Supplementary Material

Figure 1		
S1=	-0.065	_
0.614×log.sigma.3.0.mm.3D_glszm_L	LargeAreaLowGrayLevelEmphasis	+
0.463×log.sigma.5.0.mm.3D_glrlm_H	lighGrayLevelRunEmphasis	+
0.486×wavelet.LHH_firstorder_Varia	ince	+
0.866×wavelet.LHL_glrlm_LongRun	Emphasis	_
0.988×wavelet.LLL_firstorder_RootM	leanSquared	

Figure 2 ROC curves of individual features in different models to identify squamous cell carcinoma of the esophagogastric junction (SCCEG) and adenocarcinoma of the esophagogastric junction (AEG) of the esophagogastric junction. 1A: ROC curves of individual features of 2D-arterial model identifying SCCEG and AEG in the training group; 1B: ROC curves of individual features of 2D-arterial model identifying SCCEG and AEG in the test group; 1C: ROC curves of individual features of 2D-venous model identifying SCCEG and AEG in the training group; 1D: ROC curves of individual features of 2D-venous model identifying SCCEG and AEG in the test group; 1E: ROC curves of individual features of 3D-arterial model identifying SCCEG and AEG in the training group; 1F: ROC curves of individual features of 3D-arterial model identifying SCCEG and AEG in the test group; 1G: ROC curves of individual features of 3D-venous model identifying SCCEG and AEG in the training group; 1H: ROC curves of individual features of 3D-venous model identifying SCCEG and AEG in the test group.

Figure 3

S2=	0.018 + 0.961×lbp.3D.k_gldm_LargeDependenceHighGrayLevelEmph	lasis
+	0.542×log.sigma.3.0.mm.3D_ngtdm_Strength	+
0.47	75×log.sigma.5.0.mm.3D_firstorder_Median	+
0.41	3×log.sigma.5.0.mm.3D_glszm_SmallAreaHighGrayLevelEmphasis	_
0.86	59×wavelet.LLL_firstorder_Median	

Figure 4

S3=	0.266	_	0.852×log.sigma.1.0.mm.3D_ngtdm_Busyness	+
0.708×1a	og.sigma.3	3.0.mm	a.3D_gldm_DependenceVariance	+
0.360×1a	og.sigma.3	3.0.mm	a.3D_ngtdm_Busyness	_
0.830×o	riginal_fir	storde	r_Median	_
1.160×w	vavelet.HI	LH_glr	lm_LongRunHighGrayLevelEmphasis	_
1.122×w	vavelet.HI	LH_ng	tdm_Busyness	+
0.656×w	vavelet.HI	LL_gld	m_DependenceVariance	+
0.715×w	vavelet.LF	IH_firs	storder_Skewness	+
2.398×w	vavelet.LL	H_gls:	zm_LargeAreaEmphasis	+
0.777×w	vavelet.LL	L_firs	torder_InterquartileRange	

Figure 5

S4=	0.047	+	0.760×log.sigma.1.0.mm.3D_firstorder_90Percentile	_
1.030×	original_	_firsto	order_Median	+
0.395×	wavelet.	HLH	_glcm_ClusterProminence	+

1.333×wavelet.HLL_gldm_DependenceVariance	+
0.746×wavelet.LHH_ngtdm_Busyness	+
0.381×wavelet.LLH_firstorder_Kurtosis	+
0.409×wavelet.LLH_gldm_DependenceVariance	

Figure 6

 $S5=Rad-score^{AP_VP_2D} = -0.012 + 0.652 \times Rad-score^{AP_2D} + 0.786 \times Rad-score^{VP_2D}$

Figure 7

 $S6= Rad-score^{AP_VP_3D} = 0.009 + 0.671 \times Rad-score^{AP_3D} + 0.621 \times Rad-score^{VP_3D}$

