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Abstract
BACKGROUND 
Gastrointestinal stromal tumors (GISTs) are typical gastrointestinal tract neo-
plasms. Imatinib is the first-line therapy for GIST patients. Drug resistance limits 
the long-term effectiveness of imatinib. The regulatory effect of insulin-like 
growth factor 2 (IGF2) has been confirmed in various cancers and is related to 
resistance to chemotherapy and a worse prognosis.

AIM 
To further investigate the mechanism of IGF2 specific to GISTs.

METHODS 
IGF2 was screened and analyzed using Gene Expression Omnibus (GEO: 
GSE225819) data. After IGF2 knockdown or overexpression by transfection, the 
phenotypes (proliferation, migration, invasion, apoptosis) of GIST cells were 
characterized by cell counting kit 8, Transwell, and flow cytometry assays. We 
used western blotting to evaluate pathway-associated and epithelial-mesen-
chymal transition (EMT)-associated proteins. We injected transfected cells into 
nude mice to establish a tumor xenograft model and observed the occurrence and 
metastasis of GIST.

RESULTS 
Data from the GEO indicated that IGF2 expression is high in GISTs, associated 
with liver metastasis, and closely related to drug resistance. GIST cells with high 
expression of IGF2 had increased proliferation and migration, invasiveness and 
EMT. Knockdown of IGF2 significantly inhibited those activities. In addition, OE-
IGF2 promoted GIST metastasis in vivo in nude mice. IGF2 activated IGF1R 
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signaling in GIST cells, and IGF2/IGF1R-mediated glycolysis was required for GIST with liver metastasis. GIST 
cells with IGF2 knockdown were sensitive to imatinib treatment when IGF2 overexpression significantly raised 
imatinib resistance. Moreover, 2-deoxy-D-glucose (a glycolysis inhibitor) treatment reversed IGF2 overexpression-
mediated imatinib resistance in GISTs.

CONCLUSION 
IGF2 targeting of IGF1R signaling inhibited metastasis and decreased imatinib resistance by driving glycolysis in 
GISTs.

Key Words: Insulin-like growth factor 2; Gastrointestinal stromal tumors; IGF1R; Glycolysis; Imatinib resistance

©The Author(s) 2024. Published by Baishideng Publishing Group Inc. All rights reserved.

Core Tip: Our study found that insulin-like growth factor 2 (IGF2) regulated metastasis and imatinib resistance in 
gastrointestinal stromal tumors (GISTs). IGF2 interacted with IGF1R to regulate glycolysis. Our results confirm that IGF2 
targeting of IGF1R signaling inhibited metastasis and improved imatinib chemosensitivity by driving glycolysis in GISTs 
and indicated that IGF2 might be used to reverse imatinib resistance in GIST patients.

Citation: Li DG, Jiang JP, Chen FY, Wu W, Fu J, Wang GH, Li YB. Insulin-like growth factor 2 targets IGF1R signaling transduction 
to facilitate metastasis and imatinib resistance in gastrointestinal stromal tumors. World J Gastrointest Oncol 2024; 16(8): 3585-3599
URL: https://www.wjgnet.com/1948-5204/full/v16/i8/3585.htm
DOI: https://dx.doi.org/10.4251/wjgo.v16.i8.3585

INTRODUCTION
Primary gastrointestinal stromal tumors (GISTs) account for 2% of gastrointestinal tumors[1,2]. GISTs are encoded by the 
receptor tyrosine kinase gene KIT or PDGFRA[3]. These mutations cause ligand-dependent activation and constitutive 
activation of signal transduction mediated by PDGFRA or KIT[4]. The downstream molecular pathways of the KIT 
mutation include PI3K/AKT, JAK-STAT, Src family kinases, and Ras-ERK)[5,6]. Activation of molecular pathways 
follows KIT activation and leads to the occurrence of GISTs tumors by activation of cell proliferation and inhibition of 
apoptosis signals [7].

Imatinib remains the primary treatment of GIST patients with advanced or metastatic tumors[8,9]. Imatinib 
significantly improves the prognosis of patients in the advanced stages of the disease, but those undergoing imatinib 
treatment often encounter challenges associated with both primary and secondary drug resistance, which, unfortunately, 
restricts long-term efficacy[10].

