EVIDENCE REVIEW

3639 Tilt and decentration with various intraocular lenses: A narrative review

REVIEW

3647 Role of zonula occludens in gastrointestinal and liver cancers
Ram AK, Vairappan B

MINIREVIEWS

3662 Pathophysiological mechanisms of hepatic stellate cells activation in liver fibrosis
Garbuzenko DV

ORIGINAL ARTICLE

Retrospective Cohort Study

3677 Predictors of unfavorable outcome at 90 days in basilar artery occlusion patients
Chiu YC, Yang JL, Wang WC, Huang HY, Chen WL, Yen PS, Tseng YL, Chen HH, Tsai ST

Retrospective Study

3686 Role of multidetector computed tomography in patients with acute infectious colitis
Yu SJ, Heo JH, Choi EJ, Kim JH, Lee HS, Kim SY, Lim JH

3698 Efficacy and prognostic factors of neoadjuvant chemotherapy for triple-negative breast cancer
Ding F, Chen RY, Hou J, Guo J, Dong TY

3709 Relationship between subgroups of central and lateral lymph node metastasis in clinically node-negative papillary thyroid carcinoma
Zhou J, Li DX, Gao H, Su XL

3720 Nomogram to predict postoperative complications in elderly with total hip replacement
Tan XJ, Gu XX, Ge FM, Li ZY, Zhang LQ

3729 Flap failure prediction in microvascular tissue reconstruction using machine learning algorithms
Shi YC, Li J, Li SJ, Li ZP, Zhang HJ, Wu ZY, Wu ZY

Observational Study

3739 Surgery in platinum-resistant recurrent epithelial ovarian carcinoma
Zhao LQ, Gao W, Zhang P, Zhang YL, Fang CY, Shou HF
Contents

Randomized Controlled Trial

3754 Anorectal dysfunction in patients with mid-low rectal cancer after surgery: A pilot study with three-dimensional high-resolution manometry
Pi YN, Xiao Y, Wang ZF, Lin GL, Qiu HZ, Fang XC

3764 Effect of wrist-ankle acupuncture on propofol dosage during painless colonoscopy: A randomized controlled prospective study
He T, Liu C, Lu ZX, Kong LL, Li Y, Xu Z, Dong YJ, Hao W

META-ANALYSIS

3773 Melatonin intervention to prevent delirium in hospitalized patients: A meta-analysis
You W, Fan XY, Lei C, Nie CC, Chen Y, Wang XL

3787 Risk factors for hospital readmissions in pneumonia patients: A systematic review and meta-analysis
fang YY, Ni JC, Wang Y, Yu JH, Fu LL

CASE REPORT

3801 Anti-programmed death 1 antibody in the treatment of coexistent *Mycobacterium fortuitum* and lung cancer: A case report
Zhang CC, Chen P

3808 Acute pancreatitis-induced thrombotic thrombocytopenic purpura: A case report
Wang CH, Jin HF, Liu WG, Guo Y, Liu Z

3814 Successful management of life-threatening aortoesophageal fistula: A case report and review of the literature
Zhong XQ, Li GX

3822 Isolated coagulopathy without classic CRAB symptoms as the initial manifestation of multiple myeloma: A case report
Zhang Y, Xu F, Wen JJ, Shi L, Zhou QL

3828 Evaluation of intracoronary function after reduction of ventricular rate by esmolol in severe stenotic myocardial bridge: A case report
Sun LJ, Yan DG, Huang SW

3834 Pediatric living donor liver transplantation using liver allograft after *ex vivo* backtable resection of hemangioma: A case report
Li SX, Tang HN, Lv GY, Chen X