Variable	Intra-obs	Р	Inter-obs	Р
	erver	value	erver	value
	ICCs		ICCs	
log.sigma.3.0.mm.3D_glszm_LargeAreaLow	0.920	7.25E-1	0.780	6.97E-0
GrayLevelEmphasis		4		8
log.sigma.5.0.mm.3D_glrlm_HighGrayLevel	0.894	3.04E-1	0.835	6.65E-0
RunEmphasis		2		9
wavelet.LHH_firstorder_Variance	0.876	3.17E-1	0.770	2.39E-0
		1		7
wavelet.LHL_glrlm_LongRunEmphasis	0.883	3.35E-1	0.853	3.14E-1
		1		0
wavelet.LLL_firstorder_RootMeanSquared	0.977	1.21E-0	0.7(2	4.94E-0
	0.800	8	0.763	7

Table 1 The results of intra- and inter-observer ICCs for all the individual radiomics feature involved in the 2D-arterial model

ICCs: Intra-/inter-class correlation coefficient..

		Odds	Р	
Variable	В	ratio	valu	
		(95%CI)	e	
	0.00	0.937	0.71	
Intercept	-0.06	(0.658-1.32	0.71	
		8)	5	
las signes 2.0 mm 2D slorm	0 (1	0.541	0.04	
log.sigma.3.0.mm.3D_giszm_	-0.61	(0.284-0.89	0.04	
LargeAreaLowGrayLevelEmphasis		3)	U	
1		1.589	0.04	
1 ·	0.463	(1.050-2.57	0.04	
mphasis		7)	1	
		1.626	0.01	
wavelet.LHH_firstorder_Variance	0.486	(1.100-2.47	0.01	
		4)	6	
		2.377	<	
wavelet.LHL_glrlm_LongRunEmphasis	0.866	(1.550-3.78	0.00	
		6)	1	
	0.00	0.372	<	
wavelet.LLL_firstorder_RootMeanSquared	-0.98	(0.232-0.56	0.00	
	δ	6)	1	

Table 2 The results of the multivariate logistic regression analysis forconstructing the 2D-arterial model

Table 3 Statistical differences analysis of radiomics features in 2D-arterial model and Rad-score^{AP_2D} between SCCEG groups and AEG in the training and test groups

Training group					
Variable	Samp	AEG	SCCEG	Statist	Р
	le			ics	value
log.sigma.3.0.mm.3D_glszm_La		-0.12 (-0.40	, -0.46 (-0.49,	5.179	-
rgeAreaLowGrayLevelEmphasi	182	0.34)	-0.25)		0.001
S					0.001
log.sigma.5.0.mm.3D_glrlm_Hi	197	-0.60 (-0.69	, 0.02 (-0.50,	-5.537	<
ghGrayLevelRunEmphasis	102	-0.20)	0.57)		0.001
wavelet.LHH_firstorder_Varia	197	-0.16 (-0.58	, -0.58 (-0.60,	2.855	0.004
nce	102	0.34)	0.04)		
wavelet.LHL_glrlm_LongRunE	197	-0.39 (-1.17	, 0.52 (-0.43,	-4.099	<
mphasis	102	0.55)	1.02)		0.001
wavelet.LLL_firstorder_RootM	100	0.19 (-0.55	, -0.31 (-0.89,	3.921	<
eanSquared	162	0.66)	0.18)		0.001
Pad scoreAP 2D	100	-0.46 (-1.40	, 0.78 (-0.02,	- 7.171	<
Kau-scole ^m	102	-0.01)	1.39)		0.001
Test group					
Radiomics features	Samp	AEG	SCCEG	Statist	Р
	le			ics	value
log.sigma.3.0.mm.3D_glszm_La	78	-0.25 (-0.44	, -0.47 (-0.49,	2.983	0.003
rgeAreaLowGrayLevelEmphasi		0.10)	-0.28)		
S					
log.sigma.5.0.mm.3D_glrlm_Hi	78	-0.60 (-0.67	, 0.05 (-0.48,	-3.523	<
ghGrayLevelRunEmphasis		-0.19)	0.48)		0.001
wavelet.LHH_firstorder_Varia	78	-0.25 (-0.60	, -0.60 (-0.60,	2.343	0.019
nce		0.04)	-0.53)		

