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Abstract
Hepatitis C virus (HCV) is a significant health problem 
facing the world. This virus infects more than 170 mil-
lion people worldwide and is considered the major 
cause of both acute and chronic hepatitis. Persons 
become infected mainly through parenteral exposure 
to infected material by blood transfusions or injections 
with nonsterile needles. Although the sexual behavior 
is considered as a high risk factor for HCV infection, the 
transmission of HCV infection through sexual means, 
is less frequently. Currently, the available treatment for 
patients with chronic HCV infection is interferon based 

therapies alone or in combination with ribavirin and 
protease inhibitors. Although a sustained virological re-
sponse of patients to the applied therapy, a great por-
tion of patients did not show any response. HCV infec-
tion is mostly associated with progressive liver diseases 
including fibrosis, cirrhosis and hepatocellular carci-
noma. Although the focus of many patients and clini-
cians is sometimes limited to that problem, the natural 
history of HCV infection (HCV) is also associated with 
the development of several extrahepatic manifestations 
including dermatologic, rheumatologic, neurologic, and 
nephrologic complications, diabetes, arterial hyperten-
sion, autoantibodies and cryglobulins. Despite the no-
tion that HCV-mediated extrahepatic manifestations 
are credible, the mechanism of their modulation is not 
fully described in detail. Therefore, the understanding 
of the molecular mechanisms of HCV-induced alteration 
of intracellular signal transduction pathways, during the 
course of HCV infection, may offer novel therapeutic 
targets for HCV-associated both hepatic and extrahe-
patic manifestations. This review will elaborate the etio-
pathogenesis of HCV-host interactions and summarize 
the current knowledge of HCV-associated diseases and 
their possible therapeutic strategies.
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INTRODUCTION
Hepatitis C virus (HCV) infects more than 170 million 
people worldwide[1-3]. This virus is considered one of  the 
major causes of  both acute and chronic hepatitis. Persons 
become infected mainly through parenteral exposure 
to infected material by blood transfusions or injections 
with nonsterile needles. Although the sexual behavior is 
considered as a high risk factor for HCV infection, the 
transmission of  HCV infection through sexual means, is 
less frequently[4,5]. Besides the cause of  liver disease, the 
natural history of  HCV infection (HCV) is also associated 
with the development of  several extrahepatic manifesta-
tions[6,7]. Patients (40%-74%) infected with HCV might 
develop at least one extrahepatic manifestation during the 
course of  the infection[6,7]. HCV-associated liver diseases 
range from chronic hepatitis to fibrosis, cirrhosis and he-
patocellular carcinoma (HCC)[8]. Whereas, the extrahepatic 
manifestations include dermatologic, rheumatologic, neu-
rologic, and nephrologic complications; and diabetes; arte-
rial hypertension; autoantibodies and cryoglobulins[9,10].

Currently, the available treatment for patients with 
chronic HCV infection is interferon based therapies alone 
or in combination with ribavirin. Although a sustained 
virological response of  patients to the applied therapy, a 
great portion of  patients did not show any response[11]. 
Despite the mechanisms underlying the failure of  inter-
feron therapy are not well understood, several studies 
revealed that host response to interferon therapy is con-
trolled by both viral and host factors[12]. Therefore, the 
current knowledge obtained from the functional analysis 
of  both viral- and host factors, during the infection might 
help for the development of  a novel therapeutic strategy 
in the future.

HCV GENOME AND ITS FUNCTIONAL 
ORGANIZATION 
HCV belongs to the family Flaviviridae and is a single 
positive strand of  RNA (about 9.6 kb) and contains a 
long open reading frame flanked by both 5’ and 3’ un-
translated regions that are important for both translation 
and replication processes of  the viral RNA genome[13,14]. 
Based on the sequence variation of  HCV genome, six 
genotypes and more than 50 subtypes have been identi-
fied[15,16]. The RNA genome of  the virus encodes for a 
single polyprotein that is mainly processed by cellular and 
viral proteases into at least 10 structural (Core, E1, E2/
p7) and nonstructural (NS2, NS3, NS4A, NS4B, NS5A 
and NS5B) proteins (Figure 1). 

Proteins that are derived from the amino-terminal of  
the viral polyprotein are called viral structural proteins, 
these include core and two envelope glycoproteins, E1 
and E2. HCV core is a basic protein with variable molec-
ular weights (17-21 kDa) and is characterized by its RNA-
binding activity that is thought to be responsible for the 
comprising of  the viral nucleocapsid[17-19]. However, the 
localization of  HCV core protein in various subcellular 

compartments, including cytosol, lipid droplets, endoplas-
mic reticulum (ER), golgi apparatus, mitochondria, and 
nuclei suggests the contribution of  HCV core protein in 
the modulation of  different cellular processes[20]. 

The two HCV envelope glycoproteins E1 and E2 inter-
act with cell surface molecules including CD81, claudin-1, 
scavenger receptor class B type Ⅰ, and thereby facilitate 
the virus entry into the mammalian cells[21,22]. HCV p7 
protein is a small transmembrane protein that is character-
ized by its functional activity as an ion channel protein[23]. 
In addition to the mentioned structural proteins, the non-
structural protein NS2 is recognized to play a central role 
in polyprotein processing and virus assembly[24]. 

HCV non-structural proteins (NS3, NS4A, NS4B, 
NS5A, and NS5B) are essential for both viral RNA rep-
lication and polyprotein processing[25]. Besides its serine 
protease activity that is responsible for the cleavage of  
HCV polyprotein, and subsequently the generation of  the 
amino termini of  NS4A, NS4B, NS5A, and NS5B[26], NS3 
serves as an RNA helicase and NTPase, and is consid-
ered an essential component of  the RNA replicase com-
plex[27,28]. NS4A, a small 54-amino-acid protein that forms 
a stable complex with the amino-terminal third of  NS3, 
protease domain, and is required for a complete serine 
protease activity[29]. NS4B, an integral membrane protein 
that is mostly localized on the cytoplasmic side of  the ER 
membrane and is implicated in assembly of  the replicase 
complex on lipid rafts[30,31]. NS5A, a phosphoprotein that 
plays a role in viral resistance to interferon[32,33]. NS5A also 
plays a role in RNA replication, and virus assembly[34]. 
NS5B is the RNA-dependent RNA polymerase, and acts 
as the catalytic core of  the macromolecular replicase com-
plex essential for HCV RNA replication[25,35].