Insulin-like growth factor 2 (IGF2) is a genomic imprinting gene in growth on the chromosome 11 short arm[11]. IGF2 
overexpression is observed in a variety. of cancers and is related to chemotherapy resistance and a worse prognosis[12-
14]. Studies of IGF1R have increased recently. Insulin-like growth factor (IGF) is comprised of the two ligands IGF1 and 
IGF2, their target tyrosine kinase receptors, IGF1 receptor (IGF1R) and the insulin receptor, as well as the IGF2 receptor 
(IGF2R) and IGF-binding proteins that regulate IGF ligand availability[15]. IGF1R, is a tyrosine kinase receptor with 
binding affinity for both IGF1 and IGF2 ligands[16]. Upon ligand binding, the activated tyrosine kinase domain initiates 
signaling cascades that specifically activate the GPTase Ras-Raf-ERK/MAPK and PI3K-AKT/mTOR pathways. These 
pathways, regulate the proliferation rate and apoptosis of cancer cells[17,18]. The IGF pathway family gene expression 
(such as IGF1, IGF2, and IGF1R) has been reported to distinguish subsets of GISTs wild type for KIT and PDGFRA[19]. 
Although data on IGF1R in GISTs have been reported[20-22], further research on the mechanisms of IGF2 and IGF1R in 
GISTs is needed.

Sequencing data from the Gene Expression Omnibus (GEO) database (GSE225819 and GSE155880) were examined by 
bioinformatics. We found that IGF2 acted as a cancer-promoting factor and was involved in cell proliferation, apoptosis, 
liver metastasis, and epithelial-mesenchymal transition (EMT) in GISTs. Moreover, the role of IGF2 in GIST cells and the 
IGF2-IGF1R regulatory axis contributed to imatinib resistance of GISTs by regulating glycolysis and represents a target 
for GISTs therapy.

MATERIALS AND METHODS
RNA-Seq analysis for public data
Gene expression data based on RNA sequencing were obtained from the GEO. Two eligible datasets (GSE225819, 
GSE155880) were combined. The aligned reads were calculated by FeatureCounts (subread/2.0, http://subread.
sourceforge.net/) and differentially expressed genes (DEGs) were analyzed by the R package DESeq2/3.1.0 (https://

https://www.wjgnet.com/1948-5204/full/v16/i8/3585.htm
https://dx.doi.org/10.4251/wjgo.v16.i8.3585
http://subread.sourceforge.net/
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bioconductor.org/packages/release/bioc/html/DESeq2.html)[23]. A total of 2578 DEGs (1398 downregulated, and 1188 
upregulated) were identified by screening GSE225819, including 20 normal samples and 20 GISTs samples with liver 
metastasis (|log2FC| > 1; P < 0.05) (Supplementary Table 1). Based on Deseq2, 1386 DEGs (939 downregulated, and 447 
upregulated) were identified by screened GSE155880 including seven Imatinib-sensitive samples and seven imatinib-
resistant GIST patients (|log2FC| > 1; P < 0.05) (Supplementary Table 2).

Cell culture and transfection
RGM-1 normal human gastric mucosal cells, GIST882, and GIST-T1 cells were cultured in Iscove's modified Dulbecco's 
medium containing10% fetal bovine serum and 1% antibiotics, The culture temperature was 37 °C with 5% CO2. The 
imatinib concentration was increased from 1 nM to 100 nM over 10 mon and repeated to obtain imatinib-resistant 
GIST882 (GIST882-R) and GISTT1 (GISTT1R) cells. GIST882 and GIST-T1 cells were transfected with OE-IGF2, sh-IGF2 
plasmids and sh-NC, OE-NC negative controls (RiboBio, Beijing, China) using Lipofectamine 3000 (Invitrogen, Waltham, 
MA, United States) and cultured for 2 d. Transfection efficiency was determined by western blotting. Imatinib mesylate 
was purchased from Selleckchem (Houston, TX, United States). GIST-T1 and GIST-882 cells were treated with serial 
dilutions of 1 μM imatinib in dimethyl sulfoxide for 4 h.