wavelet.LHL_glrlm_LongRunE	78	0.03 (-1.11,	0.34 (-0.38,	-2.363	0.018
mphasis		0.67)	0.89)		
wavelet.LLL_firstorder_RootM	78	0.26±0.74	-0.40±1.08	3.156	0.002
eanSquared					
Ded accurate 2D	78	-0.67±1.18	0.67±1.44	-4.492	<
Kau-score ^m _20					0.001

SCCEG: squamous cell carcinoma of the esophagogastric junction; AEG: adenocarcinoma of the esophagogastric junction; The variables without normal distribution were depicted by median (interquartile range, IQR); The variables with normal distribution were depicted by mean \pm SD; Statistically significant level: *P* < 0.05

Variable	intra-observer	P value	inter-observer	<i>P</i> value
	ICCs		ICCs	
lbp.3D.k_gldm_LargeDependenceHighGrayLevelEmphasis	0.860	1.47E-10	0.765	4.09E-05
log.sigma.3.0.mm.3D_ngtdm_Strength	0.806	3.02E-08	0.751	4.65E-07
log.sigma.5.0.mm.3D_firstorder_Median	0.877	2.93E-11	0.780	7.18E-08
log.sigma.5.0.mm.3D_glszm_SmallArea	0 706		0.017	
HighGrayLevelEmphasis	0.796	6.03E-08	0.017	1.86E-07
wavelet.LLL_firstorder_Median	0.932	9.83E-15	0.860	2.52E-10

Table 4 The results of intra- and inter-observer ICCs for all the individual radiomics feature involved in the 2D-venous model

ICCs: Intra-/inter-class correlation coefficient.

Variable	В	Odds	ratio	P value	
		(95%CI)			
Tulanaant	0.010	1.019		0.022	
Intercept	0.018	(0.706-1.473)		0.922	
lbp.3D.k_gldm_LargeDepen		0 (12			
denceHighGrayLevelEmph	0.961	2.613		< 0.001	
asis		(1.784-3.980)			
log.sigma.3.0.mm.3D_ngtd	0 5 4 2	1.719		0.057	
m_Strength	0.542	(1.010-3.113)		0.057	
log.sigma.5.0.mm.3D_firstor	0.475	1.608		0.044	
der_Median	0.475	(1.029-2.611)		0.044	
log.sigma.5.0.mm.3D_glszm		1 511			
_SmallAreaHighGrayLevel	0.413	1.011		0.153	
Emphasis		(0.881-2.766)			
wavelet.LLL_firstorder_Me	0.970	0.419		< 0.001	
dian	-0.869	(0.260-0.643)		< 0.001	

Table 5 The results of the multivariate logistic regression analysis for constructing the2D-venous model

