
tumors are frequently exposed to extracellular 
environments that are deficient in nutrients and 
oxygen, resulting in the disruption of homeostasis 
in the endoplasmic reticulum (ER) and leading to 
the activation of UPR. UPR serves to decrease the 
detrimental effects of accumulated unfolded proteins 
by increasing protein degradation and decreasing 
protein synthesis. However, UPR can induce apoptosis 
in normal cells encountering prolonged stress 
conditions. Accumulating evidence indicates that 
UPR contributes to the cancer development, affecting 
angiogenesis, cell growth, cell differentiation, cell 
migration, and the inflammatory microenvironment. 
In addition, recent studies also show that UPR 
activation can alter the sensitivity of tumor cells to a 
variety of chemotherapeutic agents. As a common 
stressful microenvironment in tumor, GD can regulate 
a variety of tumor phenotypes, mainly by activating 
UPR pathway. In this study, we revealed that GD 
induced MDR phenotype by inhibiting 5FU/LOHP
induced apoptosis in CRC cells. A recent study also 
reported that COLO320 colon cancer cells adapted to 
GD could acquire resistance to doxorubicininduced 
apoptosis[10]. These data demonstrate the key role 
of GD microenvironment in regulating the MDR 
phenotype of CRC.

To elucidate the mechanism by which GD induces 
MDR phenotype in CRC cell, we checked the PERK/
ATF4 arm of UPR pathway and revealed its activation 
under GD condition. In view of the potential role of 
ATF4 in the UPR and drug resistance in cancer cells, 
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Figure 3  Grp78/PERK/ATF4 pathway is activated in glucose deprivation. A and B: GD promoted the expression of genes involved in UPR. The mRNA and protein 
expression were examined by qRT-PCR and Western blot, respectively, and β-actin was used as an internal control. The phosphorylation of PERK (upward shift in the 
bands) indicated its activation in GD-treated CRC cells. aP < 0.05, cP < 0.001, control vs GD. GD: Glucose deprivation; CRC: Colorectal cancer.
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we tried to reveal its potential influence on the MDR 
phenotype inducing by GD in CRC cells. As a member 
of the CREB protein family, ATF4 participates in many 
intracellular physiological and biochemical processes 

and has been suggested as an important target 
of cancer therapy[1926]. For example, ATF4 is the 
main transcriptional regulator of the cellular hypoxic 
response to UPR signaling and activates genes that 
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Figure 5  Down-regulation of activating transcription factor 4 significantly reverses the glucose deprivation-induced resistance of colorectal cancer cells to 
chemotherapy. A: Depletion of ATF4 enhanced the sensitivity of CRC cells to chemical drugs. Vector and shATF4 stably transfected LoVo cells were treated with the 
indicated doses of the different drugs for 48 h. In vitro drug sensitivity was tested using the CCK-8 assay; B and C: The apoptotic rates were much higher in the ATF4-
depleted cells than in the control cells. Hoechst 33258 nuclear staining and Annexin V/7-AAD staining assays were performed to detect apoptosis; D: Depletion of ATF4 by 
shRNA in CRC cells led to significantly reduced expression of MDR1. The mRNA and protein levels of MDR1 were detected by qRT-PCR and Western blot, respectively, 
and β-actin was used as an internal controls. aP < 0.05, bP < 0.01, cP < 0.001, vehicle GD vs shATF4-GD. GD: Glucose deprivation; CRC: Colorectal cancer.
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promote restoration of normal ER function and survival 
under hypoxia condition[23]. Recently, ATF4 was 
reported to promote drug resistance in several types of 
tumors, including breast cancer[27], lung cancer[28], liver 
cancer[29], and gastric cancer[3]. Similarly, we revealed 

that the MDR was reversed when we inhibited the GD
induced upreguation of ATF4 using shATF4. Moreover, 
we revealed that inhibition of ATF4 by shRNA in the 
ATF4overexpressing CRC cells also reintroduced 
therapeutic sensitivity and apoptosis in CRC cells. 