3842 Kimura's disease in soft palate with clinical and histopathological presentation: A case report
Li W

3849 Combined targeted therapy and immunotherapy in anaplastic thyroid carcinoma with distant metastasis: A case report
Ma DX, Ding XP, Zhang C, Shi P
<table>
<thead>
<tr>
<th>Page</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>3866</td>
<td>Ischemic colitis after receiving the second dose of a COVID-19 inactivated vaccine: A case report</td>
<td>Cui MH, Hou XL, Liu JY</td>
</tr>
<tr>
<td>3872</td>
<td>Cryoballoon pulmonary vein isolation and left atrial appendage occlusion prior to atrial septal defect closure: A case report</td>
<td>Wu YC, Wang MX, Chen GC, Ruan ZB, Zhang QQ</td>
</tr>
<tr>
<td>3886</td>
<td>Successful robot-assisted partial nephrectomy for giant renal hilum angiomyolipoma through the retroperitoneal approach: A case report</td>
<td>Luo SH, Zeng QS, Chen JX, Huang B, Wang ZR, Li WJ, Yang Y, Chen LW</td>
</tr>
<tr>
<td>3893</td>
<td>Cryptococcal antigen testing of lung tissue homogenate improves pulmonary cryptococcosis diagnosis: Two case reports</td>
<td>Wang WY, Zheng YL, Jiang LB</td>
</tr>
<tr>
<td>3899</td>
<td>Combined use of extracorporeal membrane oxygenation with interventional surgery for acute pancreatitis with pulmonary embolism: A case report</td>
<td>Yan LL, Jin XX, Yan XD, Peng JB, Li ZY, He BL</td>
</tr>
<tr>
<td>3907</td>
<td>Dynamic navigation system-guided trans-inferior alveolar nerve implant placement in the atrophic posterior mandible: A case report</td>
<td>Chen LW, Zhao XE, Yan Q, Xia HB, Sun Q</td>
</tr>
<tr>
<td>3923</td>
<td>Amniotic membrane transplantation in a patient with impending perforated corneal ulcer caused by Streptococcus mitis: A case report and review of literature</td>
<td>Hsiao FC, Meir YJJ, Yeh LK, Tan HY, Hsiao CH, Ma DHK, Wu WC, Chen HC</td>
</tr>
<tr>
<td>3936</td>
<td>Antithrombotic treatment strategy for patients with coronary artery ectasia and acute myocardial infarction: A case report</td>
<td>Liu RF, Gao XY, Liang SW, Zhao HQ</td>
</tr>
<tr>
<td>3951</td>
<td>Recurrence of infectious mononucleosis in adults after remission for 3 years: A case report</td>
<td>Zhang XY, Teng QB</td>
</tr>
<tr>
<td>Page</td>
<td>Title</td>
<td>Authors</td>
</tr>
<tr>
<td>------</td>
<td>--</td>
<td>----------------------------------</td>
</tr>
<tr>
<td>3966</td>
<td>LETTER TO THE EDITOR Comment on “Outcomes of different minimally invasive surgical treatments for vertebral compression fractures: An observational study”</td>
<td>Ma L, Luo ZW, Sun YY</td>
</tr>
</tbody>
</table>
ABOUT COVER

Editorial Board Member of World Journal of Clinical Cases, Potluri Leela Ravishankar, MDS, Professor, Department of Periodontics, SRM Kattankulathur Dental College and Hospital, SRM University, Chennai 603203, Tamil Nadu, India. plrs6@yahoo.com

AIMS AND SCOPE

The primary aim of World Journal of Clinical Cases (WJCC, World J Clin Cases) is to provide scholars and readers from various fields of clinical medicine with a platform to publish high-quality clinical research articles and communicate their research findings online.

WJCC mainly publishes articles reporting research results and findings obtained in the field of clinical medicine and covering a wide range of topics, including case control studies, retrospective cohort studies, retrospective studies, clinical trials studies, observational studies, prospective studies, randomized controlled trials, randomized clinical trials, systematic reviews, meta-analysis, and case reports.

INDEXING/ABSTRACTING

The WJCC is now indexed in Science Citation Index Expanded (also known as SciSearch®), Journal Citation Reports/Science Edition, Scopus, PubMed, and PubMed Central. The 2021 Edition of Journal Citation Reports® cites the 2020 impact factor (IF) for WJCC as 1.337; IF without journal self cites: 1.301; 5-year IF: 1.742; Journal Citation Indicator: 0.33; Ranking: 119 among 169 journals in medicine, general and internal; and Quartile category: Q3. The WJCC’s CiteScore for 2020 is 0.8 and Scopus CiteScore rank 2020: General Medicine is 493/793.

RESPONSIBLE EDITORS FOR THIS ISSUE

Production Editor: Ying-Yi Yuan; Production Department Director: Xu Guo; Editorial Office Director: Jin-Lei Wang.