Training group							
Variable	Samp	AEG		SCCE	EG	Statist	Р
	le					ics	value
lbp.3D.k_gldm_LargeDependen	182	-0.44	(-1.02,	0.45	(-0.42,	-5.28	<
ceHighGrayLevelEmphasis		-0.01)		1.11)			0.001
log.sigma.3.0.mm.3D_ngtdm_Str	182	-0.60	(-0.67,	-0.14	(-0.61,	-3.736	<
ength		-0.30)		0.74)			0.001
log.sigma.5.0.mm.3D_firstorder_	182	0.00	(-0.32,	0.45	(-0.17,	-4.456	<
Median		0.30)		0.80)			0.001
log.sigma.5.0.mm.3D_glszm_Sm	182	-0.44	(-0.59,	-0.21	(-0.58,	-2.469	0.014
allAreaHighGrayLevelEmphasis		-0.24)		0.49)			
	182	0.35	(-0.33,	-0.39	(-0.86,	4.774	<
wavelet.LLL_firstorder_Wedian		0.97)		0.19)			0.001
D - 1 VP 2D	182	-0.96±1.44		1.00±1.36		-9.461	<
Kad-score ^{v1_2D}							0.001
Test group							
Variabla	Samp	AEG		SCCE	EG	Statist	Р
	le					ics	value
lbp.3D.k_gldm_LargeDependen	78	-0.36±0.	71	0.44±0	0.94	-4.25	<
ceHighGrayLevelEmphasis							0.001
log.sigma.3.0.mm.3D_ngtdm_Str	78	-0.65	(-0.68,	-0.33	(-0.55,	-3.822	<
ength		-0.34)		0.62)			0.001
log.sigma.5.0.mm.3D_firstorder_	78	0.14	(-0.25,	0.29	(0.01,	-1.804	0.071
Median		0.30)		0.66)			
log.sigma.5.0.mm.3D_glszm_Sm	78	-0.51	(-0.61,	-0.25	(-0.46,	-3.293	0.001
allAreaHighGrayLevelEmphasis		-0.29)		0.11)			
wavelet.LLL_firstorder_Median	78	0.22±0.7	75	-0.41±	0.82	3.531	0.001

Table 6 Statistical differences analysis of radiomics features in 2D-venous model andRad-scoreVP_2Dbetween SCCEG groups and AEG in the training and test groups

Rad-scoreVP 2D	78	-0.77±1.26	0.91±1.20	-6.039	<
					0.001

SCCEG: Squamous cell carcinoma of the esophagogastric junction; AEG: Adenocarcinoma of the esophagogastric junction; The variables without normal distribution were depicted by median (interquartile range, IQR); The variables with normal distribution were depicted by mean \pm SD; Statistically significant level: *P* < 0.05

Variable	intra-observ	Р	inter-observ	Р
	er ICCs	value	er ICCs	value
log.sigma.1.0.mm.3D_ngtdm_Busyness	0 792	4.75E-0	0.754	1.32E-0
	0.763	6	0.754	7
log.sigma.3.0.mm.3D_gldm_DependenceVariance	0.055	0.00231	0.752	2.78E-1
	0.955	6	0.752	7
log.sigma.3.0.mm.3D_ngtdm_Busyness	0.079	1.31E-0	0.759	3.13E-1
	0.966	6	0.758	9
original_firstorder_Median	0.080	6.91E-1	0.022	9.36E-2
	0.969	4	0.932	6
wavelet.HLH_glrlm_LongRunHighGrayLevelEm	0.004	3.94E-0	0.800	2.41E-1
phasis	0.904	5	0.099	2
wavelet.HLH_ngtdm_Busyness	0.825	3.77E-1	0.016	3.68E-0
	0.825	3	0.910	9
wavelet.HLL_gldm_DependenceVariance	0.076	0.00762	0.860	5.65E-1
	0.976	4	0.009	9
wavelet.LHH_firstorder_Skewness	0.028	1.04E - 0	0 772	1.26E-1
	0.938	7	0.775	5
wavelet.LLH_glszm_LargeAreaEmphasis	0.051	3.24E-2	0.072	5.37E-1
	0.951	0	0.975	7
wavelet.LLL_firstorder_InterquartileRange	0 931	0.03559	0 752	6.70E-1
	0.201	6	0.752	5

Table 7 The results of intra- and inter-observer ICCs for all the individual radiomics feature involved in the 3D-arterial model

ICCs: intra-/inter-class correlation coefficient (ICCs)