The functional analysis of  HCV genome using cloned 
HCV gene expression in mammalian cells, the develop-
ment of  subgenomic or full-length replicon derived from 
HCV, and the generation of  infectious HCV genotypes 
1a and 2a in human hepatocyte derived cell lines have 
significantly contributed to the advancement of  HCV re-
search[36-39]. Recently, autophagy has gained importance as 
it plays an important role in HCV life cycle. Also, the role 
of  HCV in the modulation of  autophagy in hepatocytes 
has been reported[40-43]. HCV may induce accumulation 
of  autophagosomes via the induction of  ER stress and 
the unfolded protein response[40-43]. Similar to several vi-
ruses including poliovirus or coxsackie viruses, the induc-
tion of  autophagosomes seems to play an important role 
in HCV replication[40-43]. Taken together, the knowledge 
obtained from the functional analysis of  the molecular 
mechanisms of  HCV-induced autophagy in hepatocytes 
may help for the development of  a therapeutic strategy 
for treatment of  HCV infection. 

INTERFERENCE OF HCV PROTEINS 
WITH INTRACELLULAR SIGNAL 
TRANSDUCTION PROCESSES
The most studied transmembrane and intracellular signal 
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transduction pathways, in the liver, are the mitogen-acti-
vated protein kinases (MAPKs), the transforming growth 
factor (TGF)-β, and the Janus kinase (JAK), tumor 
necrosis factor (TNF)-α and sphingolipid (SP). How-
ever, the activation of  these signaling pathways by either 
cytokines or growth factors leads to the regulation of  
specific cellular processes including proliferation, growth, 
differentiation, adhesion, migration, apoptosis, and both 
synthesis and degradation of  the extracellular matrix[44-47]. 

As recognized, the replication cycle of  HCV is an in-
tracellular mechanism that requires the intracellular signal 
transduction processes of  the host cell to ensure genome 
replication, transcription and translation[48,49]. A proposed 
model for the interference of  HCV with cellular signal 
transduction processes is demonstrated in Figure 2.

MAPK signal transduction pathway
The legation of  endothelial growth factor (EGF), he-
patocyte growth factor (HGF) and TGF-α to their cor-
responding membrane receptors results mainly in the 
activation of  the intrinsic tyrosine kinase that leads to 
ligand-receptor complex formation and subsequently 
autophosphorylation[50-52]. As a consequence, the forma-
tion of  a transient complex from Ras proteins and GTP 

that subsequently mediates the activation of  RAF and 
MAPKK kinases that, in turn, enhance the activation of  
MAPK by dual phosphorylation of  threonine and tyro-
sine. Activated MAPK results in the phosphorylation of  
transcription factors such as cAMP response element-
binding protein and Ets-related transcription factor 1 
(ELK-1)[47,53-56]. Evolutionary, MAPK signal transduction 
pathway is considered as one of  the oldest signal trans-
duction pathways in eukaryotic cells. This kinase contains 
three different signal pathways: the extracellular regulated 
protein kinase (ERK, p42/44 MAPK), the stress activat-
ed protein kinase [stress activated protein kinases (SAPK), 
p38 MAPK, p38-RK or p38], and the c-Jun N-terminal 
kinase (JNK, p64/54 SAPK). All of  these pathways are 
implicated in the regulation of  cellular processes includ-
ing cell growth, differentiation, maturation, proliferation 
and apoptosis[53-63]. In mammalian cells every single path-
way is activated by two mitogen-activated protein kinase 
kinase (MKK), e.g., JNK is activated by MKK4 and 
MKK7, ERK is activated by MKK1 and MKK2, whereas 
p38 is activated by MKK3 and MKK6[54,55,64]. However, 
the dual role of  MKK in the activation of  JNK, ERK or 
p38 signal transduction pathways still remains to be inves-
tigated in detail. Although ERK has been shown to play a 
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key role in the regeneration of  liver cells[65,66], the role of  
p38, especially in hepatocytes regeneration, so far, is not 
clear[67,68]. Physiologically, the activity of  JNK in the liver 
is minimal, however, its increase during liver regeneration 
or HCV infection may result from the direct effect of  the 
elevated level of  hepatic TNF-α[60,69]. Also, the promo-
tion of  cell proliferation in liver and non liver cells by 
HCV proteins is associated with the activation of  MAP 
kinase signaling pathways JNK, p38 and ERK[47,54,55,70-72]. 
An overview of  HCV-induced alteration of  MAP kinase 
signaling pathways is summarized in Figure 3.

TGF-β signal transduction pathway
TGF-β is a cytokine family member that plays a key role 
in the regulation of  different cellular events including 
growth, differentiation, adhesion, apoptosis, and syn-
thesis and degradation of  the extracellular matrix[47,73,74]. 
Although the elevation of  TGF-β concentration is ob-
served, during liver regeneration, no marked apoptosis 
was noted in hepatocytes[75]. However, the inhibition of  
TGF-β-mediated apoptosis in hepatocytes may be linked 
with parallel augmentation of  Smads, and other antiapop-
totic proteins such as Bcl-2 and Bcl-X in hepatocytes[76,77]. 