NAME OF JOURNAL

World Journal of Clinical Cases

ISSN

ISSN 2307-8960 (online)

LAUNCH DATE

April 16, 2013

FREQUENCY

Thrice Monthly

EDITORS-IN-CHIEF

Bao-Gan Peng, Jerzy Tadeusz Chudek, George Kontogeorgos, Maurizio Serati, Ja Hyeon Ku

EDITORIAL BOARD MEMBERS

https://www.wjgnet.com/2307-8960/editorialboard.htm

PUBLICATION DATE

April 26, 2022

COPYRIGHT

© 2022 Baishideng Publishing Group Inc

INSTRUCTIONS TO AUTHORS

https://www.wjgnet.com/bpg/gerinfo/204

GUIDELINES FOR ETHICS DOCUMENTS

https://www.wjgnet.com/bpg/GerInfo/287

GUIDELINES FOR NON-NATIVE SPEAKERS OF ENGLISH

https://www.wjgnet.com/bpg/g erinfo/240

PUBLICATION ETHICS

https://www.wjgnet.com/bpg/GerInfo/288

PUBLICATION MISCONDUCT

https://www.wjgnet.com/bpg/GerInfo/208

ARTICLE PROCESSING CHARGE

https://www.wjgnet.com/bpg/g erinfo/242

STEPS FOR SUBMITTING MANUSCRIPTS

https://www.wjgnet.com/bpg/GerInfo/239

ONLINE SUBMISSION

https://www.ffpublishing.com

© 2022 Baishideng Publishing Group Inc. All rights reserved. 7041 Koll Center Parkway, Suite 160, Pleasanton, CA 94566, USA

E-mail: bpgoffice@wjgnet.com https://www.wjgnet.com
Acute pancreatitis-induced thrombotic thrombocytopenic purpura: A case report

Chun-Hua Wang, Hai-Feng Jin, Wen-Ge Liu, Ying Guo, Zhen Liu

CASE REPORT

BACKGROUND
Thrombotic thrombocytopenic purpura (TTP) is a life-threatening but treatable disorder. Acute pancreatitis is a well-described consequence of TTP, but TTP as a consequence of acute pancreatitis is rare.

CASE SUMMARY
A 32-year-old male developed acute pancreatitis due to a fatty diet and suffered splenectomy 3 years ago due to trauma. From day 4 of his onset of pain the blood examination showed the platelet extremely reduced, bilirubin elevated and creatinine increased. High clinical suspicion of TTP was made and prompt initiation of plasma exchange was given followed intravenous drip methylprednisolone. After 7 sessions of plasma exchange and the laboratory parameters were back to normal and the patient was discharged from the hospital on the 13th day of admission.

CONCLUSION
Patients develop acute pancreatitis with no apparent causes for hemolytic anemia and thrombocytopenia, the possibility of TTP should be considered. Treatments for TTP including plasm exchange should be evaluated as soon as a diagnosis is made.

Key Words: Thrombotic thrombocytopenic purpura; Acute pancreatitis; Case report; Plasm exchange; Glucocorticoid

©The Author(s) 2022. Published by Baishideng Publishing Group Inc. All rights reserved.
Core Tip: This subject is a rare case report encountered in clinical work. Acute pancreatitis accompanied thrombotic thrombocytopenic purpura is fatal but treatable. Highly recognized this disease could save lives. When acute pancreatitis accompanied hemolytic anemia, thrombocytopenia, renal impairment, fever, and neurological disorders, a high index of clinical suspicion of thrombotic thrombocytopenic purpura is required for prompt diagnosis and early treatment, which is associated with good outcome.

URL: https://www.wjgnet.com/2307-8960/full/v10/i12/3808.htm
DOI: https://dx.doi.org/10.12998/wjcc.v10.i12.3808

INTRODUCTION
Thrombotic thrombocytopenic purpura (TTP) is a rare but fatal disease characterized by fever, thrombocytopenia, microangiopathic hemolytic anemia, renal failure, and neurological manifestations[1]. The underlying pathophysiological mechanism of TTP is deficiency or the production of antibodies against a disintegrin and metalloproteinase with a thrombospondin type 1 motif, member 13 (ADAMTS13). ADAMTS13 splits the ultra-large von Willebrand factor (ULVWF) polymers into smaller particles. In the absence of ADAMTS13, excess polymeric ULVWF leads to diffuse platelet-rich microthrombosis, leading to ischemia in different organs[2]. TTP-induced acute pancreatitis this mechanism is well known [3,4]. However, only a few cases of TTP as a complication of acute pancreatitis have been reported[5,6]. Herein we report a case of TTP secondary to acute pancreatitis caused by a high-fat diet.

CASE PRESENTATION
Chief complaints
A 32-year-old male presented with an 8 d history of upper abdominal pain and thrombocytopenia was observed for 1 d.

History of present illness
A previously healthy 32-year-old Asian male presented to a local hospital with a 4 d history of upper abdominal pain. He had eaten some fatty food a day prior to the onset of the symptom. After 4 d of treatment at local hospital for acute pancreatitis, his abdominal pain was markedly relieved, but the blood routine showed extremely low platelets.