Western blot assay
We lysed transfected cells with RIPA buffer, the total protein was purified, and the protein concentration was determined 
with bicinchoninic kits (ThermoFisher Scientific, Waltham, MA, United States). The proteins were resolved by 10% SDS-
PAGE and transferred to PVDF membranes for incubation with anti-IGF2 (1:1000, ab177467; Abcam, Cambridge, United 
Kingdom), anti-vimentin (1:1000, ab92547; Abcam), anti-N-cadherin (1:1000, ab76011; Abcam), anti-E-cadherin (1:1000, 
ab40772; Abcam), anti-Twist1 (1:1000, ab50887; Abcam), anti-IGF1R (1:1000, ab182408; Abcam), anti-p-IGF1R (1:1000, 
ab39398; Abcam), anti-PI3K (1:1000, ab302958; Abcam), anti-AKT (1:1000, MA5-14916; Invitrogen), anti-phospho-AKT 
(1:1000, PA5-95669; Invitrogen), and anti-β-actin (1:1000, ab8227; Abcam) primary antibodies overnight at 4 °C after 
blocking with skimmed milk (5%). After washing the primary antibodies away, the proteins were incubated with the anti-
rabbit secondary antibody (1:5000; SA00001-2; SanYing Biotechnology Inc, Wuhan, China) for 1 h. The protein bands were 
visualized using an ECL chemiluminescence system, and the protein blots were quantified with Image J.

ELISA
The concentration of IGF2 was measured using ELISA kits (Abcam) according to the manufacturer′s instructions. The 
samples were prepared from cell culture supernatants and the IGF2 concentration was measured at 450 nm using a 
microplate reader.

Cell counting kit-8 assay
We determined GIST cell proliferation by cell counting kit-8 (CCK-8) assay. OE-IGF2- or sh-IGF2-transfected GIST882 and 
GIST-T1 cells were added to 96-well plates (1 × 103/well). After 1 d, we added CCK-8 reagent (10 μL, Catalog No. AD10; 
Dojindo Molecular Technologies, Kumamoto, Japan) to each well at room temperature. Absorbance was monitored at 0, 
24, 48, 72, and 96 h and the half inhibitory concentration of imatinib was determined at 450 nm. After overnight 
incubation, the cells were treated with imatinib at 0, 20, 40, 60, and 80 μmol/L for 48 h. CompuSyn software was used to 
calculate the combination index using the Chou-Talalay method[24] to determine the antagonistic influence.

Transwell assay
For the migration assay, GIST cells were seeded into 8 µm well Transwell chambers (Corning; Corning, NY, United 
States). The upper chamber was filled with 200 µL serum-free medium containing 2 × 104 cells and the lower chamber was 
filled with 500 μL complete medium (10% FBS). After 48 h, the cells were fixed with formaldehyde and stained with 0.2% 
crystal violet for 10 min. To assay cell invasion, 500 μL culture supernatant was collected from transfected cells and added 
to the upper Transwell chamber. GIST cells (2 × 104 cells) in about 200 μL serum-free medium were added to the lower 
chamber. The cells were cultured for 2 d at 37 °C with 5% CO2. After culturing, cells remaining in the lower chamber were 
removed with cotton swabs and those in the upper chamber were stained with 0.2% crystal violet for 5 min. We used an 
inverted microscope to count the cells that had migrated through the membrane and invaded the upper chamber.

Nude mouse tumorigenesis assay
We bought 5-wk-old; male BALB/c nude mice from Vital River Laboratories (Beijing, China) and housed them for 1 wk to 
adapt to the environment. GIST-T1 cells (5 × 106) transfected with OE-IGF2/OE-NC, sh-IGF2/sh-NC were injected into 
the inguinal skin and the mice were monitored for growth of the tumor for 7 d before being randomized to four groups 
and treated with imatinib 50 mg/kg daily. After 4 wk, we killed the mice with an overdose of pentobarbital. All animal 
experiments were approved by the Animal Ethics Committee of Beijing Viewsolid Biotechnology Co. LTD (Protocol No. 
VS2126A00170) and all methods followed the ARRIVE guidelines. We fixed the liver tissue of mice in neutral formalin 
(10%), embedded it in paraffin, cut the tissue into 4 µm sections, and stained it with hematoxylin and eosin (HE). The 
sections were observed with a microscope.

