REVIEW

1457 Nonalcoholic fatty liver disease shows significant sex dimorphism
Chen XY, Wang C, Huang YZ, Zhang LL

MINIREVIEWS

1473 Management of procedural pain in the intensive care unit

ORIGINAL ARTICLE

Clinical and Translational Research

1485 Effect of prior malignancy on the prognosis of gastric cancer and somatic mutation
Yin X, He XK, Wu LY, Yan SX

Retrospective Cohort Study

1498 Elemene-containing hyperthermic intraperitoneal chemotherapy combined with chemotherapy for elderly patients with peritoneal metastatic advanced gastric cancer
Chen ZX, Li J, Liu WB, Zhang SR, Sun H

Retrospective Study

1508 Timing theory continuous nursing, resistance training: Rehabilitation and mental health of caregivers and stroke patients with traumatic fractures
Shen YL, Zhang ZQ, Zhu LJ, Liu JH

1517 Effect of precise nursing service mode on postoperative urinary incontinence prevention in patients with prostate disease
Zheng XC, Luo TT, Cao DD, Cai WZ

1527 Significance of serum glucagon-like peptide-1 and matrix Gla protein levels in patients with diabetes and osteoporosis
Xie FF, Zhang YF, Hu YF, Xie YY, Wang XY, Wang SZ, Xie BQ

1536 Castleman disease and TAFRO syndrome: To improve the diagnostic consciousness is the key
Zhou QY

Observational Study

1548 Correlation of myopia onset and progression with corneal biomechanical parameters in children
Lu LL, Hu XJ, Yang Y, Xu S, Yang SY, Zhang CY, Zhao QY
META-ANALYSIS
1557 Intensive vs non-intensive statin pretreatment before percutaneous coronary intervention in Chinese patients: A meta-analysis of randomized controlled trials
Yang X, Lan X, Zhang XL, Han ZL, Yan SM, Wang WX, Xu B, Ge WH

CASE REPORT
1572 Giant nodular fasciitis originating from the humeral periosteum: A case report
Yu SL, Sun PL, Li J, Jia M, Gao HW
1580 Tumor-related cytokine release syndrome in a treatment-naïve patient with lung adenocarcinoma: A case report
Deng PB, Jiang J, Hu CP, Cao LM, Li M
1586 Submucosal protuberance caused by a fish bone in the absence of preoperative positive signs: A case report
Du WW, Huang T, Yang GD, Zhang J, Chen J, Wang YB
1592 Misdiagnosis of unroofed coronary sinus syndrome as an ostium primum atrial septal defect by echocardiography: A case report
Chen JL, Yu CG, Wang DJ, Chen HB
1598 Uncommon complication of nasoenteral feeding tube: A case report
Jiang YP, Zhang S, Lin RH
1602 Treatment of extracranial internal carotid artery dissecting aneurysm with SUPERA stent implantation: Two case reports
Qiu MJ, Zhang BR, Song SJ
1609 Combination of atezolizumab and chidamide to maintain long-term remission in refractory metastatic extranodal natural killer/T-cell lymphoma: A case report
Wang J, Gao YS, Xu K, Li XD
1617 Hemangioma in the lower labial vestibule of an eleven-year-old girl: A case report
Aloyouny AT, Alsaifi AJ, Aladhyani SM, Alshalan AA, Aljayadh HM, Salem HM
1623 Primary orbital monophasic synovial sarcoma with calcification: A case report
Ren MY, Li J, Li RM, Wu YX, Han RJ, Zhang C
1630 Small-cell carcinoma of the prostate with negative CD56, NSE, Syn, and CgA indicators: A case report
1639 Disseminated peritoneal leiomyomatosis with malignant transformation involving right ureter: A case report
Wen CY, Lee HS, Lin JT, Yu CC
<table>
<thead>
<tr>
<th>Page</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>1645</td>
<td>Arthroscopic surgery for synovial chondroma of the subacromial bursa with non-traumatic shoulder subluxation complications: Two case reports</td>
<td>Tang XF, Qin YG, Shen XY, Chen B, Li YZ</td>
</tr>
<tr>
<td>1667</td>
<td>Gastric schwannoma misdiagnosed as gastrointestinal stromal tumor by ultrasonography before surgery: A case report</td>
<td>Li QQ, Liu D</td>
</tr>
<tr>
<td>1675</td>
<td>Giant retroperitoneal lipoma presenting with abdominal distention: A case report and review of the literature</td>
<td>Chen ZY, Chen XL, Yu Q, Fan QB</td>
</tr>
<tr>
<td>1684</td>
<td>Pneumothorax during retroperitoneal laparoscopic partial nephrectomy in a lupus nephritis patient: A case report</td>
<td>Zhao Y, Xue XQ, Xia D, Xu WF, Liu GH, Xie Y, Ji ZG</td>
</tr>
<tr>
<td>1689</td>
<td>Bulbar conjunctival vascular lesion combined with spontaneous retrobulbar hematoma: A case report</td>
<td>Lei JY, Wang H</td>
</tr>
<tr>
<td>1709</td>
<td>Tacrolimus treatment for relapsing-remitting chronic inflammatory demyelinating polyradiculoneuropathy: Two case reports</td>
<td>Zhu WJ, Da YW, Chen H, Xu M, Lu Y, Di L, Duo JY</td>
</tr>
<tr>
<td>1723</td>
<td>Unusual magnetic resonance imaging findings of brain and leptomeningeal metastasis in lung adenocarcinoma: A case report</td>
<td>Li N, Wang YJ, Zhu FM, Deng ST</td>
</tr>
<tr>
<td>1738</td>
<td>Neurothekeoma located in the hallux and axilla: Two case reports</td>
<td>Huang WY, Zhang YQ, Yang XH</td>
</tr>
</tbody>
</table>
Subclavian artery stenting via bilateral radial artery access: Four case reports