History of past illness
The patient underwent splenectomy after an abdominal trauma three years ago, and did not undergo any follow-up.

Personal and family history
There was no other relevant past medical and family histories.

Physical examination
There was tenderness in the upper abdomen. No petechiae found on the skin. Heart and lung examination showed no abnormality. No masses or hepatosplenomegaly. There were no abnormal neurological signs.

Laboratory examinations
On the day of admission at the local hospital, his initial laboratory studies showed a white blood cell (WBC) count of 17.14 × 10^9/L (normal 4-10 × 10^9/L); neutrophils, 63.04%; lymphocytes, 31.64%; hemoglobin (HB), 152 g/L (normal 100-160 g/L); platelet count, 426 × 10^9/L (normal 150-350 × 10^9/L). The serum creatinine was 65 μmol/L (normal 62-106 μmol/L); blood urea nitrogen (BUN), 5.46 mmol/L (normal 1.7-8.3 mmol/L); serum amylase, 364 U/L (normal 0-100 U/L); total bilirubin, 11.5 μmol/L (normal 3.4-20.3 μmol/L), indirect bilirubin, 7.5 μmol/L (normal 0.3-16 μmol/L). After four days of treatment, the abdominal pain subsided. However, a repeat blood routine test revealed a WBC count of 13.71 × 10^9/L; neutrophils, 79.21%; lymphocytes, 12.32%; HB, 104 g/L; platelet count 30 × 10^9/L. Serum amylase was at 230 U/L, total bilirubin, 43.8 μmol/L, and indirect bilirubin, 21.7 μmol/L. The patient was transferred to our hospital for severe thrombocytopenia. laboratory data (day four of symptom
onset) showed WBC, 12.75 × 10^9/L; neutrophils, 76%; lymphocytes, 15%; HB, 102 g/L; platelets, 7 × 10^9/L; urinalysis showed protein 2+, red blood cell 45/μL (normal, 0-25/μL); and stool occult blood tests were weakly positive. Coagulation studies revealed normal prothrombin time of 13.3 s (normal 9.4-12.5 s); fibrinogen, 4.76 g/L (2.38-4.98 g/L); D-dimer, 0.978 (normal 0-0.243 mg/L). Serum creatinine was 241 μmol/L; BUN, 18.5 mmol/L; serum amylase, 195 U/L; total bilirubin, 64.2 μmol/L, direct bilirubin, 8.6 μmol/L (normal 0-4 μmol/L). Lactate dehydrogenase was at 1559 U/L. There were schistocytes in his peripheral blood smear (3+; 0.5%). Both direct and indirect Coombs tests were negative (laboratory parameters showed in Table 1).

Imaging examinations
Abdominal computed tomography revealed signs of pancreatitis (Figure 1).

FINAL DIAGNOSIS
The patient’s symptoms of acute pancreatitis and abdominal pain improved. Combined with laboratory examination and abdominal computed tomography review, the thrombocytopenia caused by infection associated to acute pancreatitis was considered to be excluded. Our hospital does not have the technical platform to test for ADAMTS13. The patient’s typical laboratory data of severe thrombocytopenia with mild renal impairment were in favor of TTP over hemolytic uremic syndrome.

TREATMENT
Based on the severity of TTP, plasma exchange and intravenous methylprednisolone (40 mg/d) was initiated. After 7 sequences of plasmapheresis, oral methylprednisolone (28 mg/d) was continued.

OUTCOME AND FOLLOW-UP
After 7 sequences of plasmapheresis, the patient’s platelet count increased to 147 × 10^9/L, and urea, creatinine, and HB returned to normal (laboratory parameters showed in Table 1). Plasma exchange was stopped and oral methylprednisolone (28 mg/d) was continued. The patient was discharged 13 d after admission. Discharge follow-up showed recurrent pancreatitis 8 mo later without TTP. Due to coronavirus disease 2019 and his condition improved, the patient was not able to complete the test for ADAMTS13.

DISCUSSION
TTP is a rare disease with an annual incidence of approximately 6 per 1 million[7]. It can be congenital or acquired by any cause of ADAMTS13 deficiency or dysfunction of the ADAMTS13 enzyme. Acquired TTP is usually due to autoantibodies that inhibit ADAMTS13 activity and impair ULVWF function. TTP usually manifests as an acute and fulminant, sometimes fatal process. However, acute inflammatory disease has been known to reduce the activity of ADAMTS13[8].