Glycolysis assay
Cells were incubated in commercial seahorse XF assay medium plus pyruvate (1 mmol/L), glucose (10 mmol/L) and 
glutamine (2 mmol/L) 37 °C for 1 h in a CO2-free incubator. The rate of extracellular acidification was measured before 
and after addition of oligomycin, glucose, and 2-deoxy-D-glucose (2-DG). FCCP, a mitochondrial uncoupling agent; 

https://bioconductor.org/packages/release/bioc/html/DESeq2.html
https://bioconductor.org/packages/release/bioc/html/DESeq2.html
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https://f6publishing.blob.core.windows.net/932864b6-4b13-4325-bd83-e39b42044baf/91783-supplementary-material.pdf
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oligomycin, an ATP synthase inhibitor; 2-DG, a glycolysis inhibitor; rotenone; and antimycin A were added and 
metabolic energy consumption was assayed with a Seahorse XF96 Analyzer (Agilent, Santa Clara, CA, United States).

Lactate assay
The concentration of lactate in transfected cells was determined by ELISA with lactate assay kits (MAK064; Sigma-
Aldrich, St Louis, MO, United States) according to the manufacturer’s protocol. The optical density of each well was 
determined at 570 nm (Plate Reader AF2000; Eppendorf, Waltham, MA, United States).

Flow cytometric analysis
GIST cell apoptosis was assayed by flow cytometry (LSRII; BD Biosciences, Franklin Lakes, NJ, United States). using 
annexin V-FITC apoptosis detection kits. The apoptosis rate was determined by analysis of Q2 and Q3 quadrant cells.

Statistical analysis
We used GraphPad Prism 7.0 for data analysis. Data were reported as mean ± standard deviation of three independent 
experiments. Single-group comparisons were done with Student’s t-tests. Multiple group differences were compared by 
analysis of variance. P < 0.05 indicated significance.

RESULTS
Identifying high IGF2 expression in GISTs with liver metastasis and closely related to drug resistance
Based on the limma R package, a total of 2578 (DEGs 1398 downregulated and 1188 upregulated) were screened out from 
GEO: GSE225819 data, including 20 normal samples and 20 GIST samples with liver metastasis (|log2FC| > 1; P < 0.05), 
suggesting that these DEGs may be involved in liver metastasis in GIST patients (Figure 1A). The top 10 upregulated 
genes were PENK, IGF2, GPR20, CTSL, SCRG1, PNMAL1, NKX3-2, ANO1, PLAT, and BCHE. The top 10 downregulated 
genes were ATP4B, GKN1, MT1G, GKN2, ATP4A, SPINK1, TSPAN8, TFF1, KCNE2, and REG1A (Supplementary Table 1). 
Based on the Deseq2, 1386 DEGs (939 downregulated and 447 upregulated) were screened out in GSE155880, including 
seven Imatinib-sensitive samples and seven imatinib-resistant GIST patients (|log2FC| > 1; P < 0.05, Figure 1B). The 
intersection of the two analyses indicated that only IGF2 was involved in the drug resistance regulation and GIST 
metastasis in these DEGs (Supplementary Table 2). Moreover, we evaluated IGF2 expression in the GIST cell line. By 
western blotting, expression levels of IGF2 in GIST882, GIST882-R, GIST-T1, and GIST-T1-R were higher than those in 
normal RGM-1. Furthermore, IGF2 was significantly over expressed in GIST882-R/GIST-T1-R compared with other cell 
lines GIST882/GIST-T1 (P < 0.01, P < 0.001; Figure 1C). In addition, the expression levels of IGF2 in culture supernatants 
were measured using ELISA and compared (Figure 1D). We found that the ELISA and western blot results (P < 0.05, P < 
0.001) were similar. IGF2 expression was high in drug-resistant GIST cell lines, suggesting that IGF2 overexpression may 
be closely related to drug resistance.