Variable	В	Odd ratio (95%CI)	<i>P</i> value
Intercept	0.266	1.305 (0.829-2.115)	0.262
log.sigma.1.0.mm.3D_ngtdm_Busyness	-0.852	0.427 (0.170-0.876)	0.041
log.sigma.3.0.mm.3D_gldm_DependenceVariance	0.708	2.030 (1.180-3.624)	0.013
log.sigma.3.0.mm.3D_ngtdm_Busyness	0.360	1.433 (0.872-2.316)	0.144
original_firstorder_Median	-0.830	0.436 (0.254-0.700)	0.001
wavelet.HLH_glrlm_LongRunHighGrayLevelEmphasis	-1.160	0.313 (0.147-0.610)	0.001
wavelet.HLH_ngtdm_Busyness	-1.122	0.326 (0.132-0.754)	0.010
wavelet.HLL_gldm_DependenceVariance	0.656	1.927 (1.196-3.260)	0.010
wavelet.LHH_firstorder_Skewness	0.715	2.045 (1.013-4.569)	0.061
wavelet.LLH_glszm_LargeAreaEmphasis	2 200	11.000	0.002
	2.390	(2.503-61.744)	0.003
wavelet.LLL_firstorder_InterquartileRange	0.777	2.174 (1.346-3.690)	0.002

Table 8 The results of the multivariate logistic regression analysis for constructing the3D-arterial model

Training group							
Variable	Samp	AEG		SCCE	ĒG	Statisti	Р
	le					CS	value
log.sigma.1.0.mm.3D_ngtdm_Busyness	182	-0.14	(-0.45,	-0.48	(-0.64,	4.346	<
		0.44)		-0.14)			0.001
log.sigma.3.0.mm.3D_gldm_Dependen	182	-0.33	(-0.85,	0.14	(-0.49,	-3.733	<
ceVariance		0.20)		0.89)			0.001
log.sigma.3.0.mm.3D_ngtdm_Busyness	182	-0.19	(-0.59,	-0.57	(-0.71,	3.564	<
		0.69)		-0.16)			0.001
original_firstorder_Median	182	0.08	(-0.45,	-0.26	(-0.81,	2.990	0.003
		0.83)		0.42)			
wavelet.HLH_glrlm_LongRunHighGr	182	-0.27	(-0.69,	-0.68	(-0.71,	3.578	<
ayLevelEmphasis		1.03)		0.16)			0.001
wavelet.HLH_ngtdm_Busyness	182	-0.49	(-0.52,	-0.32	(-0.50,	-2.700	0.007
		-0.27)		0.19)			
wavelet.HLL_gldm_DependenceVaria	182	-0.39±	0.82	0.39±2	1.01	-5.753	<
nce							0.001
wavelet.LHH_firstorder_Skewness	182	-0.46	(-0.52,	-0.26	(-0.49,	-4.220	<
		-0.30)		0.78)			0.001
wavelet.LLH_glszm_LargeAreaEmpha	182	-0.34	(-0.36,	-0.24	(-0.36,	-2.146	0.032
sis		-0.28)		0.17)			
wavelet.LLL_firstorder_InterquartileR	182	-0.32	(-1.06,	0.05	(-0.41,	-3.491	<
ange		0.14)		0.74)			0.001
Rad-score ^{AP_3D}	182	-1.17	(-2.47,	1.30	(0.24,	-8.764	<
		-0.53)		3.74)			0.001
Test group							
Variable	Samp	AEG		SCCE	ĒG	Statisti	P

Table 9 Statistical differences analysis of radiomics features in 3D-arterial model andRad-scoreAP_3D between SCCEG groups and AEG in the training and test groups