In the liver, TGF-β is responsible for hepatocytes 
regeneration, the development of  fibrosis, and HCC, as 
well as for the proliferation and differentiation of  epithe-

lial cells[47,78]. Moreover, the elevation of  TGF-β2 expres-
sion, in liver cells, during the course of  HCV infection is 
associated with the development of  neoangiogenesis[47,79]. 
Also, the higher the concentration of  both TGF-β1 and 
TGF-β2 in the sera of  patients with chronic liver diseas-
es, such as chronic HCV infection, the more severe the 
liver failure; an evidence for the association between the 
level of  these cytokines and the development of  liver dis-
eases including hepatic fibrosis, cirrhosis and HCC[47,80,81]. 
Simultaneously, in patients with chronic HCV, TGF-β1 
serum concentration decreases and normalizes after suc-
cessful antiviral therapy[82]. However, the inhibition of  
TGF-β pathway during the infection with HCV, hepatitis 
B virus (HBV), adenoviruses or human papilloma virus 
(HPV) has been reported[83]. Also, the mechanism where-
by HCV protein NS5A inhibits the activity of  TGF-β 
signal transduction pathway is reported[83]. The inhibition 
of  TGF-β pathway by HCV protein NS5A results from 
its direct reaction with its specific receptor[84]. 

TGF-β signaling pathway appears to be most promi-
nent at the interface between development and cancer 
both in liver and gut epithelial cells[85]. Since this signaling 
pathway is considered to play a pivotal role in the prolif-
eration of  embryogenic hepatocyte as well as in the for-
mation of  gastrointestinal cancers[86,87]. In addition, many 
studies have reported a reduction of  TGF-β receptors in 

10 April 20, 2012|Volume 2|Issue 2|WJEM|www.wjgnet.com

Steatosis
Control of 
apoptosis

Cell 
proliferation

Interferon 
stimulated genes

IL-8 Control of 
translation

NF-κB IFN-β

RXR-α

PPAR-α

Core

LXR
RXR-α

NF-κB

p53

IκBα

Core

TRADD

TRAF2

NS3

NS5A

GRB2

PI3K
SOS

Raf

PDK1

AKT1

p21 Bad GSK3β

STAT1/2

ERK1/2

p38

JNK

Ca2+

ROS

STAT3

eIF2α

NS4A

E2

PKR

SOCS 3JAK1/Tyr

Core

TLR-3

TRIF

RIP-1

TRAF-6

IKKα

IKKg

IKKb
IRF3/7

TBK1IKKα

TRAF-3

RNase

2’-5’ oligo(A)

2-5 oligo(A)RIG-1

NS3/
NS4A

HCV genome RNA

NS5A

Control of 
replication

NS3

Hepatitis C virus

E2 protein

TNFR EGFR IFNR OCLN CLDN CD81 CR-B1

Figure 2  A proposed model for the consequences resulting from the interference of hepatitis C virus with signal transduction processes in host cells. 
HCV: Hepatitis C virus; TNFR: Tumor necrosis factor receptor; JAK: Janus kinase; EGFR: Endothelial growth factor receptor; IFN: Interferon; IFNR: IFN receptor; 
TRAF: Tumor necrosis factor associated factor; TRADD: TNFR-associated protein with death domain; JAK: Janus kinase; JNK: c-Jun N-terminal kinase; SOCS: 
Suppressor of cytokine signaling; PI3K: Phosphatidylinositol-3-kinase; ERK: Extracellular regulated protein kinase; RIP: Receptor-interacting protein; ROS: Reactive 
oxygen species; STAT: Signal transducers and activators of transcription; NF-κB: Nuclear factor κB; IL: Interleukin; PPAR: Peroxisome proliferator-activated receptor.

Hassan M et al . Hepatitis C virus-host interaction



up to 70% of  HCC[88,89]. Although Smad proteins have 
been shown to be impaired in different cancers, it appears 
to play a minor role in HCC[90,91]. Yet, TGF-β levels in se-
rum and urine are increased in HCC patients[92,93]. Howev-
er, High TGF-β levels have been noted during the course 
of  advanced clinical stage of  HCC[94,95]. This dual role 
of  TGF-β signaling in HCC was explained by its effect 
on the tumor tissue microenvironment and on selective 
loss of  the TGF-β-induced antiproliferative pathway[88]. 
However, the role of  TGF-β signaling pathway in the de-
velopment of  both hepatic angiogenesis (Figure 4A) and 
HCC (Figure 4B) during the course of  HCV infection is 
demonstrated in detail.

TNF-α signal transduction pathway
As recognized, macrophages, monocytes, mast cells and 
NK cells are the main source of  TNF-α production that is 
considered to be one of  the major mediators of  the anti-
viral inflammatory response, which results in the enhance-
ment of  lymphocytes proliferation and differentiation, pro-
duction of  acute phase proteins and cell apoptosis[60,96,97].

The two essential TNF-α membrane receptors are 

the TNF-R1 and TNF-R2[98]. TNF-R1 is an extracellular 
transmembrane receptor that consists of  extracellular, 
transmembrane and intracellular [death domain (DD)] 
domains. TNFR1 is considered to play a key role in liver, 
and is expressed in hepatocytes as well as in kupffer cells 
and hepatic sinusoidal endothelial cells[99-101]. 

Activated TNF-R1 binds, via the DD, to an adaptor 
protein TNFR-associated protein with DD, which after-
wards activates Fas associated DD proteins, TNF associ-
ated factor 2 and receptor-interacting protein. All of  these 
proteins influence different signal transduction pathways, 
which are involved in the regulation of  apoptosis[102], and 
anti-apoptotic effects of  TNF-α as the activation of  nu-
clear factor κB (NF-κB) factor, as well as JNK and ERK 
from MAPK signal transduction pathway[103]. 

Although the main target cells of  HCV infection are 
the hepatocytes, the infection of  B lymphocytes by HCV 
virus is documented[104]. Therefore, the participation of  
both innate and adoptive immune system at the etiopatho-
genesis of  HCV during the course of  HCV infection is 
expected.

The induction of  TNF-α, during the infection with 
chronic HCV, results mainly in the activation of  NF-κB 
pathway that subsequently stimulates transcription of  
genes encode for cytokines, acute phase proteins, immu-
noglobulins (Ig) and adhesion factors[60,103,105]. The ligation 
of  TNF-α to TNF-R1, depending on the activated cellular 
proteins, leads to either cell proliferation or apoptosis[106]. 

TNF-α plays a diverse role in HCV infection. The ac-
tivation of  TNF-α has a pivotal role in the inflammatory 
process of  chronic hepatitis C, and TNF-α levels corre-
late with the degree of  inflammation[107,108].