IGF2 overexpression promotes the malignant characteristics and metastasis of GISTs
We transfected GIST882 and GIST-T1 cells with an IGF2 overexpressing plasmid (OE-IGF2) or a shRNA to knock down 
IGF2 (sh-IGF2). Western blotting detected the efficiency of cell transfection (Figure 2A). IGF2 was highly expressed in OE-
IGF2-transfected cells compared with OE-NC cells, while IGF2 expression was low in sh-IGF2-transfected cells (P < 
0.001). ELISA also found that IGF2 expression high in OE-IGF2 group compared with OE-NC-GIST882 and GIST-T1 cells 
and IGF2 was low expressed in sh-IGF2-transfected cells (Figure 2B, P < 0.05, P < 0.01, P < 0.001). The CCK-8 results 
showed that cell viability was significantly increased after exogenous expression of IGF2, sh-IGF2 transfection inhibited 
GIST882 and GIST-T1 cell viability (Figure 2C, P < 0.001). Likewise, the Transwell assays found more migrating and 
invading OE-IGF2-GIST882 and GIST-T1 cells compared with their respective control cells (Figure 2D and E, P < 0.001). 
We also found that sh-IGF2 transfection inhibited cell viability, migration and invasion. In addition, western blotting 
detect EMT-related proteins (E-cadherin, vimentin, Twist1, and N-cadherin) expression in cells. Silencing IGF2 increased 
E-cadherin expression, and inhibited vimentin, Twist1, and N-cadherin expression, but IGF2 overexpression had the 
opposite experimental findings (Figure 2F, P < 0.001). To further verify the functional role of IGF2 on the growth of 
GISTs, we performed nude mouse tumorigenesis experiments. OE-IGF2 transfected-GIST-T1 cell lines were injected into 
the spleen. We found that OE-IGF2 promoted the GIST-T1 cell metastasis in vivo, showing a significant decline in the 
number of liver metastatic nodules (Figure 2G and H, P < 0.01).

IGF2 activated the IGF1R signaling in GIST cells
IGF1R mRNA expression was increased in GIST-T1 and GIST882 cells transfected with OE-IGF2, and IGF1R mRNA 
expression was decreased after sh-IGF2 transfection (Figure 3A, P < 0.001). PI3K-Akt signaling is the IGF2-IGF1R signal 
principal downstream target[25]. Expression of IGF2-IGF1R pathway-associated proteins (IGF1R, p-IGF1R, PI3K, AKT, p-
AKT) in GIST-T1 cells was measured by western blotting. IGF2 overexpression increased the expression of IGF1R, p-
IGF1R, PI3K, AKT, and p-AKT in GIST-T1 cells. The opposite result was noted after IGF2 knockdown (Figure 3B, P < 0.01, 
P < 0.001). Although sh-IGF2 reduced IGF1R, p-IGF1R, PI3K, AKT, and p-AKT expression in GIST-T1 cells, it was 
partially restored by overexpression of IGF2R (Figure 3C, P < 0.01, P < 0.001).

https://f6publishing.blob.core.windows.net/932864b6-4b13-4325-bd83-e39b42044baf/91783-supplementary-material.pdf
https://f6publishing.blob.core.windows.net/932864b6-4b13-4325-bd83-e39b42044baf/91783-supplementary-material.pdf
https://f6publishing.blob.core.windows.net/932864b6-4b13-4325-bd83-e39b42044baf/91783-supplementary-material.pdf
https://f6publishing.blob.core.windows.net/932864b6-4b13-4325-bd83-e39b42044baf/91783-supplementary-material.pdf
https://f6publishing.blob.core.windows.net/932864b6-4b13-4325-bd83-e39b42044baf/91783-supplementary-material.pdf
https://f6publishing.blob.core.windows.net/932864b6-4b13-4325-bd83-e39b42044baf/91783-supplementary-material.pdf
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Figure 1 High expression of insulin-like growth factor 2 in gastrointestinal stromal tumors with liver metastasis and closely related to 
drug resistance. A: Differentially expressed genes in gastrointestinal stromal tumors (GIST) with liver metastasis tissues and normal gastric tissues (|log2FC| > 1; 
P < 0.05); B: Differentially expressed genes in imatinib sensitive and in seven Imatinib-resistant GIST patients (|log2FC| > 1; P < 0.05); C: Western blot assay of 
insulin-like growth factor 2 (IGF2) protein expression in GIST cell lines (GIST882, GIST882-R, GIST-T1, GIST-T1-R); D: ELISA of IGF2 expression in GIST cell lines 
(GIST882, GIST882-R, GIST-T1, GIST-T1-R). Data are mean ± standard deviation. aP < 0.05; bP < 0.01; cP < 0.001.