Qiu T, Fu SQ, Deng XY, Chen M, Dai XY
ABOUT COVER
Editorial Board Member of World Journal of Clinical Cases, Prashanth Panta, MDS, Reader (Associate Professor), Department of Oral Medicine and Radiology, Malla Reddy Institute of Dental Sciences, Suraram 500055, Telangana, India. maithreya.prashanth@gmail.com

AIMS AND SCOPE
The primary aim of World Journal of Clinical Cases (WJCC, World J Clin Cases) is to provide scholars and readers from various fields of clinical medicine with a platform to publish high-quality clinical research articles and communicate their research findings online.

WJCC mainly publishes articles reporting research results and findings obtained in the field of clinical medicine and covering a wide range of topics, including case control studies, retrospective cohort studies, retrospective studies, clinical trials studies, observational studies, prospective studies, randomized controlled trials, randomized clinical trials, systematic reviews, meta-analysis, and case reports.

INDEXING/ABSTRACTING
The WJCC is now indexed in Science Citation Index Expanded (also known as SciSearch®), Journal Citation Reports/Science Edition, Scopus, PubMed, and PubMed Central. The 2021 Edition of Journal Citation Reports® cites the 2020 impact factor (IF) for WJCC as 1.337; IF without journal self cites: 1.301; 5-year IF: 1.742; Journal Citation Indicator: 0.33; Ranking: 119 among 169 journals in medicine, general and internal; and Quartile category: Q3. The WJCC's CiteScore for 2020 is 0.8 and Scopus CiteScore rank 2020: General Medicine is 493/793.

RESPONSIBLE EDITORS FOR THIS ISSUE
Production Editor: Lin-YuTong Wang; Production Department Director: Xiang Li; Editorial Office Director: Jin-Lei Wang.
Tumor-related cytokine release syndrome in a treatment-naïve patient with lung adenocarcinoma: A case report

Peng-Bo Deng, Juan Jiang, Cheng-Ping Hu, Li-Ming Cao, Min Li

ORCID number: Peng-Bo Deng 0000-0002-8002-4904; Juan Jiang 0000-0002-5343-8335; Cheng-Ping Hu 0000-0002-1285-8579; Li-Ming Cao 0000-0001-9985-2972; Min Li 0000-0002-3578-2239.