HCV viral proteins including core, NS3 and NS4B 
protein have been reported to be involved in the modu-
lation of  cell proliferation[54,55,60,109,110] and production 
of  proinflammatory cytokines TNF-α through NF-κB 
(Hassan et al[47,54,60], 2007), activator protein-1 (AP-1) and 
serum response element (SRE)[55]. AP-1 is a complex of  
homo- or heterodimers encoded by c-jun and c-fos family 
genes[55]. However, the ability of  AP-1 to stimulate prolif-
eration seems to be growth factors[47,111], oncogenes and 
inflammatory peptides- dependent mechanism[112]. SRE 
regulates the promoters of  immediate early genes such as 
c-fos and PIP92. MAPK cascade activation phosphory-
lates Elk-1 factor binding with SRE and serum response 
factor[113]. Thus, the created complexes affect transcription 
of  genes taking part in cell proliferation. A schematic view 
demonstrates HCV-mediated pathways leading to TNF-α 
production is outlined in Figure 5.

JAK signal transduction pathway
JAK signal transduction pathway can be activated by dif-
ferent cytokines and growth factors. This intracellular 
pathway operates in hepatocytes[114,115] as well as in im-
mune[116], hematopoietic[117,118] and neural system cells[119]. 
After extracellular ligand-receptor interaction, receptor 
multimerization and the activation of  JAK1, JAK2, JAK3 
and tyrosine kinase 2 (Tyk2) is observed[120]. The receptor-
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kinase complex phosphorylates cytoplasmic SH-2-con-
taining transcription factors: signal transducers and acti-
vators of  transcription (STAT)1-6. STATs are specifically 
inhibited by protein inhibitors of  activated STAT and by 
suppressor of  cytokine signaling (SOCS) through nega-
tive feedback control[121]. SOCS proteins include SOCS 1, 
2, 3 and cytokine-induced Src homology 2 protein, which 
bind to JAK kinase inhibiting its enzymatic activity[122]. 
STATs perform different, often opposing functions in 
the liver. STAT1 is mainly activated by interferon (IFN) 
type Ⅰ (IFN-α/β) and IFN type Ⅱ (IFN-γ). Its essential 
function in liver is the participation in antiviral immune 
defense, as well as in the development of  inflamma-
tion and apoptosis. IFN-α/β and IFN-γ are ligands for 
STAT2, whose major function is antiviral defense. Mem-
brane the IFN-α/β receptor (IFNAR) is a complex of  
two subunits: IFNAR1 and IFNAR2. IFNAR2 presents 
three diverse forms: full-length IFNAR2c is responsible 
for signal transduction and transcription process, whereas 
short form IFNAR2b and soluble form IFNAR2a inhibit 

these processes[123]. The complex IFN-α/β - IFNAR 
activates JAK1 and Tyk2 kinases. IFN-γ takes effect by 
IFN-γ receptor (IFNGR): IFNGR1 and IFNGR2. STAT3 
function is especially regulated by interleukin (IL)-6 and 
its family members such as cardiotrophin-1, oncostatin M, 
IL-11, leukemia inhibitory factor or ciliary neurotrophic 
factor, by IL-10, IL-22, EGF and HCV proteins. STAT3 
participates in the acute phase response, stimulates hepa-
tocytes regeneration and regulates lipid and carbohydrate 
metabolism in the liver[124]. Moreover STAT3 is one of  the 
main anti-HCV defense elements that act by increasing 
the IFN-α antiviral effect and by its direct cytoprotective 
and anti-inflammatory influence on hepatocytes[125]. IL-6 
and its related cytokines bind gp130 receptor protein, 
which plays a key role in liver regeneration.

Furthermore, the activation of  gp130 is independent 
of  the activation of  other kinases, such as MAKP[71]. The 
ligand-gp130 complex activates JAK1, JAK2 and Tyk2 
and subsequently leads to the activation of  STAT1-3. 
However, the modulation of  JAK1, JAK2 and Tyk2-
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mediated activation of  STAT1-3 factors by HCV infec-
tion or by HCV structural and non-structural proteins 
has been demonstrated. Thus, the inhibition of  the 
transmembrane and intracellular signal transduction path-
ways could be a new therapeutic target in chronic HCV 
treatment. HCV structural proteins Core, E2 and non-
structural protein NS5A were reported to reduce the 
number of  IFN-α receptors (IFN-α R1 and IFN-αR2c) 
and subsequently inhibit IFN-α-induced activation of  
STAT1-3[126-128]. As a result, viral replication, as well as in-
flammation and fibrosis in the liver, is augmented and has 
a negative effect on IFN-α treatment response among 
patients with severe liver damage. However, HCV does 
not affect IFN-γ function, and in consequence, STAT1 
activation[129]. Moreover, the production of  IFN-γ by NK 
cells during HCV infection is associated with the inhibi-
tion of  hepatocytes regeneration[124]. Also, STAT4 has 
been shown to be activated by IL-12 and to play a critical 
role in hepatocytes damage during hepatic ischemia/re-
perfusion injury[130]. Whereas, STAT5 that is mainly ac-
tivated by growth factors and involved in the regulation 
of  the expression of  genes encoding cytochrome P450, 
HGF and insulin growth factor 1, which are essential for 
hepatocytes metabolism, growth and differentiation[131,132]. 
STAT6 that is mainly regulated by IL-4, IL-12 and IL-13 
and contributes in Th2 lymphocytes response during viral 
hepatitis and reduces hepatocytes damage during hepatic 
ischemia/reperfusion injury[133]. An overview demonstrat-
ing the interference of  HCV with JAK/STAT, cytokines 
and IFN-associated pathways is outlined in Figure 6.

SP signal transduction pathway
Although SPs are considered to be the major components 
of  eukaryotic plasma membranes and mediators of  cell-
to-cell interactions, their role as second messengers in 
transmembrane and intracellular signal transduction is 
documented[134]. The main function of  the SP signal trans-
duction pathway is the modulation of  specific cell reac-
tions including proliferation, growth arrest, differentiation, 
apoptosis and calcium homeostasis (Boya et al[135], 2005). 
SP pathways can be activated by many pro-apoptotic and 
promitotic factors[136-138]. 