IGF2/IGF1R mediated the metastasis of GISTs by glycolysis
We analyzed glucose consumption and lactate production in GIST cells. Sh-IGF2 inhibited glucose consumption 
(Figure 4A), and lactate production in GIST882 and GIST-T1 cells (Figure 4B), but IGF2 overexpression had the opposite 
experimental findings (P < 0.001). To examine the role of the Warburg effect in liver metastasis of GISTs, we treated OE-
NC-GIST882 and OE-IGF2-GIST882 cells with 2-deoxyglucose (2-DG, a glycolysis inhibitor) for 24 hat 0, 4, 8, and 16 
mmol/L. 2-DG significantly inhibited glycolysis (Figure 4C, P < 0.05, P < 0.01, P < 0.001) and Transwell assays found that 
2-DG treatment inhibited the promoting effect of OE-IGF2 on GIST882 and GIST-T1 cell invasion and migration 
(Figure 4D and E, P < 0.001). Similarly, OE-IGF2 increased vimentin, Twist1, and N-cadherin expression and inhibited E-
cadherin expression in cells, but the expression was partially restored by 2-DG treatment (Figure 4F, P < 0.001).

IGF2/IGF1R regulates the GISTs imatinib resistance by regulating glycolysis in vivo and in vitro
Figure 1 shows that IGF2 was involved in regulating drug resistance. Next, we will further verify. To test whether IGF2 
also regulated drug resistance in GISTs in vivo, we established a xenograft model by inoculating sh-NC or sh-IGF2-GIST-
T1 cells into nude mice. In the sh-IGF2-GIST-T1 mouse xenograft model, tumor volume and growth were inhibited by sh-
IGF2, and imatinib had the same influence on tumor growth and volume. Combined treatment with imatinib and sh-IGF2 
was more effective for reducing tumor progression than single treatment (Figure 5A-C, P < 0.001). The western blot 
results revealed that expression of IGF1R, p-IGF1R, AKT, PI3K, and p-AKT in tumor tissue was suppressed in both sh-
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Figure 2 Insulin-like growth factor 2 promotes malignant characteristics and metastasis of gastrointestinal stromal tumors. A: Western blot 
measured the transfection efficiency of OE-insulin-like growth factor 2 (IGF2) or sh-IGF2 in gastrointestinal stromal tumors (GIST) 882 and GIST-T1 cells; B: ELISA of 
IGF2 expression in OE-IGF2 or sh-IGF2 transfected GIST882 and GIST-T1 cells; C: Cell counting kit-8 assay assessed cell viability in GIST882 and GIST-T1 cells; D: 
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Transwell assay evaluated the migration of OE-IGF2- or sh-IGF2-transfected cells (scar bar = 50 μm); E: Transwell assays of the invasiveness of OE-IGF2 or sh-IGF2 
transfected cells. (scar bar = 50 μm); F: Detection of proteins involved in epithelial-mesenchymal transition (vimentin, N-cadherin, E-cadherin, Twist1) in OE-IGF2 or 
sh-IGF2 transfected cells; G: Liver tissue from tumor xenografts in nude mice injected withOE-IGF2 transfected GIST-T1 cells; H: Liver metastasis determined by 
hematoxylin-eosin staining. Data are mean ± standard deviation. aP < 0.05; bP < 0.01; cP < 0.001.

Figure 3 Insulin-like growth factor 2 activated the IGF1R signaling in gastrointestinal stromal tumors cells. A: Quantitative reverse transcriptase 
PCR assay of IGF1R mRNA expression in gastrointestinal stromal tumors (GIST) 882 and GIST-T1 cells after OE-insulin-like growth factor 2 (IGF2) or sh-IGF2 
transfection; B: Detection of protein levels (IGF1R, p-IGF1R, PI3K, AKT, and p-AKT) involved in the PI3K/AKT in OE-IGF2 or sh-IGF2 transfected-GIST-T1 cells by 
western blot assay; C: Detection of protein levels (IGF1R, p-IGF1R, PI3K, AKT, and p-AKT) involved in the PI3K/AKT in GIST-T1 cells after sh-IGF2 and OE-IGF2R 
transfection by western blot assay. bP < 0.01; cP < 0.001.