Pancreatic injury caused by TTP is common, the mechanism of TTP-induced pancreatic injury is believed to be the pancreatic circulation disturbance caused by thrombus occlusion of small vessels[9]. Only a few cases of TTP as a complication of acute pancreatitis have been reported. Acute pancreatitis is an inflammatory disease characterized by tissue damage in situ. Increased levels of cytokines including interleukins (IL-8, IL-1, and IL-6) and tumor necrosis factor (TNF-α) may stimulate the release of ULVWF by endothelial cells. This may account for the relative deficiency of the ADAMTS13 protease in acute pancreatitis, which is rapidly consumed. Acute pancreatitis mediated TTP typically occurs within 1 to 13 d (median 3 d) of the diagnosis of acute pancreatitis, possibly due to the peak levels of inflammatory cytokines IL-6 and IL-8 on the 3 d after the onset of pancreatitis[10]. Nitric oxide may also be involved in the development of TTP after acute pancreatitis[11]. In vitro studies have shown that inflammatory factors stimulate the release of ULVWF from endothelial cells and inhibit the cleavage of ULVWF by ADAMTS13[12].

Due to the high fatality rate of TTP, diagnostic treatment is initiated before more definitive test results such as ADAMTS13 Levels can be obtained. Before the 1980s, prior to the era of therapeutic plasmapheresis for TTP, the fatality rate was greater than 90%[13]. Treatment includes immediate and daily therapeutic plasmapheresis with oral or intravenous glucocorticoids, depending on the patient’s neurological status. Because the platelet count reflects the disease’s response to treatment, it should be monitored daily. Once the platelet count exceeds 150000/mL for more than 2 d, therapeutic plasma-
Table 1 Laboratory parameters of the patient

<table>
<thead>
<tr>
<th>Day from illness</th>
<th>Reference range</th>
<th>Day 1</th>
<th>Day 4</th>
<th>Day 4 (transfer)</th>
<th>Day 5</th>
<th>Day 6</th>
<th>Day 7</th>
<th>Day 8</th>
<th>Day 9</th>
<th>Day 10</th>
</tr>
</thead>
<tbody>
<tr>
<td>WBC (× 10⁹/L)</td>
<td>4-10</td>
<td>17.14</td>
<td>13.71</td>
<td>12.75</td>
<td>13.55</td>
<td>18.67</td>
<td>22.91</td>
<td>23.56</td>
<td>24.04</td>
<td>22.35</td>
</tr>
<tr>
<td>n (%)</td>
<td>40-75</td>
<td>63.04</td>
<td>79.21</td>
<td>76</td>
<td>87.5</td>
<td>81.6</td>
<td>75.3</td>
<td>73.8</td>
<td>71.3</td>
<td>71.3</td>
</tr>
<tr>
<td>RBC (× 10¹²/L)</td>
<td>4.3-5.8</td>
<td>4.52</td>
<td>4.01</td>
<td>3.38</td>
<td>3.07</td>
<td>2.74</td>
<td>2.56</td>
<td>2.71</td>
<td>2.76</td>
<td>2.76</td>
</tr>
<tr>
<td>HB (g/L)</td>
<td>130-175</td>
<td>152</td>
<td>104</td>
<td>102</td>
<td>92</td>
<td>82</td>
<td>76</td>
<td>82</td>
<td>84</td>
<td>84</td>
</tr>
<tr>
<td>PLT (× 10⁹/L)</td>
<td>150-350</td>
<td>426</td>
<td>30</td>
<td>7</td>
<td>42</td>
<td>24</td>
<td>56</td>
<td>74</td>
<td>148</td>
<td>319</td>
</tr>
<tr>
<td>Creatinine (μmol/L)</td>
<td>62-106</td>
<td>65</td>
<td>-</td>
<td>241</td>
<td>198</td>
<td>-</td>
<td>146</td>
<td>112</td>
<td>107</td>
<td>96</td>
</tr>
<tr>
<td>BUN (mmol/L)</td>
<td>1.7-8.3</td>
<td>5.46</td>
<td>-</td>
<td>18.5</td>
<td>15.2</td>
<td>-</td>
<td>13.8</td>
<td>9.9</td>
<td>7.8</td>
<td>3.7</td>
</tr>
<tr>
<td>TBil (μmol/L)</td>
<td>3.4-20.3</td>
<td>11.5</td>
<td>43.8</td>
<td>64.2</td>
<td>58.8</td>
<td>-</td>
<td>21.2</td>
<td>16.7</td>
<td>14.4</td>
<td>11.8</td>
</tr>
<tr>
<td>IBil (μmol/L)</td>
<td>0.3-16</td>
<td>7.5</td>
<td>21.7</td>
<td>55.6</td>
<td>47.3</td>
<td>-</td>
<td>15.8</td>
<td>12.8</td>
<td>10.7</td>
<td>9</td>
</tr>
<tr>
<td>LDH (U/L)</td>
<td>120-250</td>
<td>-</td>
<td>-</td>
<td>1599</td>
<td>-</td>
<td>-</td>
<td>630</td>
<td>-</td>
<td>359</td>
<td>285</td>
</tr>
<tr>
<td>PT (s)</td>
<td>9.4-12.5</td>
<td>-</td>
<td>-</td>
<td>13.3</td>
<td>-</td>
<td>21.4</td>
<td>13.3</td>
<td>-</td>
<td>-</td>
<td>12.8</td>
</tr>
<tr>
<td>D-dimer (mg/L)</td>
<td>0-0.243</td>
<td>-</td>
<td>-</td>
<td>0.978</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.623</td>
</tr>
<tr>
<td>Fibrinogen (g/L)</td>
<td>2.38-4.98</td>
<td>-</td>
<td>-</td>
<td>4.76</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>2.12</td>
</tr>
<tr>
<td>Amylase (U/L)</td>
<td>0-100</td>
<td>364</td>
<td>230</td>
<td>195</td>
<td>105</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Plasma exchange</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
</tbody>
</table>