Author contributions: Deng PB contributed to investigation and wrote the manuscript; Hu CP contributed to funding acquisition; Cao LM and Jiang J contributed to investigation; Li M contributed to review and editing; all authors have read and approve the final manuscript.

Informed consent statement: Informed written consent was obtained from the patient and her family for publication of this report and any accompanying images.

Conflict-of-interest statement: All authors declare no conflicts of interests.

CARE Checklist (2016) statement: The authors have read the CARE Checklist (2016), and the manuscript was prepared and revised according to the CARE Checklist (2016).

Supported by National Multidisciplinary Cooperative Diagnosis and Treatment Capacity Building Project for Major Diseases (Lung Cancer); National Key R&D Program of China, No.

Abstract

BACKGROUND
Cytokine release syndrome (CRS) is defined as systemic inflammation that usually occurs following chimeric antigen receptor T-cell therapy administration; however, it has not been reported in patients with untreated non-small cell lung cancer to date.

CASE SUMMARY
A 44-year-old nonsmoking woman presented to the hospital due to fever, palpitation, nausea, and cough for 1 mo and was diagnosed with stage cT3N3M0 (IIIc) adenocarcinoma of the lung. Auxiliary examinations revealed elevated cytokine [tumor necrosis factor-α, interleukin (IL)-1β, and IL-6] and inflammatory factor levels, which decreased after treatment with corticosteroids and immunoglobulin and when tumor growth was controlled following chemotherapy, radiotherapy, and antiangiogenesis therapy. However, tumor recurrence was observed. After administration of nivolumab as third-line treatment, the patient’s...
condition was transiently controlled; however, CRS-like symptoms suddenly emerged, which led to a resurgence of cytokines and inflammatory factors and rapid death.

CONCLUSION

CRS can develop in treatment-naïve lung cancer patients. Patients with tumor-related CRS may be at risk of CRS recurrence, aggravation, and onset of immune checkpoint inhibitor-related adverse events.

Key Words: Cytokine release syndrome; Non-small cell lung cancer; Immune checkpoint inhibitors; Nivolumab; Tumor necrosis factor α; Interleukin-1β; Interleukin-6; Case report

INTRODUCTION

Cytokine release syndrome (CRS) is defined as systemic inflammation that usually occurs after chimeric antigen receptor T-cell therapy is administered. Several case reports have shown that patients treated with immune checkpoint inhibitors (ICIs) such as pembrolizumab and nivolumab anti-programmed cell death-1 (antibody) can develop CRS. To our knowledge, CRS has not been previously reported in treatment-naïve patients with lung cancer. Based on the results of our follow-up on patients with non-small cell lung cancer, the present patient’s primary CRS was attributed to lung cancer, which usually recurs due to the development of tumors and an increase in tumor burden. Moreover, the patient developed CRS after being administered nivolumab, which led to rapid death (Table 1). This finding suggests that tumor-related CRS may be associated with ICI-related adverse events (irAEs) and poor prognosis among patients treated with nivolumab.
Table 1 Timeline

<table>
<thead>
<tr>
<th>Time</th>
<th>Syndrome or treatment</th>
<th>Oncologic response</th>
</tr>
</thead>
<tbody>
<tr>
<td>October 2017</td>
<td>Fever (maximum 41 °C), palpitation, nausea and cough for 1 mo</td>
<td></td>
</tr>
<tr>
<td>October 2017</td>
<td>Diagnosed as medium differentiated adenocarcinoma lung cancer with EGFR and ALK gene mutations negative by CT-guided puncture biopsy</td>
<td></td>
</tr>
<tr>
<td>November 2017</td>
<td>Considered have primary CRS with related to lung cancer, and treated with DXM, gamma globulin and other supporting treatments. The patient stopped fever soon</td>
<td></td>
</tr>
<tr>
<td>December 2017 to February 2018</td>
<td>Four cycles of chemotherapy with pemetrexed + cisplatin</td>
<td>PR</td>
</tr>
<tr>
<td>June 11, 2018</td>
<td>Recurrent fever for 10 d with CT showed tumor progressed again</td>
<td>PD</td>
</tr>
<tr>
<td>July 2018 to August 2018</td>
<td>Radiotherapy then stated to take</td>
<td>PR</td>
</tr>
<tr>
<td>August 2018</td>
<td>Anlotinib</td>
<td>PR</td>
</tr>
<tr>
<td>May 2019</td>
<td>Nivolumab for 5 cycles</td>
<td>PR</td>
</tr>
<tr>
<td>April 2019</td>
<td>Died</td>
<td>PD</td>
</tr>
</tbody>
</table>