IGF2-transfected cells and after imatinib treatment. Moreover, combined imatinib and sh-IGF2 were more effective than 
single therapy (Figure 5D, P < 0.001). The above data suggest that IGF2/IGF1R regulate imatinib resistance.

In addition, previous data shows that IGF2 regulates glycolysis in GIST cells. IGF2 regulates cell sensitivity to imatinib 
through its influence on glycolysis. We used 2-DG to inhibit glycolysis in GIST cells. OE-IGF2 increased drug sensitivity 
in GIST882 and GIST-T1 cells, but after treatment with 2-DG, transfection with OE-IGF2 no longer changed drug 
sensitivity in GIST cells (Figure 5E, P < 0.001). Flow cytometric analysis showed that sh-IGF2 suppressed imatinib-
induced apoptosis and OE-IGF2 reduced imatinib-induced apoptosis in GIST cells. Treatment with 2-DG and transfection 
with OE-IGF2 no longer influenced imatinib-induced apoptosis in GIST cells (Figure 5F, P < 0.001). Therefore, the results 
show that IGF2 regulated imatinib sensitivity in GIST cells by affecting glycolysis.

DISCUSSION
GISTs is the most frequent malignant gastrointestinal sarcoma and causes significant patient harm[26,27]. Recently, 
anticancer drug resistance has become a significant challenge to the treatment of GISTs[28]. Treatment with tyrosine 
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Figure 4 Insulin-like growth factor 2/IGF1R-mediatedglycolysisis required for gastrointestinal stromal tumors with liver metastasis. A: 
Extracellular acidification rate was measured; B: Lactate production in gastrointestinal stromal tumors (GIST) 882 and GIST-T1 cells transfected with sh-insulin-like 
growth factor 2 (IGF2) or OE-IGF2 were measured; C: Lactate production in OE-IGF2-GIST882 and GIST-T1 cells cotreated with 2-deoxy-D-glucose (2-DG) (0, 4, 8, 
and 16 mmol/L); D: Transwell assay of the migration ability of the OE-IGF2-cells cotreated with 2-DG (scar bar = 50 μm); E: Transwell assay of the invasiveness of 
OE-IGF2-cells cotreated with 2-DG (scar bar = 50 μm); F: Assay of proteins involved in epithelial-mesenchymal transition (vimentin, N-cadherin, E-cadherin, Twist1) 
in OE-IGF2-cells cotreated with 2-DG. Data are mean ± standard deviation. aP < 0.05; bP < 0.01; cP < 0.001.

kinase inhibitors (TKIs) has led to substantial improvement of survival, both for patients with localized GISTs and those 
with advanced disease[29]. As the first-line TKI, imatinib offers treatment for advanced and metastatic GISTs, adjuvant 
therapy in high-risk GISTs and neoadjuvant treatment to downsize large tumors prior to resection[8]. We explored the 
mechanism of IGF2 in imatinib resistance in GISTs and whether IGF2 enhanced metastasis and imatinib resistance by 
driving glycolysis by targeting IGF1R signaling transduction.