Ceramide is the most intensively studied second mes-
senger of  SP signal transduction pathway. Ceramide can 
mediate its antiproliferative effect by the activation of  
JNK, SAPK, cathepsin D, methionine adenosyl transfer-
ase 1A and caspase 3, leading to the destruction of  the 
cytoskeleton, nuclear and plasma membranes[139]. In addi-
tion to its antiproliferative effects, ceramide has the ability 
to trigger mitochondrial dysfunction by the enhancement 
of reactive oxygen species (ROS) accumulation and cy-
tochrome c release[140]. However, the antiapoptotic func-
tion of  ceramide depends on its ability to decreases the 
intracellular level of  anti-apoptotic proteins of  the Bcl-2 
family as well as the activity of  anti-apoptotic enzymes 
such as Ca2+-kinases including protein kinase C (PKC), 
PKCα and PKCβα/Akt[141]. Besides its role in the regula-
tion of  both cell survival and death, ceramide can also 
inhibit autophagocytosis by a mechanism based on the 
enhancement of  apoptotic pathway[135,142]. As known, 
autophagocytosis is an intracellular process that relies on 
degradation of  damaged, dead or used cell structures to 
prolong cell life[142].

Sphingosine (SFO) that is synthesized mainly from 
the hydrolysis of  Ceramide by ceramidases is a member 
of  the second messengers of  SP signal transduction 
pathway. SFO plays a key role in promotion of  apoptosis 
by the enhancement of  ROS production in mitochondria 
and activation of  caspase 3, 7 and 8[137]. Also, the inhibi-
tion of  AKT by SFO leads to the augmentation of  the 
cellular effects of  both cytochrome c and caspase-3[137]. 

Besides its negative effect on DNA synthesis, methyl-
ation and replication, SFO reduces the activity of  protein 
kinases including, PKC, calmodulin-dependent protein 
kinase and insulin receptor kinase[137], and thereby leads 
to disturbances of  nuclear proteins phosphorylation 
including RNA polymerase, topoisomerase Ⅱ, histones 
and matrix proteins[143].

Some studies underline the proliferative character 
of  SFO suggesting that low cellular concentrations of  
SFO leads to stimulation of  cell proliferation and DNA 
synthesis, whereas the high concentrations is associated 
with the induction of  apoptosis. SFO-1-phosphate (S1P) 
that mainly synthesized from SFO, has been reported to 
have an anti-apoptotic potential[135]. An increase in the 
intracellular level of  S1P can activate cell proliferation 
and its passing from G1 phase to S phase, augment the 
general number of  cells resting in S phase, shorten the 
time needed for cell division, enhance survival rate of  
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cells subjected to pro-apoptotic factors, mobilize calcium 
ions from intracellular compartments, influence cytoskel-
etal architecture and the processes of  cell migration and 
adhesion[144]. S1P modulates cell functions in two differ-
ent ways: as an intracellular messenger and as a ligand of  
G protein-coupled receptors, known as endothelial dif-
ferentiation genes (Edg) - Edg-1, -3, -5, -6 and -8[144]. Cer 
can be phosphorylated by ceramide kinase to ceramide-
1-phosphate (C1P), which can be dephosphorylated back 
to ceramide by C1P phosphatase[145]. Similarly to S1P, 
C1P promotes cell proliferation[145]. Recently, some stud-
ies have shown that the inhibition of  SP metabolism can 
be a new therapeutic target for HCV infection[146]. 

HCV-ASSOCIATED STEATOSIS
Fatty liver (liver steatosis) is recognized as a histologi-
cal phenotype of  HCV infection that is occurring in all 
patients independent from the genotype[147,148]. Although 
the development of  steatosis seems to be a direct conse-
quence of  viral protein expression, the molecular mecha-
nism of  its occurring appears to be genotype-specific[149].

The promotion of  lipid homeostasis by HCV is medi-
ated by the increasing of  lipogenesis via a process includ-
ing the activation of  ER membrane bound transcription 
factors (SREBPs), reducing oxidation and lipid export[149]. 
As recognized, the main function of  SREBPs is the regu-
lation of  the transcription of  genes that encode for the 
enzymes which are essential for the biosynthesis of  both 
cholesterol and fatty acid[150]. However, the suppression 

of  both HCV replication and release in response to the 
inhibition of  SREBP[151], or by the fatty acid synthase, 
an enzyme that is primarily involved in the biosynthesis 
of  fatty acids[151,152], suggest that the host lipid metabolic 
pathways is considered a potential target for the treat-
ment of  HCV infection. A schematic view suggests 
HCV-mediated pathways leading to the development of  
steatosis are outlined in Figure 7.

HCV-RELATED CRYOGLOBULINEMIC
Cryoglobulinemia is defined as the presence of  circulat-
ing Ig that precipitate at temperatures below 37 ℃ and 
redissolve on rewarming[153]. Such an in vitro phenomenon 
is detectable in a wide number of  chronic infectious and 
immunological disorders, as well as in some hematologi-
cal malignancies[153-155].

Cryoglobulinemia is usually classified into serologi-
cal subsets namely type Ⅰ or monoclonal cryoimmu-
noglobulinemia that is composed by single monoclonal 
Ig, mixed cryoglobulinemia (MC) that contains a mix-
ture of  polyclonal IgG and monoclonal (type Ⅱ) or 
polyclonal (type Ⅲ) IgM rheumatoid factor (RF)[156]. 
Type Ⅰ cryoglobulinemia is frequently associated with 
hematological disorder including multiple myeloma, im-
munocytoma or Waldenstrom’s macroglobulinaemia, and 
is mostly asymptomatic except in the case of  hyperviscos-
ity syndrome[157-159]. Whereas, MC is characterized by a 
typical triad purpura, weakness, arthralgias as well as by 
multisystem organ involvement including chronic hepati-

SREBP 

Lipid droplet 
rearrangement

NS5BNS5A  NS4B  NS4A 

Structure proteins                                 Non-structure proteins 

NS3   NS2   p7C            E1            E2      

HCV

Assembly and 
secretion of VLDL

Lipid and protein 
peroxidation Increase of lipid 

biosynthesis

SREBPs
activation

PPAR-a

b-oxidation

Steatosis
Decrease of cholesterol and 

b-lipoprotein export

ROSMTP

APO A-Ⅱ

Mitochondrial 
dysregulation APO A-Ⅰ

Figure 6  Proposed model for the molecular mechanisms, which are involved in the regulation of hepatitis C virus-associated steatosis. HCV: Hepatitis C 
virus; ROS: Reactive oxygen species; PPAR: Peroxisome proliferator-activated receptor.