	le					CS	value
log.sigma.1.0.mm.3D_ngtdm_Busyness	78	-0.12	(-0.44,	-0.51	(-0.69,	2.104	0.035
		0.38)		0.14)			
log.sigma.3.0.mm.3D_gldm_Dependen	78	-0.30±	±0.96	0.04±	1.42	-1.264	0.211
ceVariance							
log.sigma.3.0.mm.3D_ngtdm_Busyness	78	-0.07	(-0.47,	-0.53	(-0.80,	3.253	0.001
		0.86)		0.05)			
original_firstorder_Median	78	0.22	(-0.04,	-0.33	(-1.25,	3.143	0.002
		0.63)		0.33)			
wavelet.HLH_glrlm_LongRunHighGr	78	-0.24	(-0.70,	-0.70	(-0.72,	3.043	0.002
ayLevelEmphasis		0.55)		-0.24)			
wavelet.HLH_ngtdm_Busyness	78	-0.46	(-0.52,	-0.20	(-0.46,	-2.753	0.006
		0.13)		0.49)			
wavelet.HLL_gldm_DependenceVaria	78	-0.21±	£0.67	0.31±	0.86	-2.989	0.004
nce							
wavelet.LHH_firstorder_Skewness	78	-0.40	(-0.50,	-0.05	(-0.39,	-3.183	0.001
		-0.23)		0.52)			
wavelet.LLH_glszm_LargeAreaEmpha	78	-0.33	(-0.35,	-0.24	(-0.32,	-2.433	0.015
sis		-0.09)		0.70)			
wavelet.LLL_firstorder_InterquartileR	78	-0.30	(-0.88,	-0.16	(-0.78,	-1.254	0.210
ange		-0.03)		0.94)			
Rad-scoreAP_3D	78	-1.12	(-2.56,	1.22	(-0.73,	-4.932	<
		-0.20)		2.84)			0.001

SCCEG: Squamous cell carcinoma of the esophagogastric junction; AEG: Adenocarcinoma of the esophagogastric junction; The variables without normal distribution were depicted by median (interquartile range, IQR); The variables with normal distribution were depicted by mean \pm SD; Statistically significant level: *P* < 0.05.

Variable	Intra-obs	Р	Inter-obs	P value
	erver	value	erver	
	ICCs		ICCs	
log.sigma.1.0.mm.3D_firstorde	0.061	0.0001	0.014	
r_90Percentile	0.901	2	0.914	1.90E-09
original firstordan Madian	0.086	2.66E-0	0 882	
onginal_mstorder_wedian	0.900	8	0.003	9.51E-25
wavelet.HLH_glcm_ClusterPr	0.010	8.44E-1	0.006	
ominence	0.910	3	0.900	3.75E-13
wavelet.HLL_gldm_Dependen	0.060	4.36E-0	0.024	
ceVariance	0.909	6	0.924	4.02E-20
wavelet.LHH_ngtdm_Busynes	0.091	6.13E-0	0.820	
S	0.901	9	0.829	4.07E-22
wavelet.LLH_firstorder_Kurto	0.840	8.22E-1	0.875	
sis	0.049	1	0.875	1.49E-08
wavelet.LLH_gldm_Dependen	0.070	2.09E-1	0.046	
ceVariance	0.970	5	0.940	4.47E-20

Table 10 The results of intra- and inter-observer ICCs for all the individual radiomics feature involved in the 3D-venous model

ICCs: Intra-/inter-class correlation coefficient.

Variable	В	Odds ratio (95%CI)	<i>P</i> value
Intercept	0.047	1.048 (0.709-1.558)	0.815
log.sigma.1.0.mm.3D_firstorder_90Percentile	0.760	2.138 (1.255-3.887)	0.008
original_firstorder_Median	-1.030	0.357 (0.212-0.565)	< 0.001
wavelet.HLH_glcm_ClusterProminence	0.395	1.484 (0.952-2.892)	0.140
wavelet.HLL_gldm_DependenceVariance	1.333	3.794 (2.212-7.046)	< 0.001
wavelet.LHH_ngtdm_Busyness	0.746	2.108 (1.233-4.219)	0.016
wavelet.LLH_firstorder_Kurtosis	0.381	1.464 (0.901-2.48)	0.136
wavelet.LLH_gldm_DependenceVariance	0.409	1.506 (0.875-2.625)	0.141

Table 11 The results of the multivariate logistic regression analysis for constructing the3D-venous model