EGFR: Epidermal growth factor receptor; ALK: Anaplastic lymphoma kinase; CT: Computed tomography; CRS: Cytokine release syndrome; DXM: Dexamethasone; PR: Partial remission; PD: Progressive disease.

Personal and family history
No special personal or family history was reported.

Physical examination
The patient had palpable right-sided supraclavicular lymph nodes, low breath sounds on the right lung, and the absence of rales.

Laboratory examinations
The patient was diagnosed with partially differentiated adenocarcinoma of the lung with negative epidermal growth factor receptor and anaplastic lymphoma kinase gene mutations based on the results of computed tomography (CT)-guided puncture biopsy. The patient exhibited characteristics similar to those of CRS based on her clinical manifestations (high fever, tachycardia, nausea, appetite loss, and malaise) and laboratory examination results (elevated cytokines [tumor necrosis factor α (TNFα) and interleukin (IL)-1β, IL-6, and IL-10 levels (Figure 1), organ dysfunction (liver), and elevated ferritin levels[4]. We excluded other conditions that may have caused similar symptoms, such as tumor lysis syndrome (no hyperkalemia, uric acidemia, etc.), infection, and hemophagocytic syndrome (absence of hematopoietic cells on bone marrow biopsy).

Imaging examinations
CT on October 9, 2017 revealed a thick-walled cavity in the upper right lobe (Figure 2A). Tumor stage was cT3N3M0 (IIIC).

FINAL DIAGNOSIS
Lung adenocarcinoma (stage T3N3M) and CRS.

TREATMENT
We speculated that the patient may have primary CRS related to lung cancer and administered a 10 mg intravenous infusion of dexamethasone qd for 7 d, 20 g intravenous infusion of gamma globulin for 3 d, and other supportive treatments. The patient’s fever eventually subsided, her general condition improved, the levels of inflammatory factors and cytokines decreased (Figure 1), and the Eastern Cooperative
Deng PB et al. Tumor-related CRS in lung cancer patient

Figure 1 Curve showing the changes in the levels of cytokines and inflammatory factors. Curve showing the changes in the levels of cytokines and inflammatory factors. TNF-α: Tumor necrosis factor α; IL-1β: Interleukin-1β; IL-6: Interleukin-6; IL-10: Interleukin-10; PCT: Procalcitonin; CRP: C-reactive protein; WBC: White blood cell; N: Neutrophil; L: Lymphocyte; E: Eosinophil; M: Monocyte.

Figure 2 Computed tomography of the lung. A: First computed tomography (CT) scan showing thickening of the upper right lobe cavity (October 9, 2017); B: Figure showing reduction of the tumor and enlarged cavity after 4 cycles of chemotherapy (pemetrexed + cisplatin); C: Increase in tumor size 4 mo after the last chemotherapy session (June 11, 2018); D: After the patient had received radiotherapy, CT showed that the tumor began to shrink, (August 2, 2018) the tumor had reduced in size, and anlotinib was initiated (orally, 12 mg once daily from days 1 to 14 of a 21-d cycle); E: On May 1, 2019, the tumor started to enlarge but cavity enlargement was resolved; hence, nivolumab treatment was started (5 times, from May 6, 2019 to August 19, 2019); F: In August 12, 2019, the upper right lung mass was significantly smaller than that observed before the cavity enlarged.