Hu YL et al . Glucose deprivation induces chemoresistance in CRC

Figure 6  Inhibition of activating transcription factor 4 activity reintroduces drug sensitivity in activating transcription factor 4-overexpressing colorectal 
cancer cells. A: After transfection with shATF4 or vector, ATF4-overexpressing cells were exposed to the indicated doses of LOHP or 5-FU for 48 h. Cell viabilities 
were determined by the CCK-8 assay; B: The apoptotic rates were much higher in the shATF4-transfected cells than in the control cells. Annexin V/7-AAD staining 
assay was performed to detect apoptosis; C and D: Inhibition of ATF4 decreased the MDR1 expression. The mRNA and protein levels of MDR1 in the ATF4-depleted 
cells were examined by qRT-PCR and Western blot, respectively, and β-actin was used as an internal controls. aP < 0.05, bP < 0.01, vehicle vs shATF4. GD: Glucose 
deprivation; CRC: Colorectal cancer.
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Figure 7  Inhibition of activating transcription factor 4 activity reintroduces drug sensitivity in activating transcription factor 4-overexpressing HCT116 cells. 
A: ATF4 knockdown increased sensitivity of HCT116-ATF4 cell to chemotherapy. The in vitro drug sensitivity was tested using the CCK-8 assay; B: ATF4 knockdown 
counteracted drug-induced apoptosis. The apoptotic rates were much higher in the shATF4-treated HCT116-ATF4 cells than in the control cells. aP < 0.05, bP < 0.01, 
cP < 0.001, vehicle vs shATF4.
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These data indicate that GD induces MDR mainly by 
activating ATF4. Nishimoto et al[10] showed that GD 
could induce acquire resistance to doxorubicininduced 
apoptosis in CRC cells, suggesting that multiple 
downstream targets mediate the MDRinducing 
function of GD.

Ledoux et al[30] reported that GD enhances expres
sion of MDR1 through cJun activation in hepatoma 
cells. Our data also observed increased MDR1 ex
pression in GDtreated CRC cells. In addition, our data 
indicated that ATF4 knockdown significantly decreased 
MDR1 expression in the GDtreated CRC cells com
pared with the control cells. These results imply that 
ATF4 contribute to chemoresistance in CRC partly via 
regulating MDR1.

In conclusion, our data clearly identify that GD 
induces the MDR phenotype of CRC cells by activating 
PEKR/ATF4 signaling, and targeting the ATF4 pathway 
may provide a clinical perspective for treating drug 
resistance of CRC cells to conventional therapy. Further 
studies are necessary to identify key molecules that 

enhance the effect of ATF4 knockdown on CRC cells 
resistant to conventional chemotherapy. Therefore, 
interventions based on the disruption of GDinduced 
ATF4 expression may be effective in reversing drug 
resistance in CRC cells.
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Background
Chemoresistance is an important reason for clinical chemotherapy failure. 
Recent studies suggest that that tumor microenvironment is an important 
determinant of malignant progression and chemoresistance. Changes in the 
tumor microenvironment, such as hypoxia and glucose deprivation (GD), 
can prompt tumor progression and drug resistance. However, the role and 
mechanism of GD in colorectal cancer (CRC) drug resistance are unknown.

Research frontiers
GD has been found to be involved in the regulation of multiple pathological 
processes that contribute to tumorigenesis and metastasis, such as tumor cell 
proliferation, multidrug resistance, and autophagy. Activating transcription factor 
4 (ATF4) is a key player in UPR signaling. Many studies recently revealed that 
ATF4 participates in drug resistance of cancer. However, the role of ATF4 in GD-
induced CRC drug resistance remains unclear and needs further exploration.
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Figure 8  Activating transcription factor 4 promotes the proliferation of colorectal cancer cells. A: We overexpressed ATF4 in LoVo and HCT116 cells and 
then inhibited ATF4 in these cells or their control cells, respectively; B: ATF4 overexpression enhanced the cell growth of LoVo and HCT116 cells; C: Silencing ATF4 
expression inhibited the proliferation of ATF4-overexpressing cells in a dose- and time-dependent manner in LoVo and HCT116 cells. The CCK-8 assay was used to 
determine the cell growth rate. aP < 0.05, bP < 0.01, cP < 0.001, control vs ATF4. GD: Glucose deprivation; CRC: Colorectal cancer.
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Innovations and breakthroughs
The authors clearly identified that GD induces the MDR phenotype of CRC 
cells by activating PEKR/ATF4 signaling and targeting the ATF4 pathway may 
provide a clinical perspective for treating drug resistant of CRC to conventional 
therapy.

Applications
ATF4 may be a therapeutic target to combat therapeutic resistance in CRC 
cells. 

Terminology
GD: In the tumor microenvironment, the abnormal development of vasculature 
results in insufficient blood supply, such as hypoxia and GD. Changes in the 
tumor microenvironment can promote tumor progression and drug resistance.

Peer-review
This is a very interesting study which explored the role and mechanism of GD 
in the chemoresistance of CRC. The results suggest that ATF4 may be a new 
target for overcoming CRC resistance to conventional chemotherapy.
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