Hassan M et al . Hepatitis C virus-host interaction



15 April 20, 2012|Volume 2|Issue 2|WJEM|www.wjgnet.com

tis, membranoproliferative glomerulonephritis, peripheral 
neuropathy, skin ulcers, widespread vasculitis, and less 
frequently lymphatic and hepatic malignancies[154-156,160]. 

The pathological feature of  MC is a leucocytoclastic 
vasculitis, including both small and medium sized vessels, 
which are responsible for cutaneous and visceral organ 
involvement[154-156,160,161]. However, based on clinico-se-
rological and pathological alterations, the terms MC and 
cryoglobulinemic vasculitis (CV) are referred to the same 
clinical syndrome[160-162].

CV is considered to be a relatively rare disorder; its 
prevalence among different countries show a great geo-
graphical heterogeneity[155,156,160].

Currently, there are no available classification/diag-
nostic criteria for CV. However, in the clinical practice, 
the main diagnostic parameters include serum mixed 
cryoglobulins with RF activity, low C4, orthostatic skin 
purpura, and leukocytoclastic vasculitis of  small/medium-
sized blood vessels secondary to the deposition of  circu-
lating immune-complexes and complement[154-156,160,161]. 

The causative role of  hepatotropic viruses in the de-
velopment of  CV had been hypothesized previously[163-165], 

when a role of  HBV in another systemic vasculitis - the 
polyarteritis nodosa had been demonstrated[166]. However, 
soon after the identification of  CV in patients with HBV 
infection[167], the role of  HCV in the development of  CV 
has been considered[168,169], the majority HCV patients was 
characterized by the presence of  CV[170], an evidence for 
the association between the chronic infection with HCV 
and the development of  CV. 

Currently, the role of  HCV infection in the modula-
tion of  CV has been consequently established in several 
studies[160,169-172]. Therefore, a direct role for HCV in the 
formation of  immune-complex-mediated vasculitis is 
considered. Besides its role as a main triggering factor of  
CV, HCV infection is thought to play an important role 
in the underlying lymphoproliferative disorder[160,169-172]. 
However, the detection of  both active and latent HCV 
viral replication in the peripheral lymphocytes of  patients 
with HCV infection and/or CV suggesting further a 
dual feature for HCV as both hepato- and lymphotropic 
virus[169,171]. Also, the affinity of  lymphoid tissue to the 
infection with HCV supports further the occurring of  
both autoimmune and lymphoproliferative disorders in 
patients with chronic HCV infection[160,170-174]. 

Although the HCV infection presents homogenous 
distribution worldwide, the geographical heterogeneity in 
the context of  HCV-associated immune disorders is com-
mon[174]. Thus, the involvement of  particular HCV geno-
types, environmental and/or host genetic factors may 
play a central role in the development of  HCV-associated 
CV.

Although the strong affinity of  the HCV envelop 
protein E2 to CD81 and subsequently the modulation 
of  immunological disorders[175], the HCV, based on its 
biological features and several laboratory studies, seems 
to be insufficient to drive the different autoimmune-
lymphoproliferative disorders in infected patients[173,174,176]. 
CD81 is a cell surface protein that expressed in both 
hepatocytes and B-lymphocytes[177], and is recognized to 
play an important role by the entry of  HCV particles[178], 
in addition to the modulation of  HCV-induced autoim-
munity[179]. Therefore, the elevation of  HCV-associated 
autoimmune diseases including CV during the course 
of  infection[180,181], may be a consequence of  the interac-
tion between HCV-E2 and CD81 leading the increase of  
the frequency of  VDJ rearrangement in antigen-reactive 
B-cell[169]. Thus, the expansion of  B-lymphocyte may 
be the main actor that is responsible for the observed 
autoantibody production during the course of  HCV in-
fection[174,182-184]. Also, another mechanisms including the 
molecular mimicry such as HCV antigens or host autoan-
tigens may be involved in the activation of  B lymphocyte 
and thereby increase the production of  autoantibodies[160].

In addition to its immunopathogeneicity, HCV is 
reported to exert oncogenic potential that is mainly in-
volved in the development of  HCC[47,54,60,109,185], and in the 
lymphomagenesis and, possibly, in other malignancies 
including thyroid cancer[184-186]. However, the modulation 
of  TNF signaling of  the host cells by HCV NS5A pro-
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tein and the inhibition of  JAK-STAT pathway by HCV 
core following the treatment with either IL-6 or IFN-γ 
stimuli[126,186,187], suggesting an important role for HCV in 
the dysregulation of  the immune system.

The outcome and the severity of  CV among patients 
are largely variable, also the behavior of  the disease is 
mostly unpredictable and patient show usually a relatively 
benign clinical course. Thus, based on its complicated 
etiopathogenesis the treatment of  CV syndrome must 
deal with the total clinical picture of  the conflicting 
conditions including: HCV infection, autoimmune, and 
lymphoproliferative alterations[160]. Thus, according to the 
pathogenetic process leading to HCV infection and sub-
sequently to the appearance of  CV, the treatment of  the 
disease may be applied at three different levels by means 
of  etiologic, pathogenetic, and/ or symptomatic thera-
pies. 