Oncology Group (ECOG) score improved. Four cycles of chemotherapy with pemetrexed and cisplatin were initiated. The patient achieved partial remission (PR) at 1-mo follow-up according to the Response Evaluation Criteria in Solid Tumors, version 1.1 (Figure 2B). The patient had an ECOG score of 1, and her routine blood tests and cytokine and inflammatory factor levels had returned to normal (October 1, 2017) (Figure 1).
On June 11, 2018, she experienced recurrent fever for 10 d, and CT showed tumor progression (Figure 2C). The levels of cytokine and inflammatory factors began to increase (Figure 1), and we excluded the possibility of infectious fever and considered recurrent CRS. As the patient had stage IIIc adenocarcinoma, she was treated with radiotherapy from July 2018 to August 2018, and anlotinib therapy was initiated. The patient did not develop fever during this period. In October 2018, follow-up CT was performed, which revealed that the tumor had shrunk (Figure 2D); however, the size of the tumor started to increase in May 2019 (Figure 2E). Hence, five cycles of nivolumab treatment was administered. CT was performed in August 2019 and showed that the patient had achieved PR (Figure 2F).

OUTCOME AND FOLLOW-UP
Seventeen days after receiving the last dose of nivolumab, the patient was sent to the emergency department due to exacerbation of sudden dyspnea, high fever, respiratory failure, and sudden cardiac arrest. The patient eventually died on September 8, 2019, with laboratory tests showing elevated cytokine and inflammatory factor levels (Figure 1).

DISCUSSION
The exact mechanism of CRS has not been fully elucidated. Cytokines are released when the tumor interacts with immune effector cells, and they can originate not only from the CAR T cells but also from host immune cells, such as macrophages[5]. Previous studies have shown that lung cancer cells can directly release inflammatory cytokines, including IL-1, IL-6, TNFα, and interferon (IFN)[6]. Tumor necrosis can also release a large number of cytokines, such as TNF[7]. The patient had obvious necrotic cavities in her lungs which may have been the cause of cytokine release.

This clinical experience demonstrates that corticosteroids are an effective treatment for CRS, and steroids can be rapidly tapered within several days without CRS recurring. Another drug, tocilizumab, is a humanized immunoglobulin G1 + (IgG1 +) anti-human IL-6R monoclonal antibody which can usually resolve fever and hypotension within a few hours in patients with CRS and may induce a response more quickly than corticosteroids[8]. In the present case, corticosteroids and immunoglobulin were administered, and a significant therapeutic effect was achieved. With subsequent chemotherapy and other treatments to control lung cancer, CRS also improved, suggesting that antitumor therapy is also an important treatment for tumor-related CRS. Moreover, targeted immunosuppressive agents are also available to inhibit TNFα and IL-1, both of which may contribute to CRS, such as anti-TNFα monoclonal antibodies (infliximab), soluble TNFα receptor (etanercept), and IL-1R-based inhibitors (anakinra).

This patient was administered nivolumab as third-line treatment and experienced exacerbation of CRS-like symptoms and eventually passed away after showing an oncologic response following nivolumab administration. ICI-related CRS can develop 2 d to 4 mo after treatment, and before or after achieving a significant antitumor response to ICI therapy[2,3]; this type of CRS is related to tumor lysis through the induction of pyroptosis in target cells[9]. Based on the patient's symptoms and results of auxiliary examinations combined with her previous CRS, her disease progression may have been related to nivolumab treatment. A series of recent studies suggest inflammatory cytokines are potential biomarkers for irAEs, and one study found that patients treated with nivolumab who had a high level of soluble IL-2 measured at the initial tumor evaluation had a significantly increased risk of developing grade 3-4 nivolumab-related irAEs[10]. The above phenomena suggest that the use of ICIs in patients with tumor-associated CRS may induce the onset or aggravation of CRS or serious irAEs, which may be life-threatening.

CONCLUSION
We believe that CRS can occur in treatment-naïve patients with lung cancer. Corticosteroids, immunoglobulins, and subsequent antitumor treatments have played important roles in the control of tumor-related CRS. Patients with tumor-related CRS
may be at risk of CRS recurrence, aggravation, and onset of irAEs when treated with ICIs; therefore, it is necessary to carefully evaluate whether the patient has CRS prior to initiating ICI treatment.

REFERENCES