Figure 1 Abdominal computed tomography revealed signs of pancreatitis.

About 40% of patients with TTP are likely to experience a relapse[15]. One study found a recurrence rate of about 36% during a 30-mo follow-up period, with about 76% occurring within the first 24 mo [16]. Splenectomy remains a viable, but non-curative, treatment option for patients with recurrent or refractory disease. In a case series by Dubois and Gray, patients who underwent splenectomy for recurrent TTP had better outcomes than patients who underwent splenectomy for refractory disease. They noted that in the recurrent TTP group and the refractory group that underwent splenectomy, the overall complication rate was 6% and 10%, respectively, and the mortality rate was 1.2% and 5%, respectively. In addition, they found that the recurrence rate of TTP after splenectomy was about 17% [17]. It has been suggested that splenectomy may benefit patients with TTP because it removes a large number of B lymphocytes that produce pathogenic autoantibodies. By eliminating the source of pathogenic autoantibody production, splenectomy can be a successful treatment option for patients with recurrent or plasma refractory acquired TTP due to autoantibody mediated defects in ADAMTS13.

DOI: 10.12998/wjcc.v10.i12.3808 Copyright ©The Author(s) 2022.
However, in the present case, the patient underwent splenectomy three years previously, and in the absence of a spleen, the patient still had a recurrence of acute pancreatitis at eight months follow-up albeit without being complicated with TTP. However, more follow-up in the future is required to examine whether TTP will relapse.

CONCLUSION

TTP, a life-threatening disorder, is sometimes caused by acute pancreatitis. TTP is a rare and serious complication of acute pancreatitis. Therefore, when TTP is highly suspected clinically but cannot be diagnosed early, prompt plasmapheresis and glucocorticoid therapy are necessary and may lead to a favorable outcome.

FOOTNOTES

Author contributions: Wang CH, Jin HF and Liu WG contributed to the planning, conduction and report of the work; Wang CH and Guo Y contributed to the conception and design of the work; Wang CH and Liu Z contributed to the acquisition of analysis and interpretation of the results; All authors have read and approved the manuscript.

Informed consent statement: Informed written consent was obtained from the patient for publication of this report and any accompanying images.

Conflict-of-interest statement: No potential conflicts of interest relevant to this article were reported.

CARE Checklist (2016) statement: The authors have read the CARE Checklist (2016) and the manuscript was prepared and revised according to the CARE Checklist (2016).

Open-Access: This article is an open-access article that was selected by an in-house editor and fully peer-reviewed by external reviewers. It is distributed in accordance with the Creative Commons Attribution NonCommercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: https://creativecommons.org/Licenses/by-nc/4.0/

Country/Territory of origin: China

ORCID number: Chun-Hua Wang 0000-0002-2352-8874; Hai-Feng Jin 0000-0002-9089-2799; Wen-Ge Liu 0000-0003-3451-5267; Ying Guo 0000-0002-6535-0101; Zhen Liu 0000-0002-7755-5093.

REFERENCES