DERMATOLOGIC MANIFESTATIONS OF 
HCV
Dermatologic manifestations of  HCV are classified, 
based on the disease to be proven, are either a suspected 
etiology or causation. The causal manifestation of  the 
dermatologic diseases results from direct infection of  
HCV in the skin, lymphocytes, dendric antigen-present-
ing cells, and blood vessels[188]. Whereas, the etiological 
manifestation of  dermatological diseases results indi-
rectly when the disruption of  another organ infected or 
affected by HCV is associated with skin manifestations, 
but not specific or typical of  skin responses in relation 
to HCV-infected or affected organ[189,190]. The causal 
manifestation is directly mediated by HCV infection as 
evidenced by the detection of  HCV-RNA particles in 
epidermal cells[191] as well as by the induction of  epi-
phenomena, that results mainly from the disruption of  
immune responses, in the skin of  HCV-infected pa-
tients[192,193]. Also, the leukocytoclastic vasculitis that is 
due to cryoglobulinemia is considered a good evidence 
for a specific skin manifestation that results in a great 
part from the production of  Ig, that is associated with 
rheumatoid characteristics causing an immune complex-
mediated vasculitis and thereby presents a good example 
for etiological skin manifestation[194,195]. Such skin re-
sponses result from a wide range of  causes, for example 
the release of  thyroid hormone in early HCV-linked au-
toimmune thyroiditis[196,197]. Also, chronic active hepatitis 
that mostly leads to fibrotic liver disease in patients with 
chronic hepatitis C infection can lead to the development 
of  cutaneous vascular changes such as palmar erythema 
or spider nevus[197,198]. Moreover, arteriovenous heman-
gioma, a benign acquired cutaneous vascular lesion, has 
been reported, in patients with chronic active hepatitis 
associated with HCV infection[199].

Another category of  dermatologic manifestations in 
HCV infections includes porphyria cutanea tarda (PCT), 
an example for HCV-related disease in which causation is 
either unexplained or undeniable[200].

HCV-ASSOCIATED LICHEN PLANUS
Oral lichen planus (LP) is a chronic inflammatory con-
dition that affects the oral mucous membranes with a 
variety of  clinical presentations, including reticular papu-
lar, plaque-like, atrophic, and ulcerative lesions[201]. Oral 
LP affects about 0.1% to 4% of  the population, it is a 
middle-aged disease that is more common among wom-
en[202]. The occurring of  LP is induced by a wide range of  
factors including both bacterial and viral infections that 
thought to trigger the regulation of  cell-mediated mecha-
nisms leading the formation of  oral LP lesions[203,204]. The 
association of  LP with chronic liver disease is report-
ed[205], and seems to be geographical dependent disease[206]. 
However, the risk of  chronic liver disorders in LP patients 
appears to be f  age, sex, alcohol consumption and even 
hepatitis B infection (HBV)-independent[207]. Nevertheless, 
most patients with LP and chronic liver disease are not 
HBV[208,209] or hepatitis G virus-infected[210-213]. Although 
LP is rarely associated with various hepatic conditions 
such as Wilson’s disease, haemochromatosis, primary scle-
rosing choloangitis, and α-1-antitrypsin deficiency[214,215], 
the association of  LP with primary biliary, and HCV in-
fection is reported in several studies[209,216-224]. Thus, HCV- 
associated hepatic disease may precede LP onset or may 
be diagnosed together with it[225].

The geographic heterogeneity in the prevalence of  
HCV infection is reported in patients with other HCV-
related extrahepatic conditions, such as serum autoanti-
bodies, PCT or lymphoma[225], suggesting a genetic dif-
ferences among the studied populations. Indeed, HCV-
related oral LP seems to be associated mainly with the 
HLA-DR6 allele (Nagao et al[226], 1996) and this could 
partially explain the particularity of  the geographic het-
erogeneity of  HCV infection- associated LP. However, 
the pathogenetic link between LP and HCV is not fully 
understood, since the molecular mimicry between the vi-
rus and host epitopes is unexpected, and the viral factors 
including the genotype or the viral load[226-228]. Although 
the histological features of  lesional tissue from HCV-
positive or HCV-negative patients showed no substantial 
differences[229,230], the presence of  HCV in oral LP lesion-
al tissue becomes object of  several investigations[222,230-233]. 
However, the presence of  replicative intermediate HCV-
RNA in LP specimens provide a strong evidence for the 
association between HCV infection and the development 
of  LP in HCV infected patients[222,230-233]. Although, the 
compartmentalization of  HCV in the oral mucosa, the 
infection with HCV does not seem to cause direct dam-
age to epithelial cells in oral LP[234].

HCV AND TYPE 2 DIABETES
The epidemiological link between HCV and type 2 
diabetes mellitus (T2DM) is common and widely re-
ported[235-238], and the infection with HCV increase the 
risk of  T2DM development[239]. Although the processes 
of  T2DM development in patients with HCV infection is 
not fully described, the molecular mechanisms, which are 
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involved in the regulation of  HCV-induced insulin resis-
tance is studied in details[240-243].

Chronic infection with HCV is mostly associated with 
insulin resistance that subsequently leads to the develop-
ment of  the metabolic disease T2DM. Thus, apart from 
the well-investigated complications of  diabetes, the appear-
ance of  insulin resistance in patients with chronic HCV 
infection leads mostly to the enhancement of  fibrosis, 
and cirrhosis, and in turn to the development of  HCC[244]. 
Besides the liver complications, patients with insulin resis-
tance show a poor response to antiviral therapy[245]. 

As known, insulin is an anabolic hormone that is se-
creted by pancreatic β-cells. This enzyme is essential for 
the maintenance of  glucose homeostasis[246,247]. 

The pathway of  insulin signaling pathway is involved 
mainly in the regulation of  different cellular processes 
including the activation of  insulin receptor (IR), IR sub-
strates (IRS), phosphatidylinositol-3-kinase, Akt and PKC 
isoforms ζ and λ[248,249]. The activation of  Akt promotes 
storage of  excess glucose as glycogen by phosphorylating 
glycogen synthase kinase and subsequently suppresses 
gluconeogenesis by inhibition of  phosphoenol-pyruvate 
carboxykinase and glucose-6 phosphatase. Whereas, the 
activation of  Akt is involved in the translocation of  the 
glucose transporter GLUT4 to the plasma membrane, 
and subsequently the enhancement of  glucose uptake[248].