Variable	Samp	AEG		SCCI	EG	Statisti	Р
	le					cs	value
log.sigma.1.0.mm.3D_firstorde	182	0.12	(-0.54,	-0.48	(-0.94,	2.962	0.003
r_90Percentile		0.72)		0.49)			
original_firstorder_Median	182	0.24	(-0.39,	-0.34	(-0.91,	4.836	<
		0.94)		0.22)			0.001
wavelet.HLH_glcm_ClusterPr	182	-0.24	(-0.28,	-0.29	(-0.29,	3.218	0.001
ominence		-0.09)		-0.18)			
wavelet.HLL_gldm_Dependen	182	-0.46±0.75		0.46±1.01		-6.901	<
ceVariance							0.001
wavelet.LHH_ngtdm_Busynes	182	-0.50	(-0.52,	-0.22	(-0.51,	-4.124	<
S		-0.43)		0.60)			0.001
wavelet.LLH_firstorder_Kurto	182	-0.72	(-0.83,	0.05	(-0.54,	-5.567	<
sis		-0.29)		1.10)			0.001
wavelet.LLH_gldm_Dependen	182	-0.39	(-0.99,	0.55	(-0.16,	-4.985	<
ceVariance		0.31)		0.90)			0.001
Rad-score ^{VP_3D}	182	-1.29±1	1.54	1.39±	1.70	-11.159	<
							0.001

Table 12 Statistical differences analysis of radiomics features in 3D-venous model andRad-scoreVP_3D between SCCEG groups and AEG in the training and test groups

Test group							
Variable	Samp	AEG	G SCCEG		ĒG	Statisti	Р
	le					cs	value
log.sigma.1.0.mm.3D_firstorde	78	0.29	(-0.63,	-0.52	(-1.10,	2.044	0.041
r_90Percentile		0.69)		0.20)			
original_firstorder_Median	78	-0.02	(-0.26,	-0.46	(-1.30,	2.643	0.008
		0.43)		0.30)			
wavelet.HLH_glcm_ClusterPr	78	-0.25	(-0.29,	-0.29	(-0.29,	2.873	0.004
ominence		-0.09)		-0.27)			

wavelet.HLL_gldm_Dependen	78	-0.28	(-0.75,	0.62	(-0.16,	-4.122	<
ceVariance		0.15)		1.00)			0.001
wavelet.LHH_ngtdm_Busynes	78	-0.46	(-0.51,	-0.06	(-0.42,	-3.233	0.001
S		-0.33)		1.12)			
wavelet.LLH_firstorder_Kurto	78	-0.49	(-0.76,	0.04	(-0.34,	-3.603	<
sis		-0.09)		0.86)			0.001
wavelet.LLH_gldm_Dependen	78	-0.31±0).75	0.50±0	0.66	-5.072	<
wavelet.LLH_gldm_Dependen ceVariance	78	-0.31±0).75	0.50±0).66	-5.072	< 0.001
wavelet.LLH_gldm_Dependen ceVariance Rad-score ^{VP_3D}	78 78	-0.31±0).75 1.36	0.50±0	0.66 1.80	-5.072 -7.403	< 0.001 <

SCCEG: Squamous cell carcinoma of the esophagogastric junction; AEG: Adenocarcinoma of the esophagogastric junction; The variables without normal distribution were depicted by median (interquartile range, IQR); The variables with normal distribution were depicted by mean \pm SD; Statistically significant level: *P* < 0.05.

	Training gro	oup	Test group	
Models	Ζ	P value	Ζ	P value
2D-arterial model.vs2D-venous model	-1.105	0.269	-1.253	0.210
2D-arterial model.vs3D-venous model	-2.027	0.043	-1.199	0.231
2D-arterial model.vs3D-venous model	-1.814	0.070	-1.981	0.048
2D-arterial model.vs2D-combined model	-2.514	0.012	-2.332	0.020
2D-arterial model.vs3D-combined model	-2.809	0.005	-2.495	0.013
2D-venous model.vs3D-arterial model	-0.890	0.374	0.117	0.907
2D-venous model.vs3D-venous model	-1.036	0.300	-0.959	0.337
2D-venous model.vs2D-combined model	-1.382	0.167	-0.517	0.605
2D-venous model.vs3D-combined model	-2.050	0.040	-1.503	0.133
3D-arterial model.vs3D-venous model	-0.041	0.967	-1.150	0.250
3D-arterial model.vs2D-combined model	0.255	0.799	-0.402	0.688
3D-arterial model.vs3D-combined model	-1.770	0.076	-2.459	0.014
3D-venous model.vs2D-combined model	0.296	0.767	0.714	0.475
3D-venous model.vs3D-combined model	-2.019	0.043	-1.060	0.288
2D-combined model.vs3D-combined model	-1.397	0.163	-1.277	0.202