IGF2, identified as an imprinted gene, exhibits a significant impact on cancer progression when its imprinting is lost or 
relaxed, leading to heightened autocrine IGF2 levels and increased secretion in malignant cells[30,31]. Numerous studies 
have revealed the upregulation of IGF2 in various cancers such as hepatocellular carcinoma, correlating with resistance to 
chemotherapy and a poorer prognosis[12-14]. Our investigation, which focused on DEGs associated with liver metastasis 
and drug resistance in GISTs, we observed elevated levels of IGF2 in GISTs cases linked to liver metastasis and drug 
resistance. Our comprehensive analysis included assessment of cell proliferation, viability, migration, and invasiveness. 
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Figure 5 Insulin-like growth factor 2/IGF1R regulates imatinib resistance of gastrointestinal stromal tumors by regulating glycolysis. A: 
Tumor growth in xenografted nude mice; B: Tumor volumes in sh-insulin-like growth factor 2 (IGF2)-gastrointestinal stromal tumors (GIST)-T1 mouse xenograft 
models treated with imatinib; C: After 35 d, the mice were killed and the tumors were weighed; D: Assay of IGF1R, p-IGF1R, PI3K, AKT, and p-AKT in tumor tissue by 
western blotting; E: Assay of drug sensitivity in OE-IGF2-GIST882 and GIST-T1 cells treated with 2-deoxy-D-glucose (2-DG); F: Flow cytometry assay of apoptosis of 
OE-IGF2-GIST882 and GIST-T1 cells treated with 2-DG. Data are mean ± standard deviation. aP < 0.05; bP < 0.01; cP < 0.001.

The findings strongly suggest that overexpression of IGF2 induce the proliferation, metastasis, and EMT of GIST cells.
IGF1R, is a tyrosine kinase receptor that can be triggered by IGF2 and has a pivotal role in regulating mammalian 

development, metabolism, and growth[32]. IGF1R is known to be upregulated in various human solid tumors[19]. Its 
involvement in cell promoting cell proliferation and inhibiting programmed cell death is facilitated by activation of its 
tyrosine kinase and the subsequent engagement of the Ras/Raf/MEK and PI3K/AKT/mTOR signaling pathways[23]. 
The IGF2-IGF1R signaling axis assumes critical significance in governing cell proliferation, differentiation, EMT, 
migration, drug resistance, and maintaining stemness in malignancies[33]. This investigation further demonstrated the 
activation of IGF1R signaling by IGF2 in GIST cells. It highlights the role of IGF2 as a pivotal chromatin factor that 
controls the expression level of IGF1R and modulates downstream signaling by the PI3K/AKT pathway. IGF2 also 
upregulated the expression of glycolytic and mitochondrial respiration markers. IGF2 overexpression has also been 
shown to cause metabolic reprogramming in breast cancer[31]. As expected, we also that IGF2 mediated the glycolysis in 
GISTs by targeting IGF1R signaling.

Increased expression of IGF2 is a common occurrence in various cancers and has been associated with increased 
resistance to chemotherapy, leading to a poorer prognosis[12,13]. Regarding GISTs, the standard first-line therapeutic 
approach involves the use of imatinib[34]. Imatinib, a potent TKI, is the primary treatment for GISTs, and significantly 
contributes to the progression-free survival of GIST patients[35,36]. Our investigation revealed a noteworthy correlation 
of increased IGF2 expression with the induction of GISTs resistance to imatinib concurrently with a reduction of imatinib-
induced apoptosis in GIST cells. These findings underscore IGF2 as a potential regulator of GISTs imatinib resistance, and 
a promising target for interventions aimed at reversing such resistance. Intriguingly, our study further showed that IGF2 
regulates cellular sensitivity to imatinib by modulating glycolysis.
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The study had some limitations of this study. First, except for GIST cells, the role of IGF2 on GIST patient samples 
needs verification. Even though we found that IGF-2 overexpression increased the resistance of GIST cells to imatinib in 
cell culture, the clinical effect needs to be verified. Secondly, our results allows speculation that IGF2 was involved in the 
resistance to chemotherapy and a worse GISTs prognosis. However, the molecular mechanism of IGF2 specific to GISTs 
requires further investigation. We will consider these issues in future studies. In addition, studies have found that 
hypoglycemia in patients with non-islet cell tumor-induced GISTs may be aggravated by imatinib[37]. A recent case 
study reported that a GISTs that produced big-IGF2 also caused severe hypoglycemia[38]. We also hope to investigate 
that in future experiments.

CONCLUSION
This study investigated IGF2 regulation of metastasis and imatinib resistance in GISTs. IGF2 interacted with IGF1R to 
regulate glycolysis. Our results found that IGF2 targeting of IGF1R signaling improved metastasis and imatinib 
chemosensitivity via driving glycolysis in GISTs and support potential use of IGF2 to reverse imatinib resistance in GISTs 
patients.
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