The direct interference of  HCV with the insulin sig-
naling cascade is experimentally documented in several 
studies[250]. Also, in patients with chronic hepatitis C, 
direct interactions between HCV and insulin signaling 
components occur and may result in insulin resistance, 
which in turn, may progress to T2D in at-risk individu-
als. In the transgenic mouse model[149], the core-encoding 
region of  HCV is sufficient to induce IR. This effect was 
reversed by treatment with anti-TNF-antibodies, which 
suggested an increased level of  serine phosphorylation 
of  IRS-1 as induced by TNF-α. Thus, the core protein 
may induce IR indirectly via stimulation of  the secretion 
of  TNF-α. However, in vitro models suggest a direct 
interaction of  the core protein with the insulin signaling 
pathway. An increased proteasome degradation of  the 
IRS-1 and -2 via the activation of  the SOCS-3[251]. Also, a 
genotype-specific mechanisms, in which down-regulation 
of  peroxisome proliferator-activated receptor γ and up-
regulation of  SOCS-7 was observed in cells transfected 
with the core protein of  genotype 3[252]. A schematic view 
suggests HCV-mediated pathways leading to insulin re-
sistance during the course of  HCV infection is shown in 
Figure 8.

CONCLUSION
The replication cycle of  HCV is host-dependent processes 
that require the intracellular signal transduction pathways 
of  target cells to govern the nuclear factors, which are 
essential for the promotion of  both transcriptional and 
translational mechanisms of  the viral genome. Although 
the role of  extracellular processes in the modulation of  

etiopathogenesis of  HCV infection is not completely 
described, the role of  intracellular signal transduction 
processes in the modulation of  HCV-host interactions is 
established and seem to be the main actor in the regula-
tion of  HCV-associated both liver diseases and extrahe-
patic manifestations. The alteration of  the physiological 
status of  the intracellular signal transduction processes in 
response to their interaction with HCV viral proteins is 
thought to be responsible for the cause of  the severe com-
plications of  chronic HCV infection including liver disease 
(e.g., hepatitis, fibrosis, cirrhosis and HCC) and extrahe-
patic manifestations (e.g., dermatologic, rheumatologic, 
neurologic, and nephrologic completions; and diabetes; 
arterial hypertension; autoantibodies and cryglobulins).

Thus, the knowledge obtained from the functional 
analysis of  the intracellular signal transduction processes 
using an HCV artificial cellular systems may help to iden-
tify a new therapeutic target for the treatment of  chronic 
HCV infection and diseases. 

Alterations in cellular proteins and their regulation 
during HCV infection are clearly involved in the develop-
ment and progression of  HCV-associated both hepatic 
and extrahepatic diseases. 

Both host lipid metabolic and very low-density li-
poproteins (VLDL) pathways play a central role in the 
regulation of  different viral processes including replica-
tion, assembly, secretion and entry. Thus, the association 
of  HCV with VLDL is thought to be a virus strategy 
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to evade host immune defense by masking the putative 
antigenic moieties from immune recognition. The under-
standing of  the mechanistic details underlying the inter-
actions between viral and host lipid metabolic pathways 
will help to identify potential host cell factors that may 
be required for HCV and the infectious processes and 
thereby gives the opportunity to design a potential thera-
peutic approach in order to eradicate HCV infection, 
and to decrease lipid metabolism-associated extrahepatic 
manifestation during the course of  HCV.

The infection with HCV is more likely to favor IR 
in response to the accumulation of  the viral proteins 
including core, NS3 and NS5A. However, the induction 
of  IR by HCV infection is not merely because of  glucose 
imbalances rather it involves upregulation of  the gluco-
neogenic and lipogenic genes that promote glucose intol-
erance and progresses towards IR, a step towards HCC. 

As recognized, the development of  HCC is mostly 
associated with activation of  different signaling pathways 
including Ras/Raf/MAP kinase, cyclin/cyclin-dependent 
kinase and wnt-1 pathways. The Constitutive expression 
of  HCV viral proteins including core and NS3 results in 
a high basal activity of  MAP kinase pathway and thereby 
potentiates hepatocyte transformation as well as the regu-
lation of  HGF, senescence and differentiation. 

Also, HCV core protein can modulate the expression 
of  cyclin-dependent inhibitor p21, which is considered 
the major target of  p53 and triggers mainly the activities 
of  cyclin/cyclin-dependent kinase complexes, which is 
implicated in cell-cycle control and tumor formation.

Moreover, the transcriptional upregulation of  both 
Wnt-1 and its downstream target WISP-2 by HCV core 
protein suggested a possible role for Wnt-1 pathways in 
the modulation of  HCV core and NS5A proteins in the 
development of  HCC.

The functional analysis of  JAK signal transduction 
pathway in the context of  HCV-host interactions opened 
a new research option for a better understanding the 
mechanisms of  HCV resistance to IFN-α therapy. JAK 
pathway is known to be the principal signaling pathway 
for IFN-α. Therefore, the inhibition of  this pathway by 
viral proteins or by the reduction IFN-α receptors in 
response to the accumulation of  both HCV structural (C 
and E2) and non-structural protein (NS5A) proteins may 
contribute to the resistant mechanisms of  HCV to IFN 
therapy. Besides the negative effect on the virological 
response to IFN-α treatment, the reduction of  IFN-α 
receptors plays a central role in the suppression of  IFN-
α-mediated activation of  STAT1-3 and subsequently aug-
ments viral replication, inflammation and fibrosis during 
the course of  HCV infection. 

Therefore, the better understanding of  the molecu-
lar mechanisms, which are involved in the regulation of  
virus-host cell interactions may help to develop a new 
therapeutic strategies. These therapeutic strategies may 
help to decrease or even to inhibit HCV-associated both 
hepatic and extrahepatic diseases, and make IFN-α thera-
py more effective in HCV-infected patients. 
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