Table 13 The results of Delong test for AUC values of paired models

Statistically significant level: P < 0.05.

	Training g	group			Test group)		
Models	NRI (95% CI)	P value	IDI (95% CI)	P valu e	NRI (95% CI)	P valu e	IDI (95% CI)	P valu e
2D-arterial	0.747		0 1 2 1		1.128		0.126	
model vs		0.000	0.131	0.000		0.00		<
2D-combined	(0.478-1.0	0.000	(0.092.0.170)	0.000	(0.762-1.4	0	(0.063-0.19	0.001
model	17)		(0.082-0.179)		95)		0)	
2D-venous	0.637		0.050		0.462		0.008	
model vs		<	0.050	0.004		0.03		0 770
2D-combined	(0.363-0.9	0.001	(0.016.0.094)	0.004	(0.032-0.8	5	(-0.050-0.0	0.779
model	12)		(0.016-0.084)		91)		67)	
2D-arterial	0.571		0.1(0		0.513		0.110	
model vs		<	0.160	<		0.01		0.059
3D-arterial	(0.297-0.8	0.001	(0,022,0,227)	0.001	(0.084-0.9	9	(-0.004-0.2	0.056
model	46)		(0.082-0.237)		42)		24)	
2D-venous	0.308		0.070		0.513		0.122	
model vs		0.024	0.079	0.022		0.01		0.045
3D-venous	(0.023-0.5	0.034	(0.00(.0.151)	0.055	(0.088-0.9	8	(0.003-0.24	0.045
model	93)		(0.006-0.151)		38)		1)	
3D-arterial	0.550		0.072		0.974		0.168	
model vs		<	0.072	<		0.00		0.000
3D-combined	(0.271-0.8	0.001	(0.025.0.100)	0.001	(0.587-1.3	0	(0.107-0.22	0.000
model	28)		(0.035-0.109)		61)		9)	
3D-venous	0.791		0.072		0.359	0.10	0.039	
model vs		0.000		N 0.001		0.10		0.314
3D-combined	(0.525-1.0		(0.034-0.111)	0.001	(-0.077-0.	/	(-0.036-0.1	

Table 14 Continuous NRI and IDI for the different radiomics models to differentiate SCCEG and AEG

model	58)				795)		13)	
2D-combined	0.506		0 101		0.718		0.152	
model vs		<	0.101	0.007		0.00		0.007
3D-combined	(0.226-0.7	0.001	(0,020,0,172)	0.006	(0.305-1.1	1	(0.041-0.26	0.007
model	86)		(0.030-0.172)		31)		3)	

Continuous NRI: Continuous net reclassification improvement; NRI: Integrated discrimination improvement; Statistically significant level: P < 0.05.

	Training group		Test group		
Models	Statistics	P value	Statistics	P value	
2D-arterial model	9.656	0.290	7.952	0.438	
2D-venous model	13.562	0.094	12.060	0.149	
3D-arterial model	5.914	0.657	11.324	0.184	
3D-venous model	6.466	0.595	9.968	0.267	
2D-combined model	12.781	0.120	11.630	0.168	
3D-combined model	4.099	0.848	6.965	0.540	

Table 15 The results of the Hosmer-Lemeshow test for different radiomics models in the training and test groups

The model has superior goodness of fit: P > 0